1
|
Cella E, Fonseca V, Branda F, Tosta S, Moreno K, Schuab G, Ali S, Slavov SN, Scarpa F, Santos LA, Kashima S, Wilkinson E, Tegally H, Mavian C, Borsetti A, Caccuri F, Salemi M, de Oliveira T, Azarian T, de Filippis AMB, Alcantara LCJ, Ceccarelli G, Caruso A, Colizzi V, Marcello A, Lourenço J, Ciccozzi M, Giovanetti M. Integrated analyses of the transmission history of SARS-CoV-2 and its association with molecular evolution of the virus underlining the pandemic outbreaks in Italy, 2019-2023. Int J Infect Dis 2024:107262. [PMID: 39389289 DOI: 10.1016/j.ijid.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Italy was significantly affected by the COVID-19 pandemic, experiencing multiple waves of infection following the sequential emergence of new variants. Understanding the transmission patterns and evolution of SARS-CoV-2 is vital for future preparedness. METHODS We conducted an analysis of viral genome sequences, integrating epidemiological and phylodynamic approaches, to characterize how SARS-CoV-2 variants have spread within the country. RESULTS Our findings indicate bidirectional international transmission, with Italy transitioning between importing and exporting the virus. Italy experienced four distinct epidemic waves, each associated with a significant reduction in fatalities from 2021 to 2023. These waves were primarily driven by the emergence of VOCs such as Alpha, Delta, and Omicron, which were reflected in observed transmission dynamics and effectiveness of public health measures. CONCLUSIONS The changing patterns of viral spread and variant prevalence throughout Italy's pandemic response underscore the continued importance of flexible public health strategies and genomic surveillance, both of which are crucial for tracking the evolution of variants and adapting control measures effectively to ensure preparedness for future outbreaks.
Collapse
Affiliation(s)
- Eleonora Cella
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Stephane Tosta
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Keldenn Moreno
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Schuab
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sobur Ali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Butantan Institute, São Paulo, Brazil
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Simone Kashima
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Global Health Program Smithsonian's National Zoo & Conservation Biology Institute, DC, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Brescia, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Taj Azarian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Giancarlo Ceccarelli
- Infectious Diseases Department, Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Brescia, Italy
| | - Vittorio Colizzi
- UNESCO Chair of Interdisciplinary Biotechnology and Bioethics, University of Rome Tor Vergata
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - José Lourenço
- Universidade Católica Portuguesa, Faculdade de Medicina, Biomedical Research Center, Lisboa, Portugal
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy; Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kulin D, Shah A, Fairlie T, Wong RK, Fang X, Ghoshal UC, Kashyap PC, Mulak A, Lee YY, Talley NJ, Koloski N, Jones MP, Holtmann GJ. The COVID-19 pandemic as a modifier of DGBI symptom severity: A systematic review and meta-analysis. Neurogastroenterol Motil 2024; 36:e14878. [PMID: 39056447 DOI: 10.1111/nmo.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND This SRMA reviewed and assessed the changes in the severity of disorders of gut-brain interaction (DGBI) symptoms during the COVID-19 pandemic, and evaluated factors associated with symptom severity changes. METHODS Electronic databases were searched until February 2024, for articles reporting on changes in symptom severity in DGBI patients during the COVID-19 pandemic. The proportion of DGBI patients who reported a change in their symptom severity were pooled using a random-effects model, and subgroup analyses were conducted to assess the effect of socio-cultural modifiers on symptom severity in DGBI. KEY RESULTS Twelve studies including 3610 DGBI patients found that 31.4% (95% CI, 15.9-52.5) of DGBI patients experienced symptom deterioration, while 24.3% (95% CI, 10.2-47.5) experienced improvement. Countries with high gross domestic product (GDP) had a 43.5% (95% CI, 16.3-75.2) likelihood of symptom deterioration, compared to 9.2% (95% CI, 1.4-42.2) in lower GDP countries. Similarly, countries with low COVID fatality rates had a 60.1% (95% CI, 19.7-90.3) likelihood of symptom deterioration, compared to 18.3% (95% CI, 7.8-36.9) in higher fatality rate countries. Countries with lenient COVID policies had a 58.4% (95% CI, 14.1-92.3) likelihood of symptom deterioration, compared to 19% (95% CI, 8.2-38.1) in countries with stricter policies. Patients in high vaccine hesitancy countries had a 51.4% (95% CI, 19.5-82.2) likelihood of symptom deterioration, compared to 10.6% (95% CI, 2.7-33.4) in low vaccine hesitancy countries. CONCLUSIONS & INFERENCES This meta-analysis reveals that a significantly higher proportion of DGBI patients experienced deterioration of symptoms during the COVID-19 pandemic. Various sociocultural, economic and environmental factors potentially modify the effects of the COVID-19 pandemic on DGBI.
Collapse
Affiliation(s)
- Dmitrii Kulin
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ayesha Shah
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Thomas Fairlie
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Reuben K Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Uday C Ghoshal
- Institute of Gastrosciences and Liver Transplantation, Apollo Multispeciality Hospitals, Kolkata, India
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- GI Function & Motility Unit, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nicholas J Talley
- School of Medicine and Public Health, and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Natasha Koloski
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michael P Jones
- Macquarie University, School of Psychological Sciences, Sydney, New South Wales, Australia
| | - Gerald J Holtmann
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Carducci A, Federigi I, Lauretani G, Muzio S, Pagani A, Atomsa NT, Verani M. Critical Needs for Integrated Surveillance: Wastewater-Based and Clinical Epidemiology in Evolving Scenarios with Lessons Learned from SARS-CoV-2. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:38-49. [PMID: 38168848 DOI: 10.1007/s12560-023-09573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
During the COVID-19 pandemic, wastewater-based epidemiology (WBE) and clinical surveillance have been used as tools for analyzing the circulation of SARS-CoV-2 in the community, but both approaches can be strongly influenced by some sources of variability. From the challenging perspective of integrating environmental and clinical data, we performed a correlation analysis between SARS-CoV-2 concentrations in raw sewage and incident COVID-19 cases in areas served by medium-size wastewater treatment plants (WWTPs) from 2021 to 2023. To this aim, both datasets were adjusted for several sources of variability: WBE data were adjusted for factors including the analytical protocol, sewage flow, and population size, while clinical data adjustments considered the demographic composition of the served population. Then, we addressed the impact on the correlation of differences among sewerage networks and variations in the frequency and type of swab tests due to changes in political and regulatory scenarios. Wastewater and clinical data were significantly correlated when restrictive containment measures and limited movements were in effect (ρ = 0.50) and when COVID-19 cases were confirmed exclusively through molecular testing (ρ = 0.49). Moreover, a positive (although weak) correlation arose for WWTPs located in densely populated areas (ρ = 0.37) and with shorter sewerage lengths (ρ = 0.28). This study provides methodological approaches for interpreting WBE and clinical surveillance data, which could also be useful for other infections. Data adjustments and evaluation of possible sources of bias need to be carefully considered from the perspective of integrated environmental and clinical surveillance of infections.
Collapse
Affiliation(s)
- Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Ileana Federigi
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Giulia Lauretani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Sara Muzio
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Alessandra Pagani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Nebiyu Tariku Atomsa
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| | - Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy
| |
Collapse
|
4
|
Boldea O, Alipoor A, Pei S, Shaman J, Rozhnova G. Age-specific transmission dynamics of SARS-CoV-2 during the first 2 years of the pandemic. PNAS NEXUS 2024; 3:pgae024. [PMID: 38312225 PMCID: PMC10837015 DOI: 10.1093/pnasnexus/pgae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
During its first 2 years, the SARS-CoV-2 pandemic manifested as multiple waves shaped by complex interactions between variants of concern, non-pharmaceutical interventions, and the immunological landscape of the population. Understanding how the age-specific epidemiology of SARS-CoV-2 has evolved throughout the pandemic is crucial for informing policy decisions. In this article, we aimed to develop an inference-based modeling approach to reconstruct the burden of true infections and hospital admissions in children, adolescents, and adults over the seven waves of four variants (wild-type, Alpha, Delta, and Omicron BA.1) during the first 2 years of the pandemic, using the Netherlands as the motivating example. We find that reported cases are a considerable underestimate and a generally poor predictor of true infection burden, especially because case reporting differs by age. The contribution of children and adolescents to total infection and hospitalization burden increased with successive variants and was largest during the Omicron BA.1 period. However, the ratio of hospitalizations to infections decreased with each subsequent variant in all age categories. Before the Delta period, almost all infections were primary infections occurring in naive individuals. During the Delta and Omicron BA.1 periods, primary infections were common in children but relatively rare in adults who experienced either reinfections or breakthrough infections. Our approach can be used to understand age-specific epidemiology through successive waves in other countries where random community surveys uncovering true SARS-CoV-2 dynamics are absent but basic surveillance and statistics data are available.
Collapse
Affiliation(s)
- Otilia Boldea
- Department of Econometrics and OR, Tilburg School of Economics and Management, Tilburg University, Tilburg 5037 AB, The Netherlands
| | - Amir Alipoor
- Department of Econometrics and OR, Tilburg School of Economics and Management, Tilburg University, Tilburg 5037 AB, The Netherlands
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Columbia Climate School, Columbia University, New York, NY 10025, USA
| | - Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
- Center for Complex Systems Studies (CCSS), Utrecht University, Utrecht 3584 CE, The Netherlands
- Faculdade de Ciências, Universidade de Lisboa, Lisbon PT1749-016, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon PT1749-016, Portugal
| |
Collapse
|
5
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
6
|
Kassianos G, MacDonald P, Aloysius I, Pather S. Responses to Common Misconceptions Relating to COVID-19 Variant-Adapted mRNA Vaccines. Vaccines (Basel) 2024; 12:57. [PMID: 38250870 PMCID: PMC10819631 DOI: 10.3390/vaccines12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of immunity over time has necessitated the use of booster doses of original coronavirus disease 2019 (COVID-19) vaccines. This has also led to the development and implementation of variant-adapted messenger RNA (mRNA) vaccines that include an Omicron sub-lineage component in addition to the antigen based on the wild-type virus spike protein. Subsequent emergence of the recombinant XBB sub-lineages triggered the development of monovalent XBB-based variant-adapted mRNA vaccines, which are available for vaccination campaigns in late 2023. Misconceptions about new variant-adapted vaccines may exacerbate vaccine fatigue and drive the lack of vaccine acceptance. This article aims to address common concerns about the development and use of COVID-19 variant-adapted mRNA vaccines that have emerged as SARS-CoV-2 has continued to evolve.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London NW1 2FB, UK;
- British Global and Travel Health Association, London NW1 2FB, UK
| | | | | | | |
Collapse
|
7
|
Sasidharan A, Selvarangan R, Konrad K, Faron ML, Shakir SM, Hillyard D, McCall RK, McHardy IH, Goldberg DC, Dunn JJ, Greninger AL, Lansang C, Bogh R, Remillard CV. Multi-center clinical evaluation of the Panther Fusion SARS-CoV-2/Flu A/B/RSV assay in nasopharyngeal swab specimens from symptomatic individuals. J Clin Microbiol 2023; 61:e0082723. [PMID: 37902331 PMCID: PMC10662375 DOI: 10.1128/jcm.00827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/26/2023] [Indexed: 10/31/2023] Open
Abstract
The symptomology is overlapping for respiratory infections due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), influenza A/B viruses, and respiratory syncytial virus (RSV). Accurate detection is essential for proper medical management decisions. This study evaluated the clinical performance of the Panther Fusion SARS-CoV-2/Flu A/B/RSV assay in nasopharyngeal swab (NPS) specimens from individuals of all ages with signs and symptoms of respiratory infection consistent with COVID-19, influenza, or RSV. Retrospective known-positive and prospectively obtained residual NPS specimens were collected during two respiratory seasons in the USA. Clinical performance was established by comparing Panther Fusion SARS-CoV-2/Flu assay results to a three-molecular assay composite comparator interpretation for SARS-CoV-2 and to the FDA-cleared Panther Fusion Flu A/B/RSV assay results for all non-SARS-CoV-2 targets. A total of 1,900 prospective and 95 retrospective NPS specimens were included in the analyses. The overall prevalence in prospectively obtained specimens was 20.7% for SARS-CoV-2, 6.7% for influenza A, and 0.7% for RSV; all influenza B-positive specimens were retrospective specimens. The positive percent agreement of the Panther Fusion assay was 96.9% (378/390) for SARS-CoV-2, 98.0% (121/123) for influenza A virus, 95.2% (20/21) for influenza B virus, and 96.6% (57/59) for RSV. The negative percent agreement was ≥98.5% for all target viruses. Specimens with discordant Panther Fusion SARS/Flu/RSV assay results all had cycle threshold values of ≥32.4 (by comparator or by Panther Fusion SARS/Flu/RSV assay). Only five co-infections were detected in the study specimens. The Panther Fusion SARS-CoV-2/Flu/RSV assay provides highly sensitive and specific detection of SARS-CoV-2, influenza A virus, influenza B virus, and RSV in NPS specimens.
Collapse
Affiliation(s)
| | | | - Kennah Konrad
- The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Waku J, Oshinubi K, Adam UM, Demongeot J. Forecasting the Endemic/Epidemic Transition in COVID-19 in Some Countries: Influence of the Vaccination. Diseases 2023; 11:135. [PMID: 37873779 PMCID: PMC10594474 DOI: 10.3390/diseases11040135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The objective of this article is to develop a robust method for forecasting the transition from endemic to epidemic phases in contagious diseases using COVID-19 as a case study. METHODS Seven indicators are proposed for detecting the endemic/epidemic transition: variation coefficient, entropy, dominant/subdominant spectral ratio, skewness, kurtosis, dispersion index and normality index. Then, principal component analysis (PCA) offers a score built from the seven proposed indicators as the first PCA component, and its forecasting performance is estimated from its ability to predict the entrance in the epidemic exponential growth phase. RESULTS This score is applied to the retro-prediction of endemic/epidemic transitions of COVID-19 outbreak in seven various countries for which the first PCA component has a good predicting power. CONCLUSION This research offers a valuable tool for early epidemic detection, aiding in effective public health responses.
Collapse
Affiliation(s)
- Jules Waku
- IRD UMI 209 UMMISCO and LIRIMA, University of Yaounde I, Yaounde P.O. Box 337, Cameroon;
| | | | | | | |
Collapse
|
9
|
Pappa M, Panagiotopoulos A, Thomas K, Fanouriakis A. Systemic Lupus Erythematosus and COVID-19. Curr Rheumatol Rep 2023; 25:192-203. [PMID: 37477841 PMCID: PMC10504107 DOI: 10.1007/s11926-023-01110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE OF REVIEW To describe the current state of knowledge regarding COVID-19 in patients with systemic lupus erythematosus (SLE). We focus on (i) SARS-CoV-2 vaccination uptake, immunogenicity and safety, and (ii) outcomes of COVID-19 in patients with SLE and pertinent risk factors for adverse sequelae. RECENT FINDINGS Notwithstanding the potential concern of patients about possible post-vaccination side-effects, the safety of anti-SARS-CoV-2 vaccines in patients with SLE has been undisputedly confirmed in numerous studies. Humoral immunogenicity is generally attained in SLE, although affected by the use of background immunosuppressive drugs, especially rituximab. The latter has also clearly been implicated with adverse COVID-19 outcomes in SLE, including need for hospitalization, mechanical ventilation and death. Although the wide adoption of vaccination has significantly improved COVID-19 outcomes, patients with SLE continue to pose challenges during the pandemic, mainly owing to administered immunosuppressive medications.
Collapse
Affiliation(s)
- Maria Pappa
- 1st Department of Propaedeutic Internal Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Panagiotopoulos
- 1st Department of Propaedeutic Internal Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Thomas
- 4th Department of Internal Medicine, "Attikon" University Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology, "Attikon" University Hospital of Athens, Medical School National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Gama-Almeida MC, Pinto GDA, Teixeira L, Hottz ED, Ivens P, Ribeiro H, Garrett R, Torres AG, Carneiro TIA, Barbalho BDO, Ludwig C, Struchiner CJ, Assunção-Miranda I, Valente APC, Bozza FA, Bozza PT, Dos Santos GC, El-Bacha T. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023; 13:879. [PMID: 37512587 PMCID: PMC10384698 DOI: 10.3390/metabo13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.
Collapse
Affiliation(s)
- Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora 36936-900, Brazil
| | - Paula Ivens
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Hygor Ribeiro
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Garrett
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Talita I A Carneiro
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bianca de O Barbalho
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2SQ, UK
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro 22231-080, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Iranaia Assunção-Miranda
- LaRIV, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Paula C Valente
- National Center for Nuclear Magnetic Resonance-Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Gilson C Dos Santos
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
11
|
Adeniyi OV, Durojaiye OC, Masilela C. Persistence of SARS-CoV-2 IgG Antibody Response among South African Adults: A Prospective Cohort Study. Vaccines (Basel) 2023; 11:1068. [PMID: 37376457 PMCID: PMC10302206 DOI: 10.3390/vaccines11061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
This study assesses the durability of severe acute respiratory coronavirus-2 (SARS-CoV-2) anti-nucleocapsid (anti-N) immunoglobulin G (IgG) after infection and examines its association with established risk factors among South African healthcare workers (HCWs). Blood samples were obtained from 390 HCWs with diagnosis of coronavirus disease 2019 (COVID-19) for assay of the SARS-CoV-2 anti-N IgG at two time points (Phase 1 and 2) between November 2020 and February 2021. Out of 390 HCWs with a COVID-19 diagnosis, 267 (68.5%) had detectable SARS-CoV-2 anti-N IgG antibodies at the end of Phase I. These antibodies persisted for 4-5 and 6-7 months in 76.4% and 16.1%, respectively. In the multivariate logistic regression model analysis, Black participants were more likely to sustain SARS-CoV-2 anti-N IgG for 4-5 months. However, participants who were HIV positive were less likely to sustain SARS-CoV-2 anti-N IgG antibodies for 4-5 months. In addition, individuals who were <45 years of age were more likely to sustain SARS-CoV-2 anti-N IgG for 6-7 months. Of the 202 HCWs selected for Phase 2, 116 participants (57.4%) had persistent SARS-CoV-2 anti-N IgG for an extended mean period of 223 days (7.5 months). Findings support the longevity of vaccine responses against SARS-CoV-2 in Black Africans.
Collapse
Affiliation(s)
- Oladele Vincent Adeniyi
- Department of Family Medicine, Cecilia Makiwane Hospital/Walter Sisulu University, East London 5200, South Africa
| | - Oyewole Christopher Durojaiye
- Department of Infection and Tropical Medicine, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Charity Masilela
- Department of Biochemistry, North-West University, Mahikeng 2745, South Africa;
| |
Collapse
|
12
|
Smith DRM, Shirreff G, Temime L, Opatowski L. Collateral impacts of pandemic COVID-19 drive the nosocomial spread of antibiotic resistance: A modelling study. PLoS Med 2023; 20:e1004240. [PMID: 37276186 DOI: 10.1371/journal.pmed.1004240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Circulation of multidrug-resistant bacteria (MRB) in healthcare facilities is a major public health problem. These settings have been greatly impacted by the Coronavirus Disease 2019 (COVID-19) pandemic, notably due to surges in COVID-19 caseloads and the implementation of infection control measures. We sought to evaluate how such collateral impacts of COVID-19 impacted the nosocomial spread of MRB in an early pandemic context. METHODS AND FINDINGS We developed a mathematical model in which Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and MRB cocirculate among patients and staff in a theoretical hospital population. Responses to COVID-19 were captured mechanistically via a range of parameters that reflect impacts of SARS-CoV-2 outbreaks on factors relevant for pathogen transmission. COVID-19 responses include both "policy responses" willingly enacted to limit SARS-CoV-2 transmission (e.g., universal masking, patient lockdown, and reinforced hand hygiene) and "caseload responses" unwillingly resulting from surges in COVID-19 caseloads (e.g., abandonment of antibiotic stewardship, disorganization of infection control programmes, and extended length of stay for COVID-19 patients). We conducted 2 main sets of model simulations, in which we quantified impacts of SARS-CoV-2 outbreaks on MRB colonization incidence and antibiotic resistance rates (the share of colonization due to antibiotic-resistant versus antibiotic-sensitive strains). The first set of simulations represents diverse MRB and nosocomial environments, accounting for high levels of heterogeneity across bacterial parameters (e.g., rates of transmission, antibiotic sensitivity, and colonization prevalence among newly admitted patients) and hospital parameters (e.g., rates of interindividual contact, antibiotic exposure, and patient admission/discharge). On average, COVID-19 control policies coincided with MRB prevention, including 28.2% [95% uncertainty interval: 2.5%, 60.2%] fewer incident cases of patient MRB colonization. Conversely, surges in COVID-19 caseloads favoured MRB transmission, resulting in a 13.8% [-3.5%, 77.0%] increase in colonization incidence and a 10.4% [0.2%, 46.9%] increase in antibiotic resistance rates in the absence of concomitant COVID-19 control policies. When COVID-19 policy responses and caseload responses were combined, MRB colonization incidence decreased by 24.2% [-7.8%, 59.3%], while resistance rates increased by 2.9% [-5.4%, 23.2%]. Impacts of COVID-19 responses varied across patients and staff and their respective routes of pathogen acquisition. The second set of simulations was tailored to specific hospital wards and nosocomial bacteria (methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli). Consequences of nosocomial SARS-CoV-2 outbreaks were found to be highly context specific, with impacts depending on the specific ward and bacteria evaluated. In particular, SARS-CoV-2 outbreaks significantly impacted patient MRB colonization only in settings with high underlying risk of bacterial transmission. Yet across settings and species, antibiotic resistance burden was reduced in facilities with timelier implementation of effective COVID-19 control policies. CONCLUSIONS Our model suggests that surges in nosocomial SARS-CoV-2 transmission generate selection for the spread of antibiotic-resistant bacteria. Timely implementation of efficient COVID-19 control measures thus has 2-fold benefits, preventing the transmission of both SARS-CoV-2 and MRB, and highlighting antibiotic resistance control as a collateral benefit of pandemic preparedness.
Collapse
Affiliation(s)
- David R M Smith
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - George Shirreff
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| |
Collapse
|
13
|
Chen J, Gu C, Ruan Z, Tang M. Competition of SARS-CoV-2 variants on the pandemic transmission dynamics. CHAOS, SOLITONS, AND FRACTALS 2023; 169:113193. [PMID: 36817403 PMCID: PMC9915129 DOI: 10.1016/j.chaos.2023.113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 has produced various variants during its ongoing evolution. The competitive behavior driven by the co-transmission of these variants has influenced the pandemic transmission dynamics. Therefore, studying the impact of competition between SARS-CoV-2 variants on pandemic transmission dynamics is of considerable practical importance. In order to formalize the mechanism of competition between SARS-CoV-2 variants, we propose an epidemic model that takes into account the co-transmission of competing variants. The model focuses on how cross-immunity influences the transmission dynamics of SARS-CoV-2 through competitive mechanisms between strains. We found that inter-strain competition affects not only both the final size and the replacement time of the variants, but also the invasive behavior of new variants in the future. Due to the limited extent of cross-immunity in previous populations, we predict that the new strain may infect the largest number of individuals in China without control interventions. Moreover, we also observed the possibility of periodic outbreaks in the same lineage and the possibility of the resurgence of previous lineages. Without the invasion of a new variant, the previous variant (Delta variant) is projected to resurgence as early as 2023. However, its resurgence may be prevented by a new variant with a greater competitive advantage.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changgui Gu
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongyuan Ruan
- Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ming Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Nairz M, Todorovic T, Gehrer CM, Grubwieser P, Burkert F, Zimmermann M, Trattnig K, Klotz W, Theurl I, Bellmann-Weiler R, Weiss G. Single-Center Experience in Detecting Influenza Virus, RSV and SARS-CoV-2 at the Emergency Department. Viruses 2023; 15:v15020470. [PMID: 36851685 PMCID: PMC9958692 DOI: 10.3390/v15020470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) on respiratory tract swabs has become the gold standard for sensitive and specific detection of influenza virus, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this retrospective analysis, we report on the successive implementation and routine use of multiplex RT-PCR testing for patients admitted to the Internal Medicine Emergency Department (ED) at a tertiary care center in Western Austria, one of the hotspots in the early coronavirus disease 2019 (COVID-19) pandemic in Europe. Our description focuses on the use of the Cepheid® Xpert® Xpress closed RT-PCR system in point-of-care testing (POCT). Our indications for RT-PCR testing changed during the observation period: From the cold season 2016/2017 until the cold season 2019/2020, we used RT-PCR to diagnose influenza or RSV infection in patients with fever and/or respiratory symptoms. Starting in March 2020, we used the RT-PCR for SARS-CoV-2 and a multiplex version for the combined detection of all these three respiratory viruses to also screen subjects who did not present with symptoms of infection but needed in-hospital medical treatment for other reasons. Expectedly, the switch to a more liberal RT-PCR test strategy resulted in a substantial increase in the number of tests. Nevertheless, we observed an immediate decline in influenza virus and RSV detections in early 2020 that coincided with public SARS-CoV-2 containment measures. In contrast, the extensive use of the combined RT-PCR test enabled us to monitor the re-emergence of influenza and RSV detections, including asymptomatic cases, at the end of 2022 when COVID-19 containment measures were no longer in place. Our analysis of PCR results for respiratory viruses from a real-life setting at an ED provides valuable information on the epidemiology of those infections over several years, their contribution to morbidity and need for hospital admission, the risk for nosocomial introduction of such infection into hospitals from asymptomatic carriers, and guidance as to how general precautions and prophylactic strategies affect the dynamics of those infections.
Collapse
|
15
|
Calidonio JM, Hamad-Schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochim Biophys Acta Gen Subj 2023; 1867:130266. [PMID: 36309294 PMCID: PMC11193098 DOI: 10.1016/j.bbagen.2022.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid antigen assays have been attractive for decentralized, point of care diagnostics because of their low cost, robustness, and ease of use. The development of a diagnostic assay for a newly emerging infectious disease needs to take into account the progression of a disease, whether there is human to human transmission, and patient biomarker levels with time, and these all impact the choice of antigen targets and affinity agents. SCOPE OF REVIEW The factors involved in the biophysical design of rapid antigen immunoassays are discussed, focusing on antigen selection and designing for cross-reactivity. State of the art in the biophysical characterization of protein-ligand or antigen-antibody interactions, the different types of affinity agents used in immunoassays, and biochemical conjugation strategies are described. MAJOR CONCLUSIONS Antigen choice is a critical factor in immunoassay diagnostic development, and should account for the properties of the virion, virus, and disease progression. Biophysical and biochemical aspects of immunoassays are critical for performance. GENERAL SIGNIFICANCE This review can serve as an instructive guide to aid in diagnostic development for future emerging diseases.
Collapse
Affiliation(s)
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Massachusetts Boston, Boston, MA, USA; School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
16
|
McGowan J, Borucki M, Omairi H, Varghese M, Vellani S, Chakravarty S, Fan S, Chattopadhyay S, Siddiquee M, Thissen JB, Mulakken N, Moon J, Kimbrel J, Tiwari AK, Taylor RT, Kang DW, Jaing C, Chakravarti R, Chattopadhyay S. SARS-CoV-2 Monitoring in Wastewater Reveals Novel Variants and Biomarkers of Infection. Viruses 2022; 14:2032. [PMID: 36146835 PMCID: PMC9503862 DOI: 10.3390/v14092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.
Collapse
Affiliation(s)
- Jenna McGowan
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Monica Borucki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Hicham Omairi
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Merina Varghese
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shahnaz Vellani
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Srestha Chattopadhyay
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mashuk Siddiquee
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph Moon
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jeffrey Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Amit K. Tiwari
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Center for Medical Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Roger Travis Taylor
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dae-Wook Kang
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ritu Chakravarti
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|