1
|
Abdullah S, Stocker T, Kang H, Scott I, Hayward D, Jaensch S, Ward MP, Jones MK, Kotze AC, Šlapeta J. Widespread occurrence of benzimidazole resistance single nucleotide polymorphisms in the canine hookworm, Ancylostoma caninum, in Australia. Int J Parasitol 2025; 55:173-182. [PMID: 39716589 DOI: 10.1016/j.ijpara.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Canine hookworm (Ancylostoma caninum), a gastrointestinal nematode of domestic dogs, principally infects the small intestine of dogs and has the potential to cause zoonotic disease. In greyhounds and pet dogs in the USA, A. caninum has been shown to be resistant to multiple anthelmintics. We conducted a molecular survey of benzimidazole resistance in A. caninum from dogs at veterinary diagnostic centers in Australia and New Zealand. First, we implemented an internal transcribed spacer (ITS)-2 rDNA deep amplicon metabarcoding sequencing approach to ascertain the species of hookworms infecting dogs in the region. Then, we evaluated the frequency of the canonical F167Y and Q134H isotype-1 β-tubulin mutations, which confer benzimidazole resistance, using the same sequencing approach. The most detected hookworm species in diagnostic samples was A. caninum (90%; 83/92); the related Northern hookworm (Uncinaria stenocephala) was identified in 11% (10/92) of the diagnostic samples. There was a single sample with coinfection by A. caninum and U. stenocephala. Both isotype-1 β-tubulin mutations were present in A. caninum, 49% and 67% for Q134H and F167Y, respectively. Mutation F167Y in the isotype-1 β-tubulin mutation was recorded in U. stenocephala for the first known time. Canonical benzimidazole resistance codons 198 and 200 mutations were absent. Egg hatch assays performed on a subset of the A. caninum samples showed significant correlation between 50% inhibitory concentration (IC50) to thiabendazole and F167Y, with an increased IC50 for samples with > 75% F167Y mutation. We detected 14% of dogs with > 75% F167Y mutation in A. caninum. Given that these samples were collected from dogs across various regions of Australia, the present study suggests that benzimidazole resistance in A. caninum is widespread. Therefore, to mitigate the risk of resistance selection and further spread, adoption of a risk assessment-based approach to limit unnecessary anthelmintic use should be a key consideration for future parasite control.
Collapse
Affiliation(s)
- Swaid Abdullah
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia.
| | - Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Hyungsuk Kang
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Ian Scott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Douglas Hayward
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Susan Jaensch
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm K Jones
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Andrew C Kotze
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
3
|
Jimenez Castro PD, Willcox JL, Rochani H, Richmond HL, Martinez HE, Lozoya CE, Savard C, Leutenegger CM. Investigation of risk factors associated with Ancylostoma spp. infection and the benzimidazole F167Y resistance marker polymorphism in dogs from the United States. Int J Parasitol Drugs Drug Resist 2025; 27:100584. [PMID: 39919355 PMCID: PMC11847747 DOI: 10.1016/j.ijpddr.2025.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Ancylostoma caninum is the most significant intestinal nematode parasite of dogs. We acquired fecal surveillance data from a large population of dogs in the United States (US). A diagnostic test using real-time PCR (qPCR) for Ancylostoma spp. and allele-specific qPCR detecting the SNP F167Y in the isotype 1 of the Beta-tubulin gene, was used in 885,424 randomized canine fecal samples collected between March 2022 and December 2023. Overall, Ancylostoma spp. had a prevalence of 1.76% (15,537/885,424), with the highest in the South 3.73% (10,747/287,576), and the lowest in the West 0.45% (632/140,282). Within the subset of Ancylostoma spp.-detected dogs used for further analysis, the F167Y SNP had an overall prevalence of 14.44% with the highest in the West and the lowest in the Midwest (10.76%). The greyhound exhibited a higher prevalence of Ancylostoma spp. infections (17.03%) and a higher prevalence of the F167Y polymorphism (33.6%) compared to non-greyhounds (13.7% and 2.08%), respectively, but were not associated with the highest risk for the F167Y polymorphism. Sex did not influence hookworm infection nor F167Y polymorphism prevalence. Intact dogs had a prevalence of hookworm infection and F167Y polymorphism of 3.88% and 15.66%, respectively. Puppies showed increased prevalence of hookworms (3.70%) and the F167Y SNP (17.1%). Greyhounds, bluetick coonhounds, and boerboels had the highest relative risks for hookworm infection, while Cavalier King Charles spaniels, Havanese, and shiba inus had the lowest. The top and bottom three with the highest and lowest RR for the F167Y SNP were the old English sheepdog, American foxhound, and toy poodle Toy, and shih tzu, Maltese, and Australian cattle dogs, respectively. This study highlights the value of an accessible diagnostic qPCR test with fast turnaround in unraveling the molecular epidemiology of hookworms and benzimidazole resistance, as well as explore potentially important risk factorsin dogs with routine veterinary care.
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA; Grupo de Parasitologia Veterinaria, Universidad Nacional de Colombia, Colombia.
| | - Jennifer L Willcox
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Haresh Rochani
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Holly L Richmond
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Heather E Martinez
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Cecilia E Lozoya
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Christian Savard
- BioVet Inc. (an Antech Diagnostics of Mars Petcare Science & Diagnostics Company), Saint-Hyacinthe, Québec, Canada
| | | |
Collapse
|
4
|
Collins JB, Dilks CM, Hahnel SR, Rodriguez B, Fox BW, Redman E, Yu J, Cooke B, Sihuta K, Zamanian M, Roy PJ, Schroeder FC, Gilleard JS, Andersen EC. Naturally occurring variation in a cytochrome P450 modifies thiabendazole responses independently of beta-tubulin. PLoS Pathog 2025; 21:e1012602. [PMID: 39808673 PMCID: PMC11771912 DOI: 10.1371/journal.ppat.1012602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance. We performed a genome-wide association study using a genetically diverse panel of Caenorhabditis elegans strains to identify loci that contribute to resistance to the BZ drug thiabendazole (TBZ). We identified a quantitative trait locus (QTL) on chromosome V independent of all beta-tubulin genes and overlapping with two promising candidate genes, the cytochrome P450 gene cyp-35D1 and the nuclear hormone receptor nhr-176. Both genes were previously demonstrated to play a role in TBZ metabolism. NHR-176 binds TBZ and induces the expression of CYP-35D1, which metabolizes TBZ. We generated single gene deletions of cyp-35D1 and nhr-176 and found that both genes play a role in TBZ response. A predicted high-impact lysine-to-glutamate substitution at position 267 (K267E) in CYP-35D1 was identified in a sensitive strain, and reciprocal allele replacement strains in different genetic backgrounds were used to show that the lysine allele conferred increased TBZ resistance. Using competitive fitness assays, we found that neither allele was deleterious, but the lysine allele was selected in the presence of TBZ. Additionally, we found that the lysine allele significantly increased the rate of TBZ metabolism compared to the glutamate allele. Moreover, yeast expression assays showed that the lysine version of CYP-35D1 had twice the enzymatic activity of the glutamate allele. To connect our results to parasitic nematodes, we analyzed four Haemonchus contortus cytochrome P450 orthologs but did not find variation at the 267 position in fenbendazole-resistant populations. Overall, we confirmed that variation in this cytochrome P450 gene is the first locus independent of beta-tubulin to play a role in BZ resistance.
Collapse
Affiliation(s)
- J. B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Steffen R. Hahnel
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Briana Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Kateryna Sihuta
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Jackson CA, McKean EL, Hawdon JM. Challenges in establishing small animal models for Ancylostoma caninum : Host specificity and resistance to infection in rodent hosts. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001360. [PMID: 39776753 PMCID: PMC11704952 DOI: 10.17912/micropub.biology.001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
This study explores potential small animal models for the dog hookworm, Ancylostoma caninum , a parasitic nematode which has repeatedly exhibited the ability to develop resistance to a range of anthelmintics. Immunomodulated hamsters, gerbils, rats, and mice were infected with A. caninum. Despite varying degrees of immunosuppression, and in some cases, total adaptive immunodeficiency, no adult worms were recovered, and larval arrest (L3 stage) occurred in muscle tissue of mice and hamsters. This highlights the strict host specificity of A. caninum and emphasizes the challenges of developing rodent models usable for anthelmintic testing with a strict specialist parasite.
Collapse
Affiliation(s)
- Catherine A. Jackson
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
| | - Elise L. McKean
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
- Biological Sciences, George Washington University, Washington, Washington, D.C., United States
| | - John M. Hawdon
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
| |
Collapse
|
6
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole Resistance-Associated Mutations in the β-tubulin Gene of Hookworms: A Systematic Review. Parasitol Res 2024; 123:405. [PMID: 39652258 DOI: 10.1007/s00436-024-08432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
There is a growing number of reports on the occurrence of benzimidazole resistance-associated single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various helminths of veterinary, and public health concerns. However, a comprehensive analysis of their occurrence, and their contributions to conferring benzimidazole resistance among hookworms has yet to be done. The objectives of this systematic review are to summarize and synthesize peer-reviewed evidence on the occurrence of these resistance-associated mutations in hookworms, document their geographical distribution, and assess their contributions to conferring phenotypic resistance. Three databases were systematically searched using specific keywords. Research that assessed the occurrence of benzimidazole resistance-associated SNPs in hookworms, papers that reported the geographical distribution of these SNPs, and studies that investigated the SNPs' resistance-associated phenotypic effects were included in the review. Research that was not done in hookworms, papers not in the English language, and literature reviews and book chapters were excluded. Critical appraisal checklists were used to determine the risk of bias in the selected papers. Data were extracted from the selected studies and analyzed. PROSPERO Systematic Review Protocol Registration No.: CRD42024510924. A total of 29 studies were included and analyzed. Of these, four were conducted in a laboratory setting, eight described the development and validation of SNP detection methods, and the remaining 17 involved field research. Seven SNP-induced amino acid substitutions at four loci were reported among several hookworm species: Q134H, F167Y, E198A, E198K, E198V, F200Y, and F200L. SNPs have been reported in isolates occurring in the United States, Canada, Brazil, Haiti, Australia, New Zealand, Kenya, Ghana, Mozambique, and Tanzania. Resistance mutations have not been reported in Asia. E198A and F200L were reported in Ancylostoma ceylanicum with laboratory-induced resistance. F167Y and Q134H conferred resistance in A. caninum, as revealed by in vitro investigations and field assessments. There is insufficient peer-reviewed evidence to prove the association between SNP occurrence and resistance. Mutations in the β-tubulin isotype 1 gene confer benzimidazole resistance in A. caninum and A. ceylanicum, but similar evidence is lacking for other human hookworms. Understanding benzimidazole resistance through further research can better inform treatment, prevention, and control strategies.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole resistance-associated mutations improve the in silico dimerization of hookworm tubulin: An additional resistance mechanism. Vet World 2024; 17:2736-2746. [PMID: 39897360 PMCID: PMC11784061 DOI: 10.14202/vetworld.2024.2736-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Mutations in the β-tubulin genes of helminths confer benzimidazole (BZ) resistance by reducing the drug's binding efficiency to the expressed protein. However, the effects of these resistance-associated mutations on tubulin dimer formation in soil-transmitted helminths remain unknown. Therefore, this study aimed to investigate the impact of these mutations on the in silico dimerization of hookworm α- and β-tubulins using open-source bioinformatics tools. Materials and Methods Using AlphaFold 3, the α- and β-tubulin amino acid sequences of Ancylostoma ceylanicum were used to predict the structural fold of the hookworm tubulin heterodimer. The modeled complexes were subjected to several protein structure quality assurance checks. The binding free energies, overall binding affinity, dissociation constant, and interacting amino acids of the complex were determined. The dimer's structural flexibility and motion were simulated through molecular dynamics. Results BZ resistance-associated amino acid substitutions in the β-tubulin isotype 1 protein of hookworms altered tubulin dimerization. The E198K, E198V, and F200Y mutations conferred the strongest and most stable binding between the α and β subunits, surpassing that of the wild-type. In contrast, complexes with the Q134H and F200L mutations exhibited the opposite effect. Molecular dynamics simulations showed that wild-type and mutant tubulin dimers exhibited similar dynamic behavior, with slight deviations in those carrying the F200L and E198K mutations. Conclusion Resistance-associated mutations in hookworms impair BZ binding to β-tubulin and enhance tubulin dimer interactions, thereby increasing the parasite's ability to withstand treatment. Conversely, other mutations weaken these interactions, potentially compromising hookworm viability. These findings offer novel insights into helminth tubulin dimerization and provide a valuable foundation for developing anthelmintics targeting this crucial biological process.
Collapse
Affiliation(s)
- Jan Clyden B. Tenorio
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Collins JB, Stone SA, Koury EJ, Paredes AG, Shao F, Lovato C, Chen M, Shi R, Li AY, Candal I, Al Moutaa K, Moya ND, Andersen EC. Quantitative tests of albendazole resistance in Caenorhabditis elegans beta-tubulin mutants. Int J Parasitol Drugs Drug Resist 2024; 25:100556. [PMID: 38991432 PMCID: PMC11296247 DOI: 10.1016/j.ijpddr.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance. Benzimidazole resistance has traditionally been associated with mutations and natural variants in the C. elegans beta-tubulin gene ben-1 and orthologs in parasitic species. However, variants in ben-1 alone do not explain the differences in BZ responses across parasite populations. Here, we examined the roles of five C. elegans beta-tubulin genes (tbb-1, mec-7, tbb-4, ben-1, and tbb-6) in the BZ response as well as to determine if another beta-tubulin acts redundantly with ben-1. We generated C. elegans strains with a loss of each beta-tubulin gene, as well as strains with a loss of tbb-1, mec-7, tbb-4, or tbb-6 in a genetic background that also lacks ben-1. We found that the loss of ben-1 conferred the maximum level of resistance following exposure to a single concentration of albendazole, and the loss of a second beta-tubulin gene did not alter the level of resistance. However, additional traits other than larval development could be affected by the loss of additional beta-tubulins, and the roles of other beta-tubulin genes might be revealed at different albendazole concentrations. Therefore, further work is needed to fully define the possible roles of other beta-tubulin genes in the BZ response.
Collapse
Affiliation(s)
- J B Collins
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Skyler A Stone
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Emily J Koury
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Anna G Paredes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Fiona Shao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Crystal Lovato
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Michael Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Richelle Shi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Anwyn Y Li
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Isa Candal
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Khadija Al Moutaa
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
Krücken J, Ehnert P, Fiedler S, Horn F, Helm CS, Ramünke S, Bartmann T, Kahl A, Neubert A, Weiher W, Daher R, Terhalle W, Klabunde-Negatsch A, Steuber S, von Samson-Himmelstjerna G. Faecal egg count reduction tests and nemabiome analysis reveal high frequency of multi-resistant parasites on sheep farms in north-east Germany involving multiple strongyle parasite species. Int J Parasitol Drugs Drug Resist 2024; 25:100547. [PMID: 38733882 PMCID: PMC11097076 DOI: 10.1016/j.ijpddr.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Anthelmintic resistance in sheep parasitic gastrointestinal nematodes is widespread and a severe health and economic issue but prevalence of resistance and involved parasite species are unknown in Germany. Here, the faecal egg count reduction test (FECRT) was performed on eight farms using fenbendazole, ivermectin and moxidectin and on four farms using only moxidectin. A questionnaire was used to obtain data on management practices to potentially identify risk factors for presence of resistance. All requirements of the recently revised WAAVP guideline for diagnosing anthelmintic resistance using the FECRT were applied. Nematode species composition in pre- and post-treatment samples was analysed with the nemabiome approach. Using the eggCounts statistic package, resistance against fenbendazole, ivermectin and moxidectin was found on 7/8, 8/8 and 8/12 farms, respectively. No formal risk factor analysis was conducted since resistance was present on most farms. Comparison with the bayescount R package results revealed substantial agreement between methods (Cohen's κ = 0.774). In contrast, interpretation of data comparing revised and original WAAVP guidelines resulted in moderate agreement (Cohen's κ = 0.444). The FECR for moxidectin was significantly higher than for ivermectin and fenbendazole. Nemabiome data identified 4 to 12 species in pre-treatment samples and treatments caused a small but significant decrease in species diversity (inverse Simpson index). Non-metric multidimensional scaling and k-means clustering were used to identify common patterns in pre- and post-treatment samples. However, post-treatment samples were scattered among the pre-treatment samples. Resistant parasite species differed between farms. In conclusion, the revised FECRT guideline allows robust detection of anthelmintic resistance. Resistance was widespread and involved multiple parasite species. Resistance against both drug classes on the same farm was common. Further studies including additional drugs (levamisole, monepantel, closantel) should combine sensitive FECRTs with nemabiome data to comprehensively characterise the anthelmintic susceptibility status of sheep nematodes in Germany.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Tanja Bartmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Shamad M, Al-Mutairi N. Successful Treatment of Cutaneous Larva Migrans With Combined Albendazole and Ivermectin Therapy: A Report of Two Cases From Sudan. Cureus 2024; 16:e64665. [PMID: 39021742 PMCID: PMC11253558 DOI: 10.7759/cureus.64665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cutaneous larva migrans (CLM), caused by third-stage filariform larvae of cat and dog hookworms, presents as pruritic, serpiginous tracks upon skin penetration by larvae from contaminated soil. Herein, we report the successful treatment of two CLM patients using albendazole and ivermectin combination therapy. A 42-year-old man from Kordofan and a 38-year-old man from White Nile State presented with characteristic lesions on their lower extremities, resolving completely within one week post-treatment without recurrence. This report highlights the potential of combined albendazole-ivermectin therapy in managing CLM amid emerging antihelminthic resistance, suggesting that its broader application warrants further investigation.
Collapse
Affiliation(s)
- Mahdi Shamad
- College of Medicine, University of Bahri, Khartoum, SDN
- Faculty of Medicine, Kuwait University, Kuwait City, KWT
| | | |
Collapse
|
11
|
Nezami R, Otis C, Boyer A, Blanchard J, Moreau M, Pelletier JP, Martel-Pelletier J, Godoy P, Troncy E. Surveillance of Ancylostoma caninum in naturally infected dogs in Quebec, Canada, and assessment of benzimidazole anthelmintics reveal a variable efficacy with the presence of a resistant isolate in imported dogs. Vet Parasitol Reg Stud Reports 2024; 52:101036. [PMID: 38880561 DOI: 10.1016/j.vprsr.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
Ancylostoma caninum is a widely prevalent parasitic nematode in dogs across the world. There has been a notable increase in reports of anthelmintic resistance in A. caninum within the United States of America in recent years, which has led us to investigate the potential of this scenario in Canada. The study objectives were to assess the prevalence of A. caninum in two different groups, including a colony of rescued dogs in Canada and three imported Greyhound dogs from USA, and to evaluate the efficacy of two benzimidazole (BZ) anthelmintics against A. caninum, complemented with a molecular genetic analysis adapted to low prevalence. Fecal samples were collected at pre- and post-treatment with fenbendazole for the native shelters-origin group, and a combination of anthelmintic formulations, including the pro-BZ febantel for the USA-origin group. The coprology analyses found several genera of internal parasites. Canine ancylostomiasis was the most prevalent parasitosis with 30.77% in the native group and 100% in the USA group, but with overall low average of A. caninum eggs per gram. Through the fecal egg count reduction test (FECRT), applying a cut-off at 90% as baseline of egg reduction for successful efficacy, BZ showed variable efficacy. Furthermore, molecular analysis confirmed the presence of A. caninum in both groups of dogs and found differences in the genetics linked to BZ resistance on the A. caninum β-tubulin isotype 1 gene. In the isolate from the native group, both codons 167 and 200 were homozygous without the presence of single nucleotide polymorphism (SNP). In contrast, the selected isolate from the USA group, showed a homozygous allele at position 200 and a heterozygous SNP at position 167. The latter was congruent with the low efficacy in FECRT and agrees with the recent findings of USA A. caninum isolate resistant phenotype to the BZ anthelmintics. The limitations of the study include an overall low eggs-per-gram in both canine groups, and the shortage of additional fecal samples from the USA group, restraining the molecular analysis only to one out of the three Greyhounds. This study provided some insights on the efficacy of BZs against A. caninum and revealed the presence of BZ resistant isolates in imported dogs in Quebec, Canada. All this information should be considered, for choosing the best strategy in the control of A. caninum using anthelmintic drugs.
Collapse
Affiliation(s)
- Roxana Nezami
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Blanchard
- Hôpital vétérinaire de Buckingham, Gatineau, QC, J8L 2H5, Canada
| | - Maxim Moreau
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Pablo Godoy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada; Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
12
|
Castle TG, Britton L, Ripley B, Ubelhor E, Slusarewicz P. Evaluation of Parasight All-in-One system for the automated enumeration of helminth ova in canine and feline feces. Parasit Vectors 2024; 17:275. [PMID: 38937854 PMCID: PMC11210176 DOI: 10.1186/s13071-024-06351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Digital imaging combined with deep-learning-based computational image analysis is a growing area in medical diagnostics, including parasitology, where a number of automated analytical devices have been developed and are available for use in clinical practice. METHODS The performance of Parasight All-in-One (AIO), a second-generation device, was evaluated by comparing it to a well-accepted research method (mini-FLOTAC) and to another commercially available test (Imagyst). Fifty-nine canine and feline infected fecal specimens were quantitatively analyzed by all three methods. Since some samples were positive for more than one parasite, the dataset consisted of 48 specimens positive for Ancylostoma spp., 13 for Toxocara spp. and 23 for Trichuris spp. RESULTS The magnitude of Parasight AIO counts correlated well with those of mini-FLOTAC but not with those of Imagyst. Parasight AIO counted approximately 3.5-fold more ova of Ancylostoma spp. and Trichuris spp. and 4.6-fold more ova of Toxocara spp. than the mini-FLOTAC, and counted 27.9-, 17.1- and 10.2-fold more of these same ova than Imagyst, respectively. These differences translated into differences between the test sensitivities at low egg count levels (< 50 eggs/g), with Parasight AIO > mini-FLOTAC > Imagyst. At higher egg counts Parasight AIO and mini-FLOTAC performed with comparable precision (which was significantly higher that than Imagyst), whereas at lower counts (> 30 eggs/g) Parasight was more precise than both mini-FLOTAC and Imagyst, while the latter two methods did not significantly differ from each other. CONCLUSIONS In general, Parasight AIO analyses were both more precise and sensitive than mini-FLOTAC and Imagyst and quantitatively correlated well with mini-FLOTAC. While Parasight AIO produced lower raw counts in eggs-per-gram than mini-FLOTAC, these could be corrected using the data generated from these correlations.
Collapse
Affiliation(s)
| | - Leah Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Britt Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Elizabeth Ubelhor
- Lexington Humane Society, 1600 Old Frankfort Pike, Lexington, KY, 40504, USA
| | - Paul Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA.
| |
Collapse
|
13
|
Giannelli A, Schnyder M, Wright I, Charlier J. Control of companion animal parasites and impact on One Health. One Health 2024; 18:100679. [PMID: 39010968 PMCID: PMC11247265 DOI: 10.1016/j.onehlt.2024.100679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 07/17/2024] Open
Abstract
The last decades have witnessed an increase in the global population and movements of companion animals, contributing to changes in density and distribution of pet parasites. Control of companion animal parasites (CAPs) becomes increasingly relevant because of the intensifying human-animal bond. Parasites impact on the health of humans and their pets, but also of wildlife and the environment. We conducted a qualitative review on the current advancements, gaps and priorities for the monitoring and treatment of CAPs with a focus on securing public health. There is a need to raise awareness, coordinate global surveillance schemes and better quantify the impact of companion animal parasites on One Health.
Collapse
Affiliation(s)
| | - Manuela Schnyder
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
| | - Ian Wright
- ESCCAP UK & Ireland, PO Box 358, Malvern, Worcestershire WR14 9HQ, United Kingdom
- Mount Veterinary Practice, 1 Harris Street, Fleetwood FY7 6QX, United Kingdom
| | | |
Collapse
|
14
|
Burton KW, Hegarty E, Couto CG. Retrospective analysis of canine fecal flotation and coproantigen immunoassay hookworm positive results in Greyhounds and other dog breeds. Vet Parasitol Reg Stud Reports 2024; 51:101026. [PMID: 38772642 DOI: 10.1016/j.vprsr.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Recent studies demonstrated that Greyhounds are commonly infected with Ancylostoma caninum and these infections have been shown to be resistant to anthelmintics. This study evaluated samples submitted to a commercial reference laboratory (IDEXX Laboratories) for canine fecal flotation zinc sulfate centrifugation and coproantigen immunoassay between January 1, 2019, and July 30, 2023 for evidence that Greyhounds were more often positive for Ancylostoma spp. (hookworms) compared to other breeds. The purpose of the study was to determine if Greyhounds were more likely to be hookworm-positive compared to other breeds, if Greyhounds on preventives with efficacy against hookworm infections are more likely to test positive than other breeds, if their infections take longer to resolve, to estimate how long this takes and to assess whether the proportion of hookworm positive tests for all breeds is increasing over time. Records of 25,440,055 fecal results were obtained representing 17,671,724 unique dogs. Of these, 49,795 (∼0.3%) were Greyhounds. The overall odds ratio (OR) of 15.3 (p < 0.001) suggests that Greyhounds are at significantly higher risk than other breeds for hookworm positive float findings, and the OR of 14.3 (p < 0.001) suggests significantly higher risk for hookworm antigen positive results. The median time to negative testing event from the Turnbull distribution estimate was in the interval of 1-2 days for other breeds and 71-72 days for Greyhounds. These results provide evidence that anthelmintic resistant A. caninum strains may be having population-level impacts on the frequency and duration of infections in Greyhounds. The findings have broader health implications beyond Greyhounds as MADR A. caninum strains could spread to other breeds and even pet owners.
Collapse
|
15
|
Jitsamai W, Kamkong P, Traub RJ, Taweethavonsawat P. New insight into genetic diversity of zoonotic-potential Ancylostoma ceylanicum in stray cats living in Bangkok, Thailand, based on deep amplicon sequencing. Zoonoses Public Health 2024; 71:236-247. [PMID: 38053474 DOI: 10.1111/zph.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
AIMS This study aimed to characterize feline hookworms from stray cats living in Bangkok. METHODS AND RESULTS A total of 56 hookworm-positive faecal samples were identified for hookworm species by using PCR targeting the ITS1, 5.8S, and ITS2 fragment and qPCR targeting ITS2. Of 56 samples, 96.4% (54/56) were identified as Ancylostoma ceylanicum and 1.8% (1/56) as Ancylostoma caninum. With qPCR, 89.3% (50/56) were identified as single A. ceylanicum infection and 5.4% (3/56) as coinfection of A. ceylanicum and A. caninum. For genetic characterization of A. ceylanicum, 10 samples were pooled, and the partial COI gene was amplified, followed by deep amplicon sequencing. Five pooled samples were analysed, and 99.73% were identified with A. ceylanicum sequences, which were allocated into 19 haplotypes (AC01-AC19). Genetic diversity findings for A. ceylanicum in Asia revealed that three of eight haplotypes considered of zoonotic significance occurred in humans, dogs, and cats, including haplotypes H01, H20, and H21. The predominant haplotype in this study, AC01, was clustered with H01-a zoonotic haplotype. CONCLUSIONS The diversity obtained by deep amplicon sequencing supported that the A. ceylanicum community had high genetic variation. Deep amplicon sequencing was a useful method to determine source, zoonotic potential, and host-parasite relationship.
Collapse
Affiliation(s)
- Wanarit Jitsamai
- Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Patchana Kamkong
- Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Biomarkers in Animal Parasitology Research Group, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Collins J, Stone SA, Koury EJ, Paredes AG, Shao F, Lovato C, Chen M, Shi R, Li AY, Candal I, Al Moutaa K, Moya N, Andersen EC. Quantitative tests of albendazole resistance in beta-tubulin mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589070. [PMID: 38665774 PMCID: PMC11044196 DOI: 10.1101/2024.04.11.589070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance. Benzimidazole resistance has traditionally been associated with mutations and natural variants in the C. elegans beta-tubulin gene ben-1 and orthologs in parasitic species. However, variants in ben-1 alone do not explain the differences in BZ responses across parasite populations. Here, we examine the roles of five C. elegans beta-tubulin genes (tbb-1, mec-7, tbb-4, ben-1, and tbb-6) to identify the role each gene plays in BZ response. We generated C. elegans strains with a loss of each beta-tubulin gene, as well as strains with a loss of tbb-1, mec-7, tbb-4, or tbb-6 in a genetic background that also lacks ben-1 to test beta-tubulin redundancy in BZ response. We found that only the individual loss of ben-1 conferred a substantial level of BZ resistance, although the loss of tbb-1 was found to confer a small benefit in the presence of albendazole (ABZ). The loss of ben-1 was found to confer an almost complete rescue of animal development in the presence of 30 μM ABZ, likely explaining why no additive effects caused by the loss of a second beta-tubulin were observed. We demonstrate that ben-1 is the only beta-tubulin gene in C. elegans where loss confers substantial BZ resistance.
Collapse
Affiliation(s)
- J.B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Skyler A. Stone
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Emily J. Koury
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Anna G. Paredes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Fiona Shao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Crystal Lovato
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Michael Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richelle Shi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Anwyn Y. Li
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Isa Candal
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Khadija Al Moutaa
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
17
|
Leutenegger CM, Evason MD, Willcox JL, Rochani H, Richmond HL, Meeks C, Lozoya CE, Tereski J, Loo S, Mitchell K, Andrews J, Savard C. Benzimidazole F167Y polymorphism in the canine hookworm, Ancylostoma caninum: Widespread geographic, seasonal, age, and breed distribution in United States and Canada dogs. Int J Parasitol Drugs Drug Resist 2024; 24:100520. [PMID: 38237210 PMCID: PMC10825515 DOI: 10.1016/j.ijpddr.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Surveillance data for Ancylostoma spp. and the A. caninum benzimidazole treatment resistance associated F167Y polymorphism using molecular diagnostics was obtained in a large population of dogs from the United States and Canada. Real-time PCR (qPCR) for Ancylostoma spp. and allele-specific qPCR detecting a single nucleotide polymorphism (SNP) F167Y was used in 262,872 canine stool samples collected between March and December of 2022. Ancylostoma spp. was found at an overall prevalence of 2.5% (6538/262,872), with the highest prevalence in the Southern US, 4.4% (4490/103,095), and the lowest prevalence in Canada 0.6% (101/15,829). The A. caninum F167Y polymorphism was found with the highest prevalence (13.4%, n = 46/343) in the Western US and the lowest in Canada at 4.1% (4/97). The F167Y polymorphism was detected every month over the 10-month collection period. Seasonal distribution showed a peak in June for both Ancylostoma spp. (3.08%, 547/17,775) and A. caninum F167Y (12.25%, 67/547). However, the A. caninum F167Y polymorphism prevalence was highest in September (13.9%, 119/856). Age analysis indicates a higher prevalence of both hookworm infections and occurrence of resistant isolates in puppies. The breeds with the highest F167Y polymorphism prevalence in Ancylostoma spp. detected samples were poodles (28.9%), followed by Bernese Mountain dogs (25%), Cocker spaniels (23.1%), and greyhounds (22.4%). Our data set describes widespread geographic distribution of the A. caninum benzimidazole resistance associated F167Y polymorphism in the United States and Canada, with no clear seasonality compared to the Ancylostoma spp. prevalence patterns. The F167 polymorphism was present in all geographic areas with detected hookworms, including Canada. Our study highlights that the F167Y polymorphism is represented in many dog breeds, including greyhounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Cathy Meeks
- Antech Diagnostics, Fountain Valley, CA, USA
| | | | | | | | | | - Jan Andrews
- Antech Diagnostics, Fountain Valley, CA, USA
| | | |
Collapse
|
18
|
Stocker T, Ward MP, Šlapeta J. Nationwide USA re-analysis of amplicon metabarcoding targeting β-tubulin isoform-1 reveals absence of benzimidazole resistant SNPs in Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. Vet Parasitol 2024; 327:110118. [PMID: 38278035 DOI: 10.1016/j.vetpar.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Nationwide sampling by Venkatesan and colleagues (2023) described the resistance status of the canine hookworm, Ancylostoma caninum, to benzimidazoles across the USA via β-tubulin isotype-1 amplicon metabarcoding. In this study, we aimed to use the existing public amplicon metabarcoding data and mine it for the presence of β-tubulin isotype-1 sequences that belong to hookworm species other than A. caninum. Through bioinformatics analysis we assigned species to A. caninum, Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. All non-A. caninum sequences contained only the benzimidazole susceptible residues of β-tubulin isotype-1. Using two β-tubulin isotype-1 metabarcoding sequence data (assay targeting 134 and 167 codons, and assay targeting 198 and 200 codons), 2.0% (6/307) and 2.9% (9/310) individual samples had hookworms other than A. caninum (A. braziliense n = 5, A. tubaeforme n = 4 and U. stenocephala n = 2), respectively. We identified one sample containing A. braziliense in each of the Northeastern region and Midwestern region, and in three samples from the Southern region. Presence of A. tubaeforme in dog faeces is considered as pseudoparasitism. There were no statistically significant regional differences for the distribution of each species, for either of the two assays independently or combined (χ2 tests, P > 0.05). Our work demonstrates the utility of the amplicon metabarcoding for the identification of species through antemortem assays, thus resolving the dilemma of assigning hookworm species based on either post-mortem or egg sizes for the identification of hookworms.
Collapse
Affiliation(s)
- Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia.
| |
Collapse
|
19
|
McKean EL, Grill E, Choi YJ, Mitreva M, O'Halloran DM, Hawdon JM. Altered larval activation response associated with multidrug resistance in the canine hookworm Ancylostoma caninum. Parasitology 2024; 151:271-281. [PMID: 38163962 PMCID: PMC11007283 DOI: 10.1017/s0031182023001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the β-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.
Collapse
Affiliation(s)
- Elise L. McKean
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Emilia Grill
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Young-Jun Choi
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Damien M. O'Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
22
|
Nielsen MK, Kaplan RM, Abbas G, Jabbar A. Biological implications of long-term anthelmintic treatment: what else besides resistance are we selecting for? Trends Parasitol 2023; 39:945-953. [PMID: 37633759 DOI: 10.1016/j.pt.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Long-term intensive use of anthelmintics for parasite control of livestock, companion animals, and humans has resulted in widespread anthelmintic resistance, a problem of great socioeconomic significance. But anthelmintic therapy may also select for other biological traits, which could have implications for anthelmintic performance. Here, we highlight recent examples of changing parasite dynamics following anthelmintic administration, which do not fit the definition of anthelmintic resistance. We also consider other possible examples in which anthelmintic resistance has clearly established, but where coselection for other biological traits may have also occurred. We offer suggestions for collecting more information and gaining a better understanding of these phenomena. Finally, we propose research questions that require further investigation and make suggestions to help address these knowledge gaps.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Ray M Kaplan
- School of Veterinary Medicine, St George's University, Grenada, West Indies
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
23
|
Rehborg EG, Wheeler NJ, Zamanian M. Mapping resistance-associated anthelmintic interactions in the model nematode Caenorhabditis elegans. PLoS Negl Trop Dis 2023; 17:e0011705. [PMID: 37883578 PMCID: PMC10629664 DOI: 10.1371/journal.pntd.0011705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/07/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Parasitic nematodes infect billions of people and are mainly controlled by anthelmintic mass drug administration (MDA). While there are growing efforts to better understand mechanisms of anthelmintic resistance in human and animal populations, it is unclear how resistance mechanisms that alter susceptibility to one drug affect the interactions and efficacy of drugs used in combination. Mutations that alter drug permeability across primary nematode barriers have been identified as potential resistance mechanisms using the model nematode Caenorhabditis elegans. We leveraged high-throughput assays in this model system to measure altered anthelmintic susceptibility in response to genetic perturbations of potential cuticular, amphidial, and alimentary routes of drug entry. Mutations in genes associated with these tissue barriers differentially altered susceptibility to the major anthelmintic classes (macrocyclic lactones, benzimidazoles, and nicotinic acetylcholine receptor agonists) as measured by animal development. We investigated two-way anthelmintic interactions across C. elegans genetic backgrounds that confer resistance or hypersensitivity to one or more drugs. We observe that genetic perturbations that alter susceptibility to a single drug can shift the drug interaction landscape and lead to the appearance of novel synergistic and antagonistic interactions. This work establishes a framework for investigating combinatorial therapies in model nematodes that can potentially be translated to amenable parasite species.
Collapse
Affiliation(s)
- Elena G. Rehborg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Stocker T, Scott I, Šlapeta J. Unambiguous identification of Ancylostoma caninum and Uncinaria stenocephala in Australian and New Zealand dogs from faecal samples. Aust Vet J 2023; 101:373-376. [PMID: 37537874 DOI: 10.1111/avj.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Hookworms (Ancylostomatidae) are well-known parasites in dogs due to their health impacts and zoonotic potential. While faecal analysis is the traditional method for detection, improvements in husbandry and deworming have decreased their prevalence in urban owned dogs. Drug resistance in Ancylostoma caninum is becoming a discussion point in small animal practices across the region. This study aimed to identify hookworm species present in Australian and New Zealand dogs using molecular techniques. The ITS-2 and isotype-1 β-tubulin assays were used to identify and quantify hookworm species. Results showed absence of coinfection in Australian samples from Greater Sydney region belonging either to A. caninum or Uncinaria stenocephala, while New Zealand samples were a mixture of A. caninum and U. stenocephala. The amplified isotype-1 β-tubulin sequences exhibited susceptibility to benzimidazole drugs. Rare mutations were identified in A. caninum and U. stenocephala sequences, representing a small percentage of reads. This study highlights the importance of molecular techniques in accurately identifying and quantifying hookworm species in dog populations.
Collapse
Affiliation(s)
- T Stocker
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - I Scott
- School of Veterinary Science, Massey University, Palmerston North, 4410, New Zealand
| | - J Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
25
|
Leutenegger CM, Lozoya CE, Tereski J, Andrews J, Mitchell KD, Meeks C, Willcox JL, Freeman G, Richmond HL, Savard C, Evason MD. Comparative study of a broad qPCR panel and centrifugal flotation for detection of gastrointestinal parasites in fecal samples from dogs and cats in the United States. Parasit Vectors 2023; 16:288. [PMID: 37587483 PMCID: PMC10433665 DOI: 10.1186/s13071-023-05904-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND For decades, zinc sulfate centrifugal fecal flotation microscopy (ZCF) has been the mainstay technique for gastrointestinal (GI) parasite screening at veterinary clinics and laboratories. Elsewhere, PCR has replaced microscopy because of generally increased sensitivity and detection capabilities; however, until recently it has been unavailable commercially. Therefore, the primary aim of this study was to compare the performance of real-time PCR (qPCR) and ZCF for fecal parasite screening. Secondary aims included further characterization of markers for hookworm treatment resistance and Giardia spp. assemblages with zoonotic potential and qPCR optimization. METHODS A convenience sampling of 931 canine/feline fecal samples submitted to a veterinary reference laboratory for routine ZCF from the Northeast US (11/2022) was subsequently evaluated by a broad qPCR panel following retention release. Detection frequency and agreement (kappa statistics) were evaluated between ZCF and qPCR for seven GI parasites [hookworm/(Ancylostoma spp.), roundworm/(Toxocara spp.), whipworm/(Trichuris spp.), Giardia duodenalis, Cystoisospora spp., Toxoplasma gondii, and Tritrichomonas blagburni] and detections per sample. Total detection frequencies were compared using a paired t-test; positive sample and co-infection frequencies were compared using Pearson's chi-squared test (p ≤ 0.05 significant) and qPCR frequency for hookworm benzimidazole (BZ) resistance (F167Y) and zoonotic Giardia spp. assemblage markers calculated. Confirmatory testing, characterization, and qPCR optimization were carried out with Sanger sequencing. RESULTS qPCR detected a significantly higher overall parasite frequency (n = 679) compared to ZCF (n = 437) [p = < 0.0001, t = 14.38, degrees-of-freedom (df) = 930] and 2.6 × the co-infections [qPCR (n = 172) vs. ZCF (n = 66)], which was also significant (p = < 0.0001, X2 = 279.49; df = 1). While overall agreement of parasite detection was substantial [kappa = 0.74; (0.69-0.78], ZCF-undetected parasites reduced agreement for individual and co-infected samples. qPCR detected markers for Ancylostoma caninum BZ resistance (n = 5, 16.1%) and Giardia with zoonotic potential (n = 22, 9.1%) as well as two parasites undetected by ZCF (T. gondii/T. blagburni). Sanger sequencing detected novel roundworm species, and qPCR optimization provided detection beyond ZCF. CONCLUSIONS These results demonstrate the statistically significant detection frequency advantage offered by qPCR compared to routine ZCF for both single and co-infections. While overall agreement was excellent, this rapid, commercially available qPCR panel offers benefits beyond ZCF with detection of markers for Giardia assemblages with zoonotic potential and hookworm (A. caninum) BZ resistance.
Collapse
Affiliation(s)
| | | | | | - Jan Andrews
- Antech Diagnostics, Inc, Fountain Valley, CA, USA
| | | | - Cathy Meeks
- Antech Diagnostics, Inc, Fountain Valley, CA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Marsh AE, Lakritz J. Reflecting on the past and fast forwarding to present day anthelmintic resistant Ancylostoma caninum-A critical issue we neglected to forecast. Int J Parasitol Drugs Drug Resist 2023; 22:36-43. [PMID: 37229949 PMCID: PMC10229760 DOI: 10.1016/j.ijpddr.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Reports of anthelmintic resistance in Ancylostoma caninum are increasing in frequency in the United States of America (USA). In the last few years in vitro and in vivo studies characterized individual isolates, demonstrating multiple anthelmintic drug resistance (MADR). In 2021, the American Association of Veterinary Parasitologists initiated a hookworm task force to address this issue. The first report of drug resistant A. caninum occurred in 1987 in Australian racing Greyhounds. In the last five years multiple case reports and investigations show drug resistant A. caninum is becoming a much greater problem in the USA and now extends beyond racing Greyhounds into the general companion animal dog population. The literature, regarding drug resistance in livestock and equine nematodes, provides helpful guidance along with diagnostic methods to better understand the evolution and selection of canine MADR hookworms; however, there are limitations and caveats due to A. caninum's unique biology and zoonotic potential. Mass drug administration (MDA) of anthelminthic drugs to humans to reduce morbidity associated with human hookworms (Necator americanus) should consider the factors that contributed to the development of MADR A. caninum. Finally, as Greyhound racing undergoes termination in some regions and the retired dogs undergo subsequent rehoming, drug resistant parasites, if present, are carried with them. Drug resistant A. caninum requires greater recognition by the veterinary community, and small animal practitioners need to be aware of the spread into current pet dog populations. The current understanding of anthelmintic resistance, available treatments, and environmental mitigation for these drug resistant A. caninum isolates must be monitored for horizontal spread. A major goal in this emerging problem is to prevent continued dissemination.
Collapse
Affiliation(s)
| | - Jeffrey Lakritz
- Veterinary Clinical Sciences, The Ohio State University, USA
| |
Collapse
|
27
|
Rehborg EG, Wheeler NJ, Zamanian M. Mapping resistance-associated anthelmintic interactions in the model nematode Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538424. [PMID: 37163071 PMCID: PMC10168335 DOI: 10.1101/2023.04.26.538424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parasitic nematodes infect billions of people and are mainly controlled by anthelmintic mass drug administration (MDA). While there are growing efforts to better understand mechanisms of anthelmintic resistance in human and animal populations, it is unclear how resistance mechanisms that alter susceptibility to one drug affect the interactions and efficacy of drugs used in combination. Mutations that alter drug permeability across primary nematode barriers have been identified as potential resistance mechanisms using the model nematode Caenorhabditis elegans. We leveraged high-throughput assays in this model system to measure altered anthelmintic susceptibility in response to genetic perturbations of potential cuticular, amphidial, and alimentary routes of drug entry. Mutations in genes associated with these tissue barriers differentially altered susceptibility to the major anthelmintic classes (macrocyclic lactones, benzimidazoles, and nicotinic acetylcholine receptor agonists) as measured by animal development. We investigated two-way anthelmintic interactions across C. elegans genetic backgrounds that confer resistance or hypersensitivity to one or more drugs. We observe that genetic perturbations that alter susceptibility to a single drug can shift the drug interaction landscape and lead to the appearance of novel synergistic and antagonistic interactions. This work establishes a framework for investigating combinatorial therapies in model nematodes that can potentially be translated to amenable parasite species.
Collapse
Affiliation(s)
- Elena G. Rehborg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|