1
|
Wille M, Grillo V, de Gouvea Pedroso SB, Brohier ND, Broz I, Burgoyne C, Crawley A, Davies K, Ford M, Grimsey J, Kung NYH, Luczo JM, Matereke C, Mee PT, Mileto P, Neave MJ, Poon M, Stevens V, Weerasinghe G, Zufan S, Barr IG, Klaassen M, Breed AC, Wong FYK. Incursion of Novel Eurasian Low Pathogenicity Avian Influenza H5 Virus, Australia, 2023. Emerg Infect Dis 2024; 30:2620-2624. [PMID: 39486158 PMCID: PMC11616663 DOI: 10.3201/eid3012.240919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
Australia is a sink for low pathogenicity avian influenza viruses, with isolated circulation occurring on the continent. We report the incursion of a Eurasian low pathogenicity avian influenza H5 virus into Australia. This report benefits surveillance and diagnostic work because of the risk and current absence of highly pathogenic avian influenza A(H5N1).
Collapse
|
2
|
Wille M, Broz I, Cherrington T, Crawley A, Farrugia B, Ford M, Frost M, Grimsey J, Kirkland PD, Latimore S, Lynch SE, Martin S, Matereke C, Mee PT, Neave MJ, O’Dea M, Read AJ, O’Riley K, Stevens V, Thayaparan S, Zufan S, Ban de Gouvea Pedroso S, Grillo V, Breed AC, Barr IG, Holmes EC, Klaassen M, Wong FY. Contrasting dynamics of two incursions of low-pathogenicity avian influenza virus into Australia. Virus Evol 2024; 10:veae076. [PMID: 39416286 PMCID: PMC11482279 DOI: 10.1093/ve/veae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/15/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The current panzootic of high pathogenicity avian influenza virus H5N1 demonstrates how viral incursions can have major ramifications for wildlife and domestic animals. Herein, we describe the recent incursion into Australia of two low pathogenicity avian influenza virus subtypes, H4 and H10, that exhibited contrasting evolutionary dynamics. Viruses detected from national surveillance and disease investigations between 2020 and 2022 revealed 27 genomes, 24 of which have at least one segment more closely related to Eurasian or North American avian influenza lineages than those already circulating in Australia. Phylogenetic analysis revealed that H4 viruses circulating in shorebirds represent a recent incursion from Asia that is distinct from those circulating concurrently in Australian waterfowl. Analysis of the internal segments further demonstrates exclusive, persistent circulation in shorebirds. This contrasts with H10, where a novel lineage has emerged in wild waterfowl, poultry, and captive birds across Australia and has likely replaced previously circulating H10 lineages through competitive exclusion. Elucidating different dynamics for avian influenza incursions supports effective disease risk identification and communication that better informs disease preparedness and response.
Collapse
Affiliation(s)
- Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ivano Broz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Tanya Cherrington
- Department of Primary Industries and Regional Development, Western Australia 6151, Australia
| | - Allison Crawley
- Primary Industries and Regions, Adelaide, South Australia 5000, Australia
| | - Blaine Farrugia
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Mark Ford
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Melinda Frost
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Joanne Grimsey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Peter D Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Shaylie Latimore
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - Sue Martin
- Department of Natural Resources and Environment, Hobart, Tasmania 7000, Australia
| | - Cornelius Matereke
- Primary Industries and Regions, Adelaide, South Australia 5000, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - Matthew J Neave
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Mark O’Dea
- Department of Primary Industries and Regional Development, Western Australia 6151, Australia
| | - Andrew J Read
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Kim O’Riley
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - Vittoria Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Sivapiragasam Thayaparan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| | - Sara Zufan
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | | | - Victoria Grillo
- Wildlife Health Australia, Dickson, Australian Capital Territory 2602, Australia
| | - Andrew C Breed
- Department of Agriculture, Fisheries and Forestry, Canberra, Australia Capital Territory 2601, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Frank Y.K Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Victoria 3320, Australia
| |
Collapse
|
3
|
Stanislawek WL, Tana T, Rawdon TG, Cork SC, Chen K, Fatoyinbo H, Cogger N, Webby RJ, Webster RG, Joyce M, Tuboltsev MA, Orr D, Ohneiser S, Watts J, Riegen AC, McDougall M, Klee D, O’Keefe JS. Avian influenza viruses in New Zealand wild birds, with an emphasis on subtypes H5 and H7: Their distinctive epidemiology and genomic properties. PLoS One 2024; 19:e0303756. [PMID: 38829903 PMCID: PMC11146706 DOI: 10.1371/journal.pone.0303756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The rapid spread of highly pathogenic avian influenza (HPAI) A (H5N1) viruses in Southeast Asia in 2004 prompted the New Zealand Ministry for Primary Industries to expand its avian influenza surveillance in wild birds. A total of 18,693 birds were sampled between 2004 and 2020, including migratory shorebirds (in 2004-2009), other coastal species (in 2009-2010), and resident waterfowl (in 2004-2020). No avian influenza viruses (AIVs) were isolated from cloacal or oropharyngeal samples from migratory shorebirds or resident coastal species. Two samples from red knots (Calidris canutus) tested positive by influenza A RT-qPCR, but virus could not be isolated and no further characterization could be undertaken. In contrast, 6179 samples from 15,740 mallards (Anas platyrhynchos) tested positive by influenza A RT-qPCR. Of these, 344 were positive for H5 and 51 for H7. All H5 and H7 viruses detected were of low pathogenicity confirmed by a lack of multiple basic amino acids at the hemagglutinin (HA) cleavage site. Twenty H5 viruses (six different neuraminidase [NA] subtypes) and 10 H7 viruses (two different NA subtypes) were propagated and characterized genetically. From H5- or H7-negative samples that tested positive by influenza A RT-qPCR, 326 AIVs were isolated, representing 41 HA/NA combinations. The most frequently isolated subtypes were H4N6, H3N8, H3N2, and H10N3. Multivariable logistic regression analysis of the relations between the location and year of sampling, and presence of AIV in individual waterfowl showed that the AIV risk at a given location varied from year to year. The H5 and H7 isolates both formed monophyletic HA groups. The H5 viruses were most closely related to North American lineages, whereas the H7 viruses formed a sister cluster relationship with wild bird viruses of the Eurasian and Australian lineages. Bayesian analysis indicates that the H5 and H7 viruses have circulated in resident mallards in New Zealand for some time. Correspondingly, we found limited evidence of influenza viruses in the major migratory bird populations visiting New Zealand. Findings suggest a low probability of introduction of HPAI viruses via long-distance bird migration and a unique epidemiology of AIV in New Zealand.
Collapse
Affiliation(s)
| | - Toni Tana
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Susan C. Cork
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kylie Chen
- Department of Computational Biology, University of Auckland, Auckland, New Zealand
| | - Hammed Fatoyinbo
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Naomi Cogger
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maree Joyce
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Della Orr
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Jonathan Watts
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | | | | | | |
Collapse
|
4
|
Wille M, Atkinson R, Barr IG, Burgoyne C, Bond AL, Boyle D, Christie M, Dewar M, Douglas T, Fitzwater T, Hassell C, Jessop R, Klaassen H, Lavers JL, Leung KK, Ringma J, Sutherland DR, Klaassen M. Long-Distance Avian Migrants Fail to Bring 2.3.4.4b HPAI H5N1 Into Australia for a Second Year in a Row. Influenza Other Respir Viruses 2024; 18:e13281. [PMID: 38556461 PMCID: PMC10982072 DOI: 10.1111/irv.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaPeter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | | | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on InfluenzaPeter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - Charlotte Burgoyne
- Northern Australia Quarantine StrategyDepartment of Agriculture, Fisheries and ForestryCanberraAustralian Capital TerritoryAustralia
| | | | - David Boyle
- Victorian Ornithological Research Group Inc.LeopoldVictoriaAustralia
| | - Maureen Christie
- Victorian Wader Study GroupMelbourneVictoriaAustralia
- Australasian Wader Studies GroupMelbourneVictoriaAustralia
- Friends of Shorebirds SECarpenter RocksSouth AustraliaAustralia
| | - Meagan Dewar
- Future Regions Research CentreFederation University AustraliaBerwickVictoriaAustralia
| | - Tegan Douglas
- Australasian Wader Studies GroupMelbourneVictoriaAustralia
- BirdLife AustraliaMelbourneVictoriaAustralia
| | - Teagan Fitzwater
- Northern Australia Quarantine StrategyDepartment of Agriculture, Fisheries and ForestryCanberraAustralian Capital TerritoryAustralia
| | - Chris Hassell
- Australasian Wader Studies GroupMelbourneVictoriaAustralia
- Global Flyway NetworkBroomeWestern AustraliaAustralia
| | - Roz Jessop
- Victorian Wader Study GroupMelbourneVictoriaAustralia
- Australasian Wader Studies GroupMelbourneVictoriaAustralia
| | - Hiske Klaassen
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jennifer L. Lavers
- Bird GroupThe Natural History MuseumTringUK
- Esperance Tjaltjraak Native Title Aboriginal CorporationEsperanceWestern AustraliaAustralia
- Gulbali InstituteCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | | | | | - Duncan R. Sutherland
- Phillip Island Nature ParksCowesVictoriaAustralia
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Marcel Klaassen
- Victorian Wader Study GroupMelbourneVictoriaAustralia
- Australasian Wader Studies GroupMelbourneVictoriaAustralia
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
5
|
Yang Q, Wang B, Lemey P, Dong L, Mu T, Wiebe RA, Guo F, Trovão NS, Park SW, Lewis N, Tsui JLH, Bajaj S, Cheng Y, Yang L, Haba Y, Li B, Zhang G, Pybus OG, Tian H, Grenfell B. Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders. Nat Commun 2024; 15:1126. [PMID: 38321046 PMCID: PMC10847442 DOI: 10.1038/s41467-024-45462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) A H5, particularly clade 2.3.4.4, has caused worldwide outbreaks in domestic poultry, occasional spillover to humans, and increasing deaths of diverse species of wild birds since 2014. Wild bird migration is currently acknowledged as an important ecological process contributing to the global dispersal of HPAIV H5. However, this mechanism has not been quantified using bird movement data from different species, and the timing and location of exposure of different species is unclear. We sought to explore these questions through phylodynamic analyses based on empirical data of bird movement tracking and virus genome sequences of clade 2.3.4.4 and 2.3.2.1. First, we demonstrate that seasonal bird migration can explain salient features of the global dispersal of clade 2.3.4.4. Second, we detect synchrony between the seasonality of bird annual cycle phases and virus lineage movements. We reveal the differing exposed bird orders at geographical origins and destinations of HPAIV H5 clade 2.3.4.4 lineage movements, including relatively under-discussed orders. Our study provides a phylodynamic framework that links the bird movement ecology and genomic epidemiology of avian influenza; it highlights the importance of integrating bird behavior and life history in avian influenza studies.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Ben Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Phillipe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lu Dong
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tong Mu
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - R Alex Wiebe
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Fengyi Guo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Nicola Lewis
- Animal and Plant Health Agency-Weybridge, OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease Virus, Department of Virology, Addlestone, UK
- Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
| | | | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford, UK
| | - Yachang Cheng
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Luojun Yang
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Guogang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, National Bird Banding Center of China, Beijing, China
| | - Oliver G Pybus
- Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Ross TA, Zhang J, Wille M, Ciesielski TM, Asimakopoulos AG, Lemesle P, Skaalvik TG, Atkinson R, Jessop R, Jaspers VLB, Klaassen M. Assessment of contaminants, health and survival of migratory shorebirds in natural versus artificial wetlands - The potential of wastewater treatment plants as alternative habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166309. [PMID: 37586507 DOI: 10.1016/j.scitotenv.2023.166309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The rapid destruction of natural wetland habitats over past decades has been partially offset by an increase in artificial wetlands. However, these also include wastewater treatment plants, which may pose a pollution risk to the wildlife using them. We studied two long-distance Arctic-breeding migratory shorebird species, curlew sandpiper (Calidris ferruginea, n = 69) and red-necked stint (Calidris ruficollis, n = 103), while on their Australian non-breeding grounds using an artificial wetland at a wastewater treatment plant (WTP) and a natural coastal wetland. We compared pollutant exposure (elements and per- and poly-fluoroalkyl substances/PFASs), disease (avian influenza), physiological status (oxidative stress) of the birds at the two locations from 2011 to 2020, and population survival from 1978 to 2019. Our results indicated no significant differences in blood pellet pollutant concentrations between the habitats except mercury (WTP median: 224 ng/g, range: 19-873 ng/g; natural wetland: 160 ng/g, 22-998 ng/g) and PFASs (total PFASs WTP median: 85.1 ng/g, range: <0.01-836 ng/g; natural wetland: 8.02 ng/g, <0.01-85.3 ng/g) which were higher at the WTP, and selenium which was lower at the WTP (WTP median: 5000 ng/g, range: 1950-34,400 ng/g; natural wetland: 19,200 ng/g, 4130-65,200 ng/g). We also measured higher blood o,o'-dityrosine (an indicator of protein damage) at the WTP. No significant differences were found for adult survival, but survival of immature birds at the WTP appeared to be lower which could be due to higher dispersal to other wetlands. Interestingly, we found active avian influenza infections were higher in the natural habitat, while seropositivity was higher in the WTP, seemingly not directly related to pollutant exposure. Overall, we found limited differences in pollutant exposure, health and survival of the shorebirds in the two habitats. Our findings suggest that appropriately managed wastewater treatment wetlands could provide a suitable alternative habitat to these migratory species, which may aid in curbing the decline of shorebird populations from widespread habitat loss.
Collapse
Affiliation(s)
- Tobias A Ross
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia.
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Michelle Wille
- Sydney School for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171 Longyearbyen, Norway
| | | | - Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Tonje G Skaalvik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Robyn Atkinson
- Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| | - Roz Jessop
- Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia; Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| |
Collapse
|
7
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
8
|
Xu Y, Tang L, Gu X, Bo S, Ming L, Ma M, Zhao C, Sun K, Liu Y, He G. Characterization of avian influenza A (H4N2) viruses isolated from wild birds in Shanghai during 2019 to 2021. Poult Sci 2023; 102:102948. [PMID: 37604021 PMCID: PMC10465953 DOI: 10.1016/j.psj.2023.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
The H4 subtype of avian influenza viruses has been widely distributed among wild birds. During the surveillance of the avian influenza virus in Shanghai from 2019 to 2021, a total of 4,451 samples were collected from wild birds, among which 46 H4 subtypes of avian influenza viruses were identified, accounting for 7.40% of the total positive samples. The H4 subtype viruses have a wide range of hosts, including the spot-billed duck, common teal, and other wild birds in Anseriformes. Among all H4 subtypes, the most abundant are the H4N2 viruses. To clarify the genetic characteristics of H4N2 viruses, the whole genome sequences of 20 H4N2 viruses were analyzed. Phylogenetical analysis showed that all 8 genes of these viruses belonged to the Eurasian lineage and closely clustered with low pathogenic avian influenza viruses from countries along the East Asia-Australia migratory route. However, the PB1 gene of 1 H4N2 virus (NH21920) might provide its internal gene for highly pathogenic avian influenza H5N8 viruses in Korea and Japan. At least 10 genotypes were identified in these viruses, indicating that they underwent multiple complex recombination events. Our study has provided a better epidemiological understanding of the H4N2 viruses in wild birds. Considering the mutational potential, comprehensive surveillance of the H4N2 virus in both poultry and wild birds is imperative.
Collapse
Affiliation(s)
- Yuting Xu
- School of Life Science, East China Normal University, Shanghai, China
| | - Ling Tang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, China
| | - Xiaojun Gu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Le Ming
- School of Life Science, East China Normal University, Shanghai, China
| | - Min Ma
- School of Life Science, East China Normal University, Shanghai, China
| | | | - Kaibo Sun
- Shanghai Forestry Station, Shanghai, China
| | - Yuyi Liu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Guimei He
- School of Life Science, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Wille M, Lisovski S, Roshier D, Ferenczi M, Hoye BJ, Leen T, Warner S, Fouchier RAM, Hurt AC, Holmes EC, Klaassen M. Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. Proc Biol Sci 2023; 290:20222237. [PMID: 36651046 PMCID: PMC9845974 DOI: 10.1098/rspb.2022.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Host susceptibility to parasites is mediated by intrinsic and external factors such as genetics, ecology, age and season. While waterfowl are considered central to the reservoir community for low pathogenic avian influenza A viruses (LPAIV), the role of host phylogeny has received limited formal attention. Herein, we analysed 12 339 oropharyngeal and cloacal swabs and 10 826 serum samples collected over 11 years from wild birds in Australia. As well as describing age and species-level differences in prevalence and seroprevalence, we reveal that host phylogeny is a key driver in host range. Seasonality effects appear less pronounced than in the Northern Hemisphere, while annual variations are potentially linked to El Niño-Southern Oscillation. Our study provides a uniquely detailed insight into the evolutionary ecology of LPAIV in its avian reservoir community, defining distinctive processes on the continent of Australia and expanding our understanding of LPAIV globally.
Collapse
Affiliation(s)
- Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia,WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - David Roshier
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Marta Ferenczi
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Trent Leen
- Geelong Field and Game, Geelong, VIC 3340, Australia,Wetlands Environmental Taskforce, Field and Game Australia, Seymour, VIC 3660, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015GE, The Netherlands
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia,Victorian Wader Study Group, Thornbury, Victoria 3071, Australia,Australasian Wader Studies Group, Curtin, ACT 2605, Australia
| |
Collapse
|
10
|
de Vries EM, Cogan NOI, Gubala AJ, Mee PT, O'Riley KJ, Rodoni BC, Lynch SE. Rapid, in-field deployable, avian influenza virus haemagglutinin characterisation tool using MinION technology. Sci Rep 2022; 12:11886. [PMID: 35831457 PMCID: PMC9279447 DOI: 10.1038/s41598-022-16048-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.
Collapse
Affiliation(s)
- Ellen M de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Peter T Mee
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Kim J O'Riley
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Stacey E Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|