1
|
Ashrafi AM, Selcuk O, Mukherjee A, Unal DN, Kurbanoglu S, Uslu B, Jurica J, Pekarkova J, Richtera L, Adam V. Rapid determination of uracil in biological fluids at mercury thin film electrode for early detection of potential 5-fluorouracil toxicity due to dihydropyrimidine dehydrogenase deficiency. Biosens Bioelectron 2024; 262:116545. [PMID: 38971040 DOI: 10.1016/j.bios.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the HgII-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine. The high sensitivity of the developed method results in a low limit of detection (≈1.3 nM) in human plasma samples, falling below the practical cut-off level of 15 ng mL-1 (≈0.14 μM). This threshold concentration is crucial for predicting 5-FU toxicity, as reported in buffer, and ≤1.15% in biological samples), and accuracy (recovery percentage close to 100%).
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Ozge Selcuk
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Mersin University, Faculty of Pharmacy, Department of Analytical Chemistry, 33169, Mersin, Turkey.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic.
| | - Didem Nur Unal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey.
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Jan Jurica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
2
|
van den Wildenberg SAH, Genet SAAM, Streng AS, Broeren MAC, Deenen MJ, van Dongen JLJ, Brunsveld L, Scharnhorst V, van de Kerkhof D. Partial protein binding of uracil and thymine affects accurate dihydropyrimidine dehydrogenase (DPD) phenotyping. J Pharm Biomed Anal 2024; 249:116381. [PMID: 39067280 DOI: 10.1016/j.jpba.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fluorouracil is among the most used antimetabolite drugs for the chemotherapeutic treatment of various types of gastrointestinal malignancies. Dihydropyrimidine dehydrogenase (DPYD) genotyping prior to fluorouracil treatment is considered standard practice in most European countries. Yet, current pre-therapeutic DPYD genotyping procedures do not identify all dihydropyrimidine dehydrogenase (DPD)-deficient patients. Alternatively, DPD activity can be estimated by determining the DPD phenotype by quantification of plasma concentrations of the endogenous uracil and thymine concentrations and their respective metabolites dihydrouracil (DHU) and dihydrothymine (DHT). Liquid chromatography - mass spectrometry (LC-MS) detection is currently considered as the most adequate method for quantification of low-molecular weight molecules, although the sample preparation method is highly critical for analytical outcome. It was hypothesized that during protein precipitation, the recovery of the molecule of interest highly depends on the choice of precipitation agent and the extent of protein binding in plasma. In this work, the effect of protein precipitation using acetonitrile (ACN) compared to strong acid perchloric acid (PCA) on the recovery of uracil, thymine, DHU and DHT is demonstrated. Upon the analysis of plasma samples, PCA precipitation showed higher concentrations of uracil and thymine as compared to ACN precipitation. Using ultrafiltration, it was shown that uracil and thymine are significantly (60-65 %) bound to proteins compared to DHU and DHT. This shows that before harmonized cut-off levels of DPD phenotyping can be applied in clinical practice, the analytical methodology requires extensive further optimization.
Collapse
Affiliation(s)
- Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Alexander S Streng
- Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Clinical Laboratory Bernhoven, Siemens Healthineers, Uden, the Netherlands
| | - Maarten A C Broeren
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands; Clinical Laboratory, Máxima Medical Center, Veldhoven, Eindhoven, the Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Joost L J van Dongen
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Volkher Scharnhorst
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands
| | - Daan van de Kerkhof
- Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Campanella B, Lomonaco T, Benedetti E, Onor M, Nieri R, Marmorino F, Cremolini C, Bramanti E. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6033. [PMID: 35627569 PMCID: PMC9140617 DOI: 10.3390/ijerph19106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022]
Abstract
Background. Salivary metabolomics is garnering increasing attention in the health field because of easy, minimally invasive saliva sampling. Dihydrouracil (DHU) is a metabolite of pyrimidine metabolism present in urine, plasma, and saliva and of fluoropyrimidines-based chemotherapeutics. Its fast quantification would help in the identification of patients with higher risk of fluoropyrimidine-induced toxicity and inborn errors of pyrimidine metabolism. Few studies consider DHU as the main salivary metabolite, but reports of its concentration levels in saliva are scarce. We propose the direct determination of DHU in saliva by reversed-phase high-performance liquid chromatography (RP-HPLC-UV detector) as a simple, rapid procedure for non-invasive screening. Methods. The method used was validated and applied to 176 saliva samples collected from 21 nominally healthy volunteers and 4 saliva samples from metastatic colorectal cancer patients before and after receiving 5-fluorouracil chemotherapy. Results. DHU levels in all samples analyzed were in the μmol L-1 range or below proving that DHU is not the main metabolite in saliva and confirming the results found in the literature with LC-MS/MS instrumentation. Any increase of DHU due to metabolism dysfunctions can be suggestive of disease and easily monitored in saliva using common, low-cost instrumentation available also for population screening.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 15, 56124 Pisa, Italy;
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, Azienda Ospedaliero Universitaria Pisana, Via Roma 67, 56127 Pisa, Italy;
| | - Massimo Onor
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Riccardo Nieri
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Federica Marmorino
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Chiara Cremolini
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| |
Collapse
|
4
|
Conti V, De Bellis E, Manzo V, Sabbatino F, Iannello F, Dal Piaz F, Izzo V, Charlier B, Stefanelli B, Torsiello M, Iannaccone T, Coglianese A, Colucci F, Pepe S, Filippelli A. A Genotyping/Phenotyping Approach with Careful Clinical Monitoring to Manage the Fluoropyrimidines-Based Therapy: Clinical Cases and Systematic Review of the Literature. J Pers Med 2020; 10:jpm10030113. [PMID: 32899374 PMCID: PMC7564232 DOI: 10.3390/jpm10030113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Fluoropyrimidines (FP) are mainly metabolised by dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene. FP pharmacogenetics, including four DPYD polymorphisms (DPYD-PGx), is recommended to tailor the FP-based chemotherapy. These polymorphisms increase the risk of severe toxicity; thus, the DPYD-PGx should be performed prior to starting FP. Other factors influence FP safety, therefore phenotyping methods, such as the measurement of 5-fluorouracil (5-FU) clearance and DPD activity, could complement the DPYD-PGx. We describe a case series of patients in whom we performed DPYD-PGx (by real-time PCR), 5-FU clearance and a dihydrouracil/uracil ratio (as the phenotyping analysis) and a continuous clinical monitoring. Patients who had already experienced severe toxicity were then identified as carriers of DPYD variants. The plasmatic dihydrouracil/uracil ratio (by high-performance liquid chromatography (HPLC)) ranged between 1.77 and 7.38. 5-FU clearance (by ultra-HPLC with tandem mass spectrometry) was measured in 3/11 patients. In one of them, it reduced after the 5-FU dosage was halved; in the other case, it remained high despite a drastic dosage reduction. Moreover, we performed a systematic review on genotyping/phenotyping combinations used as predictive factors of FP safety. Measuring the plasmatic 5-FU clearance and/or dihydrouracil/uracil (UH2/U) ratio could improve the predictive potential of DPYD-PGx. The upfront DPYD-PGx combined with clinical monitoring and feasible phenotyping method is essential to optimising FP-based chemotherapy.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Emanuela De Bellis
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
- Correspondence: ; Tel.: +39-089-672-424
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesco Iannello
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Berenice Stefanelli
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Martina Torsiello
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
| | - Francesca Colucci
- Postgraduate School in Clinical Pharmacology and Toxicology, University of Salerno, 84081 Baronissi, Italy; (E.D.B.); (B.S.); (M.T.); (F.C.)
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (F.S.); (F.D.P.); (V.I.); (B.C.); (T.I.); (A.C.); (S.P.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
5
|
Phenotyping of Uracil and 5-Fluorouracil Metabolism Using LC-MS/MS for Prevention of Toxicity and Dose Adjustment of Fluoropyrimidines. Ther Drug Monit 2020; 42:540-547. [DOI: 10.1097/ftd.0000000000000768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Robin T, Saint-Marcoux F, Toinon D, Tafzi N, Marquet P, El Balkhi S. Automatic quantification of uracil and dihydrouracil in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122038. [PMID: 32169798 DOI: 10.1016/j.jchromb.2020.122038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Fluoropyrimidines-based chemotherapies are the backbone in the treatment of many cancers. However, the use of 5-fluorouracil and its oral pre-prodrug, capecitabine, is associated with an important risk of toxicity. This toxicity is mainly due to a deficiency of dihydropyrimidine dehydrogenase (DPD). This deficiency may be detected by using a phenotypic approach that consists in the measurement of uracilemia or the calculation of dihydrouracil (UH2)/uracil (U) ratio. For uracilemia, a threshold value of 16 ng/ml has been proposed for partial deficiency, while a value of 150 ng/ml has been proposed for complete deficiency. We have developed a rapid, accurate and fully-automated procedure for the quantification of U and UH2 in plasma. Sample extraction was carried out by a programmable liquid handler directly coupled to a liquid chromatography - tandem mass spectrometry (LC-MS/MS) system. The method was validated according to the EMA guidelines and ISO 15189 requirements and was applied to real patient samples (n = 64). The limit of quantification was 5 and 10 ng/ml for U and UH2 respectively. Imprecision and inaccuracy were less than 15% for inter and intra-assay tests. Comparison with dedicated routine method showed excellent correlation. An automated procedure perfectly fulfills the need of low inaccuracy and CVs at the threshold values (less than 5% at 16 ng/ml) and is highly suitable for the characterization of DPD deficiency. Automatization should guaranty reliable and robust performances by minimizing the sources of variation such as volume inaccuracies, filtration or manual extraction related errors.
Collapse
Affiliation(s)
- Tiphaine Robin
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France
| | - Franck Saint-Marcoux
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France.
| | | | - Naïma Tafzi
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France
| | - Pierre Marquet
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France
| | - Souleiman El Balkhi
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, France; INSERM UMR 1248, France
| |
Collapse
|
7
|
DPYD and Fluorouracil-Based Chemotherapy: Mini Review and Case Report. Pharmaceutics 2019; 11:pharmaceutics11050199. [PMID: 31052357 PMCID: PMC6572291 DOI: 10.3390/pharmaceutics11050199] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil remains a foundational component of chemotherapy for solid tumour malignancies. While considered a generally safe and effective chemotherapeutic, 5-fluorouracil has demonstrated severe adverse event rates of up to 30%. Understanding the pharmacokinetics of 5-fluorouracil can improve the precision medicine approaches to this therapy. A single enzyme, dihydropyrimidine dehydrogenase (DPD), mediates 80% of 5-fluorouracil elimination, through hepatic metabolism. Importantly, it has been known for over 30-years that adverse events during 5-fluorouracil therapy are linked to high systemic exposure, and to those patients who exhibit DPD deficiency. To date, pre-treatment screening for DPD deficiency in patients with planned 5-fluorouracil-based therapy is not a standard of care. Here we provide a focused review of 5-fluorouracil metabolism, and the efforts to improve predictive dosing through screening for DPD deficiency. We also outline the history of key discoveries relating to DPD deficiency and include relevant information on the potential benefit of therapeutic drug monitoring of 5-fluorouracil. Finally, we present a brief case report that highlights a limitation of pharmacogenetics, where we carried out therapeutic drug monitoring of 5-fluorouracil in an orthotopic liver transplant recipient. This case supports the development of robust multimodality precision medicine services, capable of accommodating complex clinical dilemmas.
Collapse
|
8
|
Pan W, Li Y, Feng Y, Yang F, Liu H. A new sample preparation and separation combination for the precise, accurate, and simultaneous determination of uracil and dihydrouracil in human plasma by reversed-phase HPLC. J Sep Sci 2017; 40:3763-3770. [PMID: 28726286 DOI: 10.1002/jssc.201700279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022]
Abstract
We have developed an efficient procedure and detection method using reversed-phase high-performance liquid chromatography for the simultaneous measurement of uracil and dihydrouracil in human plasma. The procedure, including chromatographic conditions and sample preparation, was optimized and validated. Optimization of the sample preparation included deproteinization, extraction, and cleanup. A new sample preparation method which resulted in an improved extraction yield of analytes and significantly reduced interference at low-wavelength UV detection was developed. The developed method was validated for specificity, linearity, limits of detection and quantitation, precision, and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limit of detection for uracil and dihydrouracil was 2.5 and 5.0 ng/mL, respectively. The extraction yields were >94% for uracil and 91% for dihydrouracil. Intra- and interassay precision and accuracy for uracil and dihydrouracil were lower than 8% at all tested concentrations. The proposed method was successfully applied to measure plasma concentrations of uracil and dihydrouracil in colorectal cancer patients scheduled to receive fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Wen Pan
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yuandong Li
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Fan Yang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Haizhou Liu
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
9
|
Jacobs BAW, Rosing H, de Vries N, Meulendijks D, Henricks LM, Schellens JHM, Beijnen JH. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma. J Pharm Biomed Anal 2016; 126:75-82. [PMID: 27179185 DOI: 10.1016/j.jpba.2016.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022]
Abstract
Quantification of the endogenous dihydropyrimidine dehydrogenase (DPD) substrate uracil (U) and the reaction product dihydrouracil (UH2) in plasma might be suitable for identification of patients at risk of fluoropyrimidine-induced toxicity as a result of DPD deficiency. In this paper, we describe the development and validation of a rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for quantification of U and UH2 in human plasma. Analytes were extracted by protein precipitation, chromatographically separated on an Acquity UPLC(®) HSS T3 column with gradient elution and analyzed with a tandem mass spectrometer equipped with an electrospray ionization source. U was quantified in the negative ion mode and UH2 in the positive ion mode. Stable isotopes for U and UH2 were used as internal standards. Total chromatographic run time was 5min. Validated concentration ranges for U and UH2 were from 1 to 100ng/mL and 10 to 1000ng/mL, respectively. Inter-assay bias and inter-assay precision for U were within ±2.8% and ≤12.4%. For UH2, inter-assay bias and inter-assay precision were within ±2.9% and ≤7.2%. Adequate stability of U and UH2 in dry extract, final extract, stock solution and plasma was demonstrated. Stability of U and UH2 in whole blood was only satisfactory when stored up to 4hours at 2-8°C, but not at ambient temperatures. An accurate, precise and sensitive UPLC-MS/MS assay for quantification of U and UH2 in plasma was developed. This assay is now applied to support clinical studies with fluoropyrimidine drugs.
Collapse
Affiliation(s)
- Bart A W Jacobs
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.
| | - Hilde Rosing
- The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Niels de Vries
- The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Didier Meulendijks
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Linda M Henricks
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jan H M Schellens
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Utrecht University, Department of Pharmaceutical Sciences, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Department of Clinical Pharmacology, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy and Pharmacology, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands; Utrecht University, Department of Pharmaceutical Sciences, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
10
|
Kinoshita K, Arai K, Kawaura K, Hiyoshi T, Yamaguchi JI. Development, validation, and application of a surrogate analyte method for determining N-acetyl-l-aspartyl-l-glutamic acid levels in rat brain, plasma, and cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1003:1-11. [DOI: 10.1016/j.jchromb.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/10/2023]
|
11
|
Sistonen J, Büchel B, Froehlich TK, Kummer D, Fontana S, Joerger M, van Kuilenburg ABP, Largiadèr CR. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 2015; 15:1653-66. [PMID: 25410891 DOI: 10.2217/pgs.14.126] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Decreased DPD activity is a major cause of 5-fluorouracil (5-FU) toxicity, but known reduced-function variants in the DPD gene (DPYD) explain only a part of DPD-related 5-FU toxicities. Here, we evaluated the baseline (pretherapeutic) plasma 5,6-dihydrouracil:uracil (UH2:U) ratio as a marker of DPD activity in the context of DPYD genotypes. MATERIALS & METHODS DPYD variants were genotyped and plasma U, UH2 and 5-FU concentrations were determined by liquid chromatography-tandem mass spectrometry in 320 healthy blood donors and 28 cancer patients receiving 5-FU-based chemotherapy. RESULTS Baseline UH2:U ratios were strongly correlated with generally low and highly variable U concentrations. Reduced-function DPYD variants were only weakly associated with lower baseline UH2:U ratios. However, the interindividual variability in the UH2:U ratio was reduced and a stronger correlation between ratios and 5-FU exposure was observed in cancer patients during 5-FU administration. CONCLUSION These results suggest that the baseline UH2:U plasma ratio in most individuals reflects the nonsaturated state of DPD and is not predictive of decreased DPD activity. It may, however, be highly predictive at increased substrate concentrations, as observed during 5-FU administration.
Collapse
Affiliation(s)
- Johanna Sistonen
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pandey K, Dubey RS, Prasad BB. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil. Indian J Clin Biochem 2015; 31:3-12. [PMID: 26855482 DOI: 10.1007/s12291-015-0482-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.
Collapse
Affiliation(s)
- Khushaboo Pandey
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | | | - Bhim Bali Prasad
- Analytical Division, Chemistry Department, Faculty of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
13
|
Wang M, Cheng G, Khariwala SS, Bandyopadhyay D, Villalta PW, Balbo S, Hecht SS. Evidence for endogenous formation of the hepatocarcinogen N-nitrosodihydrouracil in rats treated with dihydrouracil and sodium nitrite: a potential source of human hepatic DNA carboxyethylation. Chem Biol Interact 2013; 206:83-9. [PMID: 23911671 PMCID: PMC3839423 DOI: 10.1016/j.cbi.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
An earlier study demonstrated that hydrolysates of all human liver DNA samples analyzed contain the DNA adduct 7-(2'-carboxyethyl)guanine (7-CEGua) with an average level of 74.6 adducts per 10(9) nucleotides. One possible source of this DNA adduct would be endogenous nitrosation of the normal pyrimidine metabolites dihydrouracil (DHU) and β-ureidopropionic acid (β-UPA), yielding the corresponding nitroso compounds N-nitrosodihydrouracil, a potent hepatocarcinogen, and N-nitroso-β-ureidopropionic acid. Another potential source would be reaction of endogenously formed acrylic acid with DNA. We tested these hypotheses in a study in which rats were treated with NaNO2 in the drinking water, alone, or in combination with dietary DHU or β-UPA, or with acrylic acid in the drinking water, for either 2 or 4 weeks. Hepatic DNA from these rats was analyzed for 7-CEGua, using liquid chromatography-tandem mass spectrometry-selected reaction monitoring with confirmation by high resolution mass spectrometry. The results demonstrated consistent statistically significant increases of 7-CEGua in hepatic DNA of the rats treated with the combination of NaNO2 and DHU compared to the corresponding controls, while the other treatments gave variable results. These results support the hypothesis that endogenous nitrosation of DHU could be a major source of 7-CEGua in human hepatic DNA. Development of methodology for analysis of 7-CEGua in human leukocyte DNA is also reported, which will allow testing of this hypothesis in epidemiologic and clinical studies.
Collapse
Affiliation(s)
- Mingyao Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samir S. Khariwala
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Kinoshita K, Jingu S, Yamaguchi JI. A surrogate analyte method to determine d-serine in mouse brain using liquid chromatography–tandem mass spectrometry. Anal Biochem 2013; 432:124-30. [DOI: 10.1016/j.ab.2012.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 01/06/2023]
|
15
|
Kobuchi S, Ito Y, Okada K, Imoto K, Takada K. Pharmacokinetics of 5-fluorouracil and increased hepatic dihydropyrimidine dehydrogenase activity levels in 1,2-dimethylhydrazine-induced colorectal cancer model rats. Eur J Drug Metab Pharmacokinet 2012. [DOI: 10.1007/s13318-012-0114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Coudoré F, Roche D, Lefeuvre S, Faussot D, Billaud EM, Loriot MA, Beaune P. Validation of an Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometric Method for Quantifying Uracil and 5,6-Dihydrouracil in Human Plasma. J Chromatogr Sci 2012; 50:877-84. [DOI: 10.1093/chromsci/bms085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
17
|
A rapid HPLC-ESI-MS/MS method for determination of dihydrouracil/uracil ratio in plasma: evaluation of toxicity to 5-flurouracil in patients with gastrointestinal cancer. Ther Drug Monit 2012; 34:59-66. [PMID: 22210098 DOI: 10.1097/ftd.0b013e318240405f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of endogenous uracil (U) and dihydrouracil (UH2) was developed and tested in a Brazilian population of patients with gastrointestinal cancer previously exposed to 5-fluorouracil (5FU). METHODS The analytes were extracted by a liquid-liquid method using 5-clorouracil as internal standard. The separation was performed on a reversed-phase XTerra C18 column with a mobile phase composed of methanol and aqueous 0.1% ammonium hydroxide (15:85). Mass spectrometry detection was carried out using negative electrospray ionization and selected reaction monitoring. Bovine serum albumin was employed as an alternative matrix to prepare the calibration standards, aiming to avoid the measurement of physiologic U and UH2. Calibration curves were constructed over the range of 5-200 ng/mL for U and 10-500 ng/mL for UH2. RESULTS The mean RSD values in the intrarun precision were 6.5% and 10.0% and in the interrun precision were 7.8% and 9.0% for U and UH2, respectively. The mean accuracy values were within the range of 90%-110% for both analytes. The analytes were stable in plasma under different conditions of temperature and time. The validated method was successfully applied to determine the plasma concentrations of U and UH2 in patients with gastrointestinal cancer (n = 32) previously treated with 5FU and for whom clinical toxicity was well documented. U concentrations varied from 21.8 to 56.6 ng/mL, whereas UH2 concentrations varied from 57.7 to 271.5 ng/mL. UH2/U ratio ranged from 1.56 to 6.18. CONCLUSIONS The method has proved to provide a quick, reliable, and reproducible quantitation of the plasma concentrations of U and its metabolite UH2. The UH2/U ratios did not discriminate patients previously exposed to 5FU with and without severe toxicities, possibly due to the small sample. Further studies in a larger population are desirable.
Collapse
|
18
|
Büchel B, Rhyn P, Schürch S, Bühr C, Amstutz U, Largiadèr CR. LC-MS/MS method for simultaneous analysis of uracil, 5,6-dihydrouracil, 5-fluorouracil and 5-fluoro-5,6-dihydrouracil in human plasma for therapeutic drug monitoring and toxicity prediction in cancer patients. Biomed Chromatogr 2012; 27:7-16. [PMID: 22454320 DOI: 10.1002/bmc.2741] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 11/08/2022]
Abstract
The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Barbara Büchel
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
[Recent developments of pharmacogenomics in the treatment of colorectal cancers]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:233-53. [PMID: 20637356 DOI: 10.1016/j.pharma.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CCR), which is one of the most common causes of cancer, has benefited from the major advances in the understanding of the intracellular signaling pathways implicated in the initiation, growing and local and metastasis dissemination of tumor, which have occurred during the 20 past years. The pharmacogenomics approach, especially the determination of the genetic polymorphisms, tries to find prognosis and predictive biomarkers permitting to identify patients who could benefit from a particular treatment or those exhibiting higher risks of toxicity. Among the numerous biomarkers, which have been studied, few are currently in use in clinical practice. The phenotyping of DPD and UGT1A1 activities, and to a lesser extent, its genotyping, appears as the most useful tool in terms of prediction of toxicities induced by two major drugs: 5-FU and irinotecan. For oxaliplatin, the determination of the polymorphisms of reparases and detoxification systems such as GSTpi seems interesting, but its exact place should be more defined. It is in the field of targeted therapies that the pharmacogenomics approach seems to be the more relevant. KRAS mutation is a dramatic example of single nucleotide polymorphism, which is able to identify a priori patients that could receive or not an anti-EGFR monoclonal antibody such as cetuximab or panitumumab. It is obvious that pre-clinical identification of molecular biomarkers predictive of the sensitivity of the drug targets, which subsequently implicate the selection of patients and the rational evaluation of responses, will be the cornerstone of any clinical trials concerning targeted therapies. Besides the determination of drug target polymorphisms, it is also important to consider those related to the distribution and metabolism. In this area, the determination of enzymatic activities should recover its place besides the genomic profiling.
Collapse
|