1
|
Rollman TB, Berkebile ZW, Hicks DM, Hatfield JS, Chauhan P, Pravetoni M, Schleiss MR, Milligan GN, Morgan TK, Bierle CJ. CD4+ but not CD8+ T cells are required for protection against severe guinea pig cytomegalovirus infections. PLoS Pathog 2024; 20:e1012515. [PMID: 39495799 DOI: 10.1371/journal.ppat.1012515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus and the leading cause of infectious disease related birth defects worldwide. How the immune response modulates the risk of intrauterine transmission of HCMV after maternal infection remains poorly understood. Maternal T cells likely play a critical role in preventing infection at the maternal-fetal interface and limiting spread across the placenta, but concerns exist that immune responses to infection may also cause placental dysfunction and adverse pregnancy outcomes. This study investigated the role of CD4+ and CD8+ T cells in a guinea pig model of primary cytomegalovirus infection. Monoclonal antibodies specific to guinea pig CD4 and CD8 were used to deplete T cells in non-pregnant and in pregnant guinea pigs after mid-gestation. CD4+ T cell depletion increased the severity of illness, caused significantly elevated viral loads, and increased the rate of congenital guinea pig cytomegalovirus (GPCMV) infection relative to animals treated with control antibody. CD8+ T cell depletion was comparably well tolerated and did not significantly affect the weight of infected guinea pigs or viral loads in their blood or tissue. However, significantly more viral genomes and transcripts were detected in the placenta and decidua of CD8+ T cell depleted dams post-infection. This study corroborates earlier findings made in nonhuman primates that maternal CD4+ T cells play a critical role in limiting the severity of primary CMV infection during pregnancy while also revealing that other innate and adaptive immune responses can compensate for an absent CD8+ T cell response in α-CD8-treated guinea pigs.
Collapse
Affiliation(s)
- Tyler B Rollman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zachary W Berkebile
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dustin M Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason S Hatfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Priyanka Chauhan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marco Pravetoni
- Center for Medication Development for Substance Use Disorders and Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gregg N Milligan
- Division of Vaccinology, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Craig J Bierle
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Hederman AP, Remmel CA, Sharma S, Natarajan H, Weiner JA, Wrapp D, Donner C, Delforge ML, d’Angelo P, Furione M, Fornara C, McLellan JS, Lilleri D, Marchant A, Ackerman ME. Discrimination of primary and chronic cytomegalovirus infection based on humoral immune profiles in pregnancy. J Clin Invest 2024; 134:e180560. [PMID: 39207860 PMCID: PMC11473158 DOI: 10.1172/jci180560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDMost humans have been infected with cytomegalovirus (CMV) by midlife without clinical signs of disease. However, in settings in which the immune system is undeveloped or compromised, the virus is not adequately controlled and consequently presents a major infectious cause of both congenital disease during pregnancy as well as opportunistic infection in children and adults. With clear evidence that risk to the fetus varies with gestational age at the time of primary maternal infection, further research on humoral responses to primary CMV infection during pregnancy is needed.METHODSHere, systems serology tools were applied to characterize antibody responses to CMV infection in pregnant and nonpregnant women experiencing either primary or chronic infection.RESULTSWhereas strikingly different antibody profiles were observed depending on infection status, limited differences were associated with pregnancy status. Beyond known differences in IgM responses used clinically for identification of primary infection, distinctions observed in IgA and FcγR-binding antibodies and among antigen specificities accurately predicted infection status. Machine learning was used to define the transition from primary to chronic states and predict time since infection with high accuracy. Humoral responses diverged over time in an antigen-specific manner, with IgG3 responses toward tegument decreasing over time as typical of viral infections, while those directed to pentamer and glycoprotein B were lower during acute and greatest during chronic infection.CONCLUSIONIn sum, this work provides insights into the antibody response associated with CMV infection status in the context of pregnancy, revealing aspects of humoral immunity that have the potential to improve CMV diagnostics.FUNDINGCYMAF consortium and NIH NIAID.
Collapse
Affiliation(s)
- Andrew P. Hederman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Catherine Donner
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Obstetrics and Gynecology, Brussels, Belgium
| | - Marie-Luce Delforge
- ULB, H.U.B., CUB Hôpital Erasme, National Reference Center for Congenital Infections, Brussels, Belgium
| | - Piera d’Angelo
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Daniele Lilleri
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Otero CE, Petkova S, Ebermann M, Taher H, John N, Hoffmann K, Davalos A, Moström MJ, Gilbride RM, Papen CR, Barber-Axthelm A, Scheef EA, Barfield R, Sprehe LM, Kendall S, Manuel TD, Vande Burgt NH, Chan C, Denton M, Streblow ZJ, Streblow DN, Hansen SG, Kaur A, Permar S, Früh K, Hengel H, Malouli D, Kolb P. Rhesus Cytomegalovirus-encoded Fcγ-binding glycoproteins facilitate viral evasion from IgG-mediated humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582371. [PMID: 38464092 PMCID: PMC10925275 DOI: 10.1101/2024.02.27.582371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.
Collapse
|
4
|
Alfi O, Cohen M, Bar-On S, Hashimshony T, Levitt L, Raz Y, Blecher Y, Chaudhry MZ, Cicin-Sain L, Ben-El R, Oiknine-Djian E, Lahav T, Vorontsov O, Cohen A, Zakay-Rones Z, Daniel L, Berger M, Mandel-Gutfreund Y, Panet A, Wolf DG. Decidual-tissue-resident memory T cells protect against nonprimary human cytomegalovirus infection at the maternal-fetal interface. Cell Rep 2024; 43:113698. [PMID: 38265934 DOI: 10.1016/j.celrep.2024.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to infant neurodevelopmental disabilities. An improved knowledge of correlates of protection against cCMV is needed to guide prevention strategies. Here, we employ an ex vivo model of human CMV (HCMV) infection in decidual tissues of women with and without preconception immunity against CMV, recapitulating nonprimary vs. primary infection at the authentic maternofetal transmission site. We show that decidual tissues of women with preconception immunity against CMV exhibit intrinsic resistance to HCMV, mounting a rapid activation of tissue-resident memory CD8+ and CD4+ T cells upon HCMV reinfection. We further reveal the role of HCMV-specific decidual-tissue-resident CD8+ T cells in local protection against nonprimary HCMV infection. The findings could inform the development of a vaccine against cCMV and provide insights for further studies of the integrity of immune defense against HCMV and other pathogens at the human maternal-fetal interface.
Collapse
Affiliation(s)
- Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mevaseret Cohen
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shikma Bar-On
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lorinne Levitt
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Raz
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Blecher
- Lis Maternity Hospital, Tel Aviv Souraski Medical Center, Tel Aviv, Israel; Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Centre for Individualised Infection Medicine (a joint venture of HZI and MHH), Hannover, Germany
| | - Rina Ben-El
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Olesya Vorontsov
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adiel Cohen
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Leonor Daniel
- Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Michael Berger
- Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | - Amos Panet
- Department of Biochemistry, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|