1
|
Cheng X, Chai R, Zhang T, Chen Y, Fan F, Ye Y, Jin G, Li T, Wang H, Ding J, Zheng M, Han Y, Tang Q, Song Z, Ji Y, Song W, Luo W, Kang Y. A novel methylation-detection panel for HPV associated high-grade squamous intraepithelial lesion and cervical cancer screening. Sci Rep 2024; 14:25556. [PMID: 39462105 PMCID: PMC11513036 DOI: 10.1038/s41598-024-75047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Cervical cancer (CC) was considered to be the most common gynaecological cancer, with an estimated 342,000 deaths worldwide each year, as the majority of patients were diagnosed at an advanced stage of the disease. The purpose of this study was to evaluate the predictive value of multi-locus methylation assay for the early detection of CC. The cervical exfoliated cell samples from 492 HPV-positive females with cervical lesions were collected and subjected to methylation detection of gene FAM19A4, EPB41L3 and PAX1 after bisulfite conversion. The levels of gene methylation in patients with different severity of cervical lesions were evaluated and compared. The receiver-operating characteristic (ROC) curve was established and efficacy indexes such as sensitivity, specificity and area under the curve (AUC) were calculated to assess the diagnostic value of DNA methylation detection at multiple gene loci for CC. The methylation levels of FAM19A4, EPB41L3 and PAX1 were significantly increased with the grade of cervical squamous intraepithelial lesions. The sensitivities of FAM19A4, EPB41L3 and PAX1 alone for high-grade squamous intraepithelial lesion (HSIL) and CC diagnosis were 84.6%, 86.3% and 88.0%, respectively; when three markers were combined by a logistic regression model, the sensitivity was 88.0%, with a high specificity of 97.7% and AUC of 0.957 (95% CI 0.937-0.977). Methylation status of FAM19A4, EPB41L3 and PAX1 were highly specific and effective for monitoring the progression of cervical lesions and the tri-gene methylation assay could be used as a triage tool for CC early screening.
Collapse
Affiliation(s)
- Xiaobo Cheng
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Ranran Chai
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Teng Zhang
- Shanghai Ruisai Biotechnology Co., Ltd, No. 3399 Kangxin Highway, Pudong New Area, Shanghai, China
- Zhejiang Free Trade Area R&S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China
| | - Yanjie Chen
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Fangqin Fan
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Yingfei Ye
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Guanqin Jin
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Tingting Li
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Hui Wang
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Jingwen Ding
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Min Zheng
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Yanhua Han
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Qinzhu Tang
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Zhiqing Song
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China
| | - Yiqun Ji
- Shanghai Ruisai Biotechnology Co., Ltd, No. 3399 Kangxin Highway, Pudong New Area, Shanghai, China
| | - Wengweng Song
- Shanghai Ruisai Biotechnology Co., Ltd, No. 3399 Kangxin Highway, Pudong New Area, Shanghai, China
| | - Weifeng Luo
- Shanghai Ruisai Biotechnology Co., Ltd, No. 3399 Kangxin Highway, Pudong New Area, Shanghai, China.
- Zhejiang Free Trade Area R&S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China.
| | - Yu Kang
- Clinical Trials Unit, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Niedziela E, Niedziela Ł, Kowalska A, Kowalik A. Detection of the BRAFV600E Mutation in Circulating Free Nucleic Acids as a Biomarker of Thyroid Cancer: A Review. J Clin Med 2024; 13:5396. [PMID: 39336882 PMCID: PMC11432512 DOI: 10.3390/jcm13185396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Liquid biopsy is a method that could potentially improve the management of thyroid cancer (TC) by enabling the detection of circulating tumor DNA and RNA (ctDNA, ctRNA). The BRAFV600E mutation appears to be the most representative example of a biomarker in liquid biopsy, as it is the most specific mutation for TC and a target for molecular therapeutics. The aim of this review is to summarize the available data on the detection of the BRAFV600E mutation in liquid biopsy in patients with TC. Methods: A comprehensive analysis of the available literature on the detection of the BRAFV600E mutation in liquid biopsy in TC was performed. Thirty-three papers meeting the inclusion criteria were selected after full-text evaluation. Results: Eleven papers discussed correlations between BRAF mutation and clinicopathological characteristics. Nine studies tested the utility of BRAFV600E detection in the assessment of residual or recurrent disease. Seven studies investigated BRAF-mutated circulating tumor nucleic acids (ctNA) as a marker of response to targeted therapy. In seven studies the method did not detect the BRAFV600E mutation. Conclusions: This review shows the potential of BRAFV600E-mutated ctNA detection in monitoring disease progression, particularly in advanced TC. The diagnostic value of BRAFV600E-mutated ctNA detection appears to be limited to advanced TC. The choice of the molecular method (quantitative PCR [qPCR], droplet digital polymerase chain reaction [ddPCR], and next-generation sequencing [NGS]) should be made based on the turnaround time, sensitivity of the test, and the clinical indications. Despite the promising outcomes of some studies, there is a need to verify these results on larger cohorts and to unify the molecular methods.
Collapse
Affiliation(s)
- Emilia Niedziela
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Łukasz Niedziela
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Aldona Kowalska
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center, 25-734 Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| |
Collapse
|
3
|
Jeddi F, Faghfuri E, Mehranfar S, Soozangar N. The common bisulfite-conversion-based techniques to analyze DNA methylation in human cancers. Cancer Cell Int 2024; 24:240. [PMID: 38982390 PMCID: PMC11234524 DOI: 10.1186/s12935-024-03405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
DNA methylation is an important molecular modification that plays a key role in the expression of cancer genes. Evaluation of epigenetic changes, hypomethylation and hypermethylation, in specific genes are applied for cancer diagnosis. Numerous studies have concentrated on describing DNA methylation patterns as biomarkers for cancer diagnosis monitoring and predicting response to cancer therapy. Various techniques for detecting DNA methylation status in cancers are based on sodium bisulfite treatment. According to the application of these methods in research and clinical studies, they have a number of advantages and disadvantages. The current review highlights sodium bisulfite treatment-based techniques, as well as, the advantages, drawbacks, and applications of these methods in the evaluation of human cancers.
Collapse
Affiliation(s)
- Farhad Jeddi
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
5
|
Zappe K, Cichna-Markl M. Temperature-Wise Calibration Increases the Accuracy of DNA Methylation Levels Determined by High-Resolution Melting (HRM). Int J Mol Sci 2024; 25:5082. [PMID: 38791122 PMCID: PMC11121480 DOI: 10.3390/ijms25105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.
Collapse
Affiliation(s)
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Abstract
Screening with low-dose computed tomography has been shown to decrease lung cancer mortality. However, the issues of low detection rates and false positive results remain, highlighting the need for adjunctive tools in lung cancer screening. To this end, researchers have investigated easily applicable, minimally invasive tests with high validity. We herein review some of the more promising novel markers utilizing plasma, sputum, and airway samples.
Collapse
Affiliation(s)
- Ju Ae Park
- Department of General Surgery, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Kei Suzuki
- Inova Thoracic Surgery, Schar Cancer Institute, 8081 Innovation Park Drive, Fairfax, VA 22031, USA.
| |
Collapse
|
8
|
Fan C, Ma Q, Wu X, Dai X, Peng Q, Cai H. Detection of DNA Methylation in Gene Loci ASTN1, DLX1, ITGA4, RXFP3, SOX17, and ZNF671 for Diagnosis of Cervical Cancer. Cancer Manag Res 2023; 15:635-644. [PMID: 37457377 PMCID: PMC10349600 DOI: 10.2147/cmar.s417877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To evaluate the diagnostic value of DNA methylation detection of multiple gene loci in cervical cancer. Methods A total of 61 cases requiring cervical biopsy were selected from the outpatient clinic of Maternal and Child Health Hospital of Hubei Province between January 2018 and December 2019. The patients were divided into four groups based on histopathologic diagnosis: cervical cancer (CC) group, high-grade squamous intraepithelial lesion (HSIL) group, low-grade squamous intraepithelial lesion (LSIL) group, and control group. HPV examination, liquid-based cytology examination, and DNA methylation detection at multiple gene sites were performed. The positive rate of DNA methylation, sensitivity, specificity, area under the curve (AUC), and other efficacy indexes were calculated to evaluate the diagnostic value of DNA methylation detection at multiple gene loci in cervical cancer. Results The positive rates of DNA methylation in CC, HSIL, LSIL, and control groups were 100%, 88%, 83% and 17%, respectively. The ZNF671 gene had the highest positive rate among the cervical lesion group, with rates of 57%, 76%, and 100% in LSIL, HSIL, and CC groups respectively. The combination of DNA methylation detection at multiple gene loci showed the highest diagnostic efficacy for HSIL and cervical cancer, with AUC value of 0.850 (95% CI:0.746-0.954), a Youden index of 0.654, and a sensitivity and specificity of 85% and 85.4%, respectively. The diagnostic efficacy of the combined detection was significantly higher than that of HPV examination and liquid-based cytology examination (P < 0.05). Conclusion DNA methylation detection at multiple gene loci is highly effective and diagnostic tool for cervical cancer, and has potential application value in clinical practice.
Collapse
Affiliation(s)
- Chunli Fan
- Department of Scientific Research and Teaching Management Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Quanfu Ma
- Department of Scientific Research and Teaching Management Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Xufeng Wu
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Xuan Dai
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Qiuzi Peng
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Hongning Cai
- Department of Scientific Research and Teaching Management Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
- Department of Cervical Cancer Prevention Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
9
|
Bhootra S, Jill N, Shanmugam G, Rakshit S, Sarkar K. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:71. [PMID: 36602616 DOI: 10.1007/s12032-022-01943-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
DNA methylation is one among the major grounds of cancer progression which is characterized by the addition of a methyl group to the promoter region of the gene thereby causing gene silencing or increasing the probability of mutations; however, in bacteria, methylation is used as a defense mechanism where DNA protection is by addition of methyl groups making restriction enzymes unable to cleave. Hypermethylation and hypomethylation both pose as leading causes of oncogenesis; the former being more frequent which occurs at the CpG islands present in the promoter region of the genes, whereas the latter occurs globally in various genomic sequences. Reviewing methylation profiles would help in the detection and treatment of cancers. Demethylation is defined as preventing methyl group addition to the cytosine DNA base which could cause cancers in case of global hypomethylation, however, upon further investigation; it could be used as a therapeutic tool as well as for drug design in cancer treatment. In this review, we have studied the molecules that induce and enzymes (DNMTs) that bring about methylation as well as comprehend the correlation between methylation with transcription factors and various signaling pathways. DNA methylation has also been reviewed in terms of how it could serve as a prognostic marker and the various therapeutic drugs that have come into the market for reversing methylation opening an avenue toward curing cancers.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Higashimoto K, Hara S, Soejima H. DNA Methylation Analysis Using Bisulfite Pyrosequencing. Methods Mol Biol 2023; 2577:3-20. [PMID: 36173562 DOI: 10.1007/978-1-0716-2724-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pyrosequencing is a DNA sequencing-by-synthesis technique that can quantitatively detect single-nucleotide polymorphisms (SNPs). With pyrosequencing, the level of DNA methylation can be calculated according to the ratio of artificial cytosine/thymine SNPs produced by bisulfite conversion at each CpG site. This analysis method provides a reproducible and accurate measurement of methylation levels at CpG sites near sequencing primers with high quantitative resolution. DNA methylation plays an important role in mammalian development and cellular physiology; alterations in DNA methylation patterns have been implicated in several common diseases as well as cancers and imprinting disorders. Evaluating DNA methylation levels via pyrosequencing is useful for identifying biomarkers that could help with the diagnosis, prognosis, treatment selection, and onset risk assessment for several diseases. We describe the principles of pyrosequencing and detail a bisulfite pyrosequencing protocol based on our experience and the PyroMark Q24 User Manual.
Collapse
Affiliation(s)
- Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
11
|
Fu Y, Zhang L, Xing Y, Deng S. Quantitative analysis of DNA methylation using sequence-specific, real-time loop-mediated isothermal amplification. Anal Chim Acta 2022; 1235:340535. [DOI: 10.1016/j.aca.2022.340535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
12
|
Chen CY, Yang HW, Hsieh PH, Hsieh CH, Wu MH. Development of a photothermal bead-based nucleic acid amplification test (pbbNAAT) technique for a high-performance loop-mediated isothermal amplification (LAMP)–based point-of-care test (POCT). Biosens Bioelectron 2022; 215:114574. [DOI: 10.1016/j.bios.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
|
13
|
Shimizu T, Fujita T, Fujii H. Oligoribonucleotide interference-PCR: principles and applications. BIOLOGY METHODS AND PROTOCOLS 2022; 7:bpac010. [PMID: 35664805 PMCID: PMC9154734 DOI: 10.1093/biomethods/bpac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used widely for molecular biological research and clinical diagnosis. However, amplifying a specific DNA sequence harboring a mutation that is present in a small number of mutant cells within a large population of normal cells (e.g., as in cancer) in a tissue is difficult using the original PCR protocol. Thus, some measures are necessary to suppress amplification of background signals. To achieve this, we developed the oligoribonucleotide (ORN) interference-PCR (ORNi-PCR) technology in which an ORN (short RNA) hybridizes with a complementary DNA sequence to inhibit PCR amplification across the specific target sequence. ORNs can be prepared inexpensively, and ORNi-PCR can be carried out easily by adding ORNs to the PCR reaction mixture. Suppressing amplification of target sequences by ORNi-PCR is useful for detecting target sequence mutations. We showed that ORNi-PCR can discriminate single-nucleotide mutations in cancer cells and indel mutations introduced by genome editing. We also showed that ORNi-PCR can identify the CpG methylation status of a target sequence within bisulfite-treated DNA, and can enrich DNA sequences of interest from a DNA mixture by suppressing amplification of unwanted sequences. Thus, ORNi-PCR has many potential applications in various fields, including medical diagnosis and molecular biology. In this review, we outline the principles of the ORNi-PCR method and its use to detect nucleotide mutations in a variety of specimens.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Aomori, Japan
| |
Collapse
|
14
|
Application of droplet digital polymerase chain reaction of plasma methylated septin 9 on detection and early monitoring of colorectal cancer. Sci Rep 2021; 11:23446. [PMID: 34873218 PMCID: PMC8648834 DOI: 10.1038/s41598-021-02879-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Methylated septin 9 (SEPT9) has been approved for non-invasive screening of colorectal cancer (CRC), but data on monitoring of CRC is sparse. Droplet digital polymerase chain reaction (ddPCR), with higher detection precision and simpler quantification than conventional PCR, has not been applied in SEPT9 detection. We explored the role of SEPT9 ddPCR for CRC detection and to measure serial SEPT9 levels in blood samples of CRC patients before and 3-month after surgery. SEPT9 methylated ratio, methylated abundance, and CEA levels were all higher in CRC patients than normal controls (all P < 0.05). The area under the curve (AUC) for methylated ratio and abundance to detect CRC was 0.707 and 0.710, respectively. There was an increasing trend for SEPT9 methylated abundance from proximal to distal cancers (P = 0.017). At 3-month after surgery, both methylated abundance and ratio decreased (P = 0.005 and 0.053, respectively), especially methylated abundance in stage III and distal cancer (both P < 0.01). We have developed a ddPCR platform for the quantitative detection of plasma SEPT9 in CRC patients. SEPT9 methylated abundance had an early post-operative decline, which may be useful in monitoring of treatment response.
Collapse
|
15
|
Friedemann M, Horn F, Gutewort K, Tautz L, Jandeck C, Bechmann N, Sukocheva O, Wirth MP, Fuessel S, Menschikowski M. Increased Sensitivity of Detection of RASSF1A and GSTP1 DNA Fragments in Serum of Prostate Cancer Patients: Optimisation of Diagnostics Using OBBPA-ddPCR. Cancers (Basel) 2021; 13:cancers13174459. [PMID: 34503269 PMCID: PMC8431466 DOI: 10.3390/cancers13174459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Identification of aberrant DNA methylation is a promising tool in prostate cancer (PCa) diagnosis and treatment. In this study, we evaluated a two-step method named optimised bias-based preamplification followed by digital PCR (OBBPA-dPCR). The method was used to identify promoter hypermethylation of 2 tumour suppressor genes RASSF1A and GSTP1 in the circulating cell-free DNA (cfDNA) from serum samples of PCa patients (n = 75), benign prostatic hyperplasia (BPH, n = 58), and healthy individuals (controls, n = 155). The PCa cohort was further subdivided into subgroups comprising (I) patients with Gleason Scores (GS) ≤ 7 (n = 55), (II) GS ≥ 8 (n = 10), and (III) patients with metastatic PCa diagnosis (n = 10). We found that RASSF1A methylation levels were significantly increased in all 3 PCa subgroups compared to the controls and BPH cohorts (p < 0.01 for all comparisons). Fractional abundances of methylated GSTP1 DNA fragments were significantly increased in subgroup III of metastatic PCa patients (p < 0.001). RASSF1A methylation analysis was found to be beneficial as a complementary biomarker where further diagnostic validation is most crucial. In combination with free PSA, RASSF1A methylation status helps to identify PCa patients with GS ≥ 8 and grey-zone total PSA values between 2-10 ng/mL. In our study, PCR biases between 80-90% were sufficient to detect minute amounts of tumour DNA with high signal-to-noise ratios as well as high analytical sensitivity and specificity. Both RASSF1A and GSTP1 exhibited strongly increased DNA methylation levels in all metastatic PCa patients. Our data indicates a superior sensitivity of epigenetic biomarker analyses in early detection of PCa metastases that should also help to improve PCa therapy.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Friederike Horn
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Lars Tautz
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- German Department of Human Nutrition Potsdam-Rehbruecke, Institute of Experimental Diabetology, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia;
| | - Manfred P. Wirth
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
- Correspondence: ; Tel.: +49-35-1458-2634; Fax: +49-35-1458-4332
| |
Collapse
|
16
|
Fujita T, Nagata S, Fujii H. Protein or ribonucleoprotein-mediated blocking of recombinase polymerase amplification enables the discrimination of nucleotide and epigenetic differences between cell populations. Commun Biol 2021; 4:988. [PMID: 34413466 PMCID: PMC8376914 DOI: 10.1038/s42003-021-02503-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Isothermal DNA amplification, such as recombinase polymerase amplification (RPA), is well suited for point-of-care testing (POCT) as it does not require lengthy thermal cycling. By exploiting DNA amplification at low temperatures that do not denature heat-sensitive molecules such as proteins, we have developed a blocking RPA method to detect gene mutations and examine the epigenetic status of DNA. We found that both nucleic acid blockers and nuclease-dead clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoproteins suppress RPA reactions by blocking elongation by DNA polymerases in a sequence-specific manner. By examining these suppression events, we are able to discriminate single-nucleotide mutations in cancer cells and evaluate genome-editing events. Methyl-CpG binding proteins similarly inhibit elongation by DNA polymerases on CpG-methylated template DNA in our RPA reactions, allowing for the detection of methylated CpG islands. Thus, the use of heat-sensitive molecules such as proteins and ribonucleoprotein complexes as blockers in low-temperature isothermal DNA amplification reactions markedly expands the utility and application of these methods. Fujita et al. investigate the use of oligoribonucleotides, proteins, and ribonucleoprotein complexes as sequence-specific blockers of DNA extension by DNA polymerases. They demonstrate the value of proteins and ribonucleoprotein complexes as blockers in low-temperature isothermal DNA amplification reactions for discrimination of nucleotide and epigenetic differences.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| | - Shoko Nagata
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| |
Collapse
|
17
|
Mohanty A, Mohanty SK, Rout S, Pani C. Liquid Biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol 2021; 48:259-267. [PMID: 34384614 DOI: 10.1053/j.seminoncol.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
The molecular landscape of tumors has been traditionally established using a biopsy or resection specimens. These modalities result in sampling bias that offer only a single snapshot of tumor heterogeneity. Over the last decade intensive research towards alleviating such a bias and obtaining an integral yet accurate portrait of the tumors, evolved to the use of established molecular and genetic analysis using blood and several other body fluids, such as urine, saliva, and pleural effusions as liquid biopsies. Genomic profiling of the circulating markers including circulating cell-free tumor DNA (ctDNA), circulating tumor cells (CTCs) or even RNA, proteins, and lipids constituting exosomes, have facilitated the diligent monitoring of response to treatment, allowed one to follow the emergence of drug resistance, and enumerate minimal residual disease. The prevalence of tumor educated platelets (TEPs) and our understanding of how tumor cells influence platelets are beginning to unearth TEPs as a potentially dynamic component of liquid biopsies. Here, we review the biology, methodology, approaches, and clinical applications of biomarkers used to assess liquid biopsies. The current review addresses recent technological advances and different forms of liquid biopsy along with upcoming challenges and how they can be integrated to get the best possible tumor-derived genetic information that can be leveraged to more precise therapies for patient as liquid biopsies become increasingly routine in clinical practice.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| | - Sambit K Mohanty
- Advanced Medical Research Institute, Bhubaneswar, Odisha, India; CORE Diagnostics, Gurgaon, Haryana, India
| | - Sipra Rout
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
18
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
19
|
Adampourezare M, Dehghan G, Hasanzadeh M, Hosseinpoure Feizi MA. Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: Recent progress and challenges in biomedicine. Biomed Pharmacother 2021; 141:111845. [PMID: 34175816 DOI: 10.1016/j.biopha.2021.111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an important epigenetic alteration that results from the covalent transfer of a methyl group to the fifth carbon of a cytosine residue in CpG dinucleotides by DNA methyltransferase. This modification mostly happens in the promoter region and the first exon of most genes and suppresses gene expression. Therefore, aberrant DNA methylation cause tumor progression, metastasis, and resistance to current anti-cancer therapies. So, the detection of DNA methylation is an important issue in diagnosis and therapy of most diseases. Conventional methods for the assay of DNA methylation and activity of DNA methyltransferases are time consuming. So, we need to multiplex operations and expensive instrumentation. To overcome the limitations of conventional methods, new methods such as microfluidic platforms and lateral flow tests have been developed to evaluate DNA methylation. The microfluidic tests are based on optical and electrical biosensing. These tests able us to can analyze DNA methylation with high efficiency and sensitivity without the need for expensive equipment and skilled people. Lateral flow strip tests are another type of rapid, simple, and sensitive test with advanced technology used to assess DNA methylation. Lateral flow strip tests are based on optical biosensors. This review attempts to evaluate new methods for assessing DNA extraction, DNA methylation and DNA methyltransferase activity as well as recent developments in microfluidic technology application for bisulfite treatment and restriction enzyme (bisulfite free), and lateral flow relying on their application in the field of recognition of DNA methylation in blood and body fluids. Also, the advantages and disadvantages of each test are reviewed. Finally, future prospects for the development of the microfluidics biodevices for the detection of DNA methylation is briefly discussed.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
20
|
Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, Ordóñez-Reyes C, Arrieta O, Zatarain-Barrón ZL, Recondo G, Cardona AF. When Tissue is an Issue the Liquid Biopsy is Nonissue: A Review. Oncol Ther 2021; 9:89-110. [PMID: 33689160 PMCID: PMC8140006 DOI: 10.1007/s40487-021-00144-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has impacted the field of medical oncology by introducing personalized therapies, improving all measurable outcomes. This field, in turn, has expanded to obtaining and analyzing a vast and ever-increasing amount of genomic information. One technique currently applied is the liquid biopsy, which consists of detecting and isolating DNA and exosomes in cancer patients. Newly developed techniques have made it possible to use the liquid biopsy in a wide range of settings. However, challenges regarding the validation of its clinical utility exist because of a lack of standardization across different techniques and tumor types, confounder genomic information, lack of appropriate clinical trial designs, and a non-measured, and therefore not estimated, economic impact on population health. Nowadays, liquid biopsy is not routinely used, but ongoing research is increasing its popularity, and a new era in oncology is developing. Therefore, it is essential to have an in-depth understanding of the liquid biopsy technique. In this review, we summarize the leading techniques and liquid biopsy applications in cancer.
Collapse
Affiliation(s)
- July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alejandro Ruíz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia.
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia.
- Clinical and Traslational Oncology Group, Clinica del Country, Bogota, Colombia.
| |
Collapse
|
21
|
Kim HJ, Kim N, Kim HW, Park JH, Shin CM, Lee DH. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation. Gastric Cancer 2021; 24:302-313. [PMID: 32915372 DOI: 10.1007/s10120-020-01117-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE It remains unknown whether individuals with a family history (FH) of gastric cancer (GC) are associated with aberrant DNA methylation. The aim of this study was to investigate the association between aberrant DNA methylation and FH of GC. DESIGN Using quantitative MethyLight assay, MOS, miR124a-3, NKX6-1, EMX1, CDH1, and TWIST1 methylation levels in the noncancerous gastric mucosa was compared between subjects with and without FH based on GC and Helicobacter pylori (Hp) infection. Changes in the methylation levels were evaluated over time after Hp eradication. RESULTS In Hp-positive GC patients, MOS (P < 0.001), CDH1 (P < 0.001), and TWIST1 (P = 0.004) methylation were decreased in subjects with FH (n = 64) than in those without FH (n = 58). In Hp-positive controls, MOS methylation was lower in subjects with FH (n = 73) than in those without FH (n = 50) (P = 0.042), while miR124a-3 (P = 0.006), NKX6-1 (P < 0.001), and CDH1 (P < 0.001) methylation were higher in subjects with FH. CDH1 methylation constantly decreased from 2 years in GC patients and 3-4 years in controls after Hp eradication (all P < 0.001). A persistent decrease in methylation over time was not observed in other genes after eradication. CONCLUSION The methylation of MOS and CDH1 provided an association between aberrant DNA methylation and gastric carcinogenesis in FH of GC, a useful marker for GC risk in individuals with FH. Furthermore, CDH1 methylation decreased after Hp eradication.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea. .,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea.
| | - Hyoung Woo Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Gaga M, Chorostowska-Wynimko J, Horváth I, Tammemagi MC, Shitrit D, Eisenberg VH, Liang H, Stav D, Levy Faber D, Jansen M, Raviv Y, Panagoulias V, Rudzinski P, Izbicki G, Ronen O, Goldhaber A, Moalem R, Arber N, Haas I, Zhou Q. Validation of Lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals. Eur Respir J 2021; 57:2002682. [PMID: 33122336 PMCID: PMC7806969 DOI: 10.1183/13993003.02682-2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023]
Abstract
AIM Lung cancer screening reduces mortality. We aim to validate the performance of Lung EpiCheck, a six-marker panel methylation-based plasma test, in the detection of lung cancer in European and Chinese samples. METHODS A case-control European training set (n=102 lung cancer cases, n=265 controls) was used to define the panel and algorithm. Two cut-offs were selected, low cut-off (LCO) for high sensitivity and high cut-off (HCO) for high specificity. The performance was validated in case-control European and Chinese validation sets (cases/controls 179/137 and 30/15, respectively). RESULTS The European and Chinese validation sets achieved AUCs of 0.882 and 0.899, respectively. The sensitivities/specificities with LCO were 87.2%/64.2% and 76.7%/93.3%, and with HCO they were 74.3%/90.5% and 56.7%/100.0%, respectively. Stage I nonsmall cell lung cancer (NSCLC) sensitivity in European and Chinese samples with LCO was 78.4% and 70.0% and with HCO was 62.2% and 30.0%, respectively. Small cell lung cancer (SCLC) was represented only in the European set and sensitivities with LCO and HCO were 100.0% and 93.3%, respectively. In multivariable analyses of the European validation set, the assay's ability to predict lung cancer was independent of established risk factors (age, smoking, COPD), and overall AUC was 0.942. CONCLUSIONS Lung EpiCheck demonstrated strong performance in lung cancer prediction in case-control European and Chinese samples, detecting high proportions of early-stage NSCLC and SCLC and significantly improving predictive accuracy when added to established risk factors. Prospective studies are required to confirm these findings. Utilising such a simple and inexpensive blood test has the potential to improve compliance and broaden access to screening for at-risk populations.
Collapse
Affiliation(s)
- Mina Gaga
- 7th Respiratory Medicine Dept, Athens Chest Hospital, Athens, Greece
| | | | - Ildikó Horváth
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - David Shitrit
- Pulmonary Dept, Meir Medical Center, Kfar Saba, Israel
| | | | - Hao Liang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - David Stav
- Lung Institute, Maccabi Health Services Hashalom, Tel-Aviv, Israel
| | - Dan Levy Faber
- Dept of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Maarten Jansen
- Pulmonary Dept, Ziekenhuisgroep Twente, Hengelo, The Netherlands
| | - Yael Raviv
- Dept of Medicine, Pulmonology Institute, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | | | - Piotr Rudzinski
- National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Gabriel Izbicki
- Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ohad Ronen
- Dept of Otolaryngology – Head and Neck Surgery, Galilee Medical Center affiliated with Azrieli Faculty of Medicine, Safed, Israel
| | | | - Rawia Moalem
- Gastroenterology Institute, The Holy Family Hospital, Nazareth, Israel
| | - Nadir Arber
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ilana Haas
- Breast Unit, Meir Medical Center, Kfar Saba, Israel
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Danstrup CS, Marcussen M, Pedersen IS, Jacobsen H, Dybkær K, Gaihede M. DNA methylation biomarkers in peripheral blood of patients with head and neck squamous cell carcinomas. A systematic review. PLoS One 2020; 15:e0244101. [PMID: 33332423 PMCID: PMC7746174 DOI: 10.1371/journal.pone.0244101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCC) are often diagnosed in advanced stages. In search of new diagnostic tools, focus has shifted towards the biological properties of the HNSCC, and the number of different biomarkers under investigation is rapidly growing. OBJECTIVES The objective was to review the current literature regarding aberrantly methylated DNA found in peripheral blood plasma or serum in patients with HNSCC and to evaluate the diagnostic accuracy of these changes. METHODS The inclusion criteria were clinical studies involving patients with verified HNSCC that reported findings of aberrantly methylated DNA in peripheral blood serum or plasma. We systematically searched PubMed, OVID Embase and Cochrane Library. In addition to the search, we performed forward and backward chaining in references and Web of Science. The protocol was registered in PROSPERO: CRD42019135406. Two authors independently extracted data. The quality and the risk of bias of the included studies were assessed by the QUADAS-2 tool. RESULTS A total of 1,743 studies were found eligible for screening, while ultimately seven studies were included. All studies were found to have methodological weaknesses, mainly concerning patient selection bias. The best individual marker of HNSCC was Septin 9 in plasma with a sensitivity of 57% and a specificity of 95%. CONCLUSIONS None of the aberrantly methylated genes found in the retrieved studies are applicable as single diagnostic markers for HNSCC and the best gene-panels still lack diagnostic accuracy. Future studies may benefit from newer sequencing techniques but validation studies with well-designed cohorts are also needed in the process of developing epigenetic based diagnostic tests for HNSCC.
Collapse
Affiliation(s)
- Christian Sander Danstrup
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Marcussen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Jacobsen
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Gaihede
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Thakral D, Gupta R, Sahoo RK, Verma P, Kumar I, Vashishtha S. Real-Time Molecular Monitoring in Acute Myeloid Leukemia With Circulating Tumor DNA. Front Cell Dev Biol 2020; 8:604391. [PMID: 33363162 PMCID: PMC7759522 DOI: 10.3389/fcell.2020.604391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The clonal evolution of acute myeloid leukemia (AML), an oligoclonal hematological malignancy, is driven by a plethora of cytogenetic abnormalities, gene mutations, abnormal epigenetic patterns, and aberrant gene expressions. These alterations in the leukemic blasts promote clinically diverse manifestations with common characteristics of high relapse and drug resistance. Defining and real-time monitoring of a personalized panel of these predictive genetic biomarkers is rapidly being adapted in clinical setting for diagnostic, prognostic, and therapeutic decision-making in AML. A major challenge remains the frequency of invasive biopsy procedures that can be routinely performed for monitoring of AML disease progression. Moreover, a single-site biopsy is not representative of the tumor heterogeneity as it is spatially and temporally constrained and necessitates the understanding of longitudinal and spatial subclonal dynamics in AML. Hematopoietic cells are a major contributor to plasma cell-free DNA, which also contain leukemia-specific aberrations as the circulating tumor-derived DNA (ctDNA) fraction. Plasma cell-free DNA analysis holds immense potential as a minimally invasive tool for genomic profiling at diagnosis as well as clonal evolution during AML disease progression. With the technological advances and increasing sensitivity for detection of ctDNA, both genetic and epigenetic aberrations can be qualitatively and quantitatively evaluated. However, challenges remain in validating the utility of liquid biopsy tools in clinics, and universal recommendations are still awaited towards reliable diagnostics and prognostics. Here, we provide an overview on the scope of ctDNA analyses for prognosis, assessment of response to treatment and measurable residual disease, prediction of disease relapse, development of acquired resistance and beyond in AML.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Indresh Kumar
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Vashishtha
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
26
|
Discrimination of CpG Methylation Status and Nucleotide Differences in Tissue Specimen DNA by Oligoribonucleotide Interference-PCR. Int J Mol Sci 2020; 21:ijms21145119. [PMID: 32698480 PMCID: PMC7404293 DOI: 10.3390/ijms21145119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/05/2022] Open
Abstract
Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR) is a method in which PCR amplification of a target sequence is inhibited in a sequence-specific manner by the hybridization of an ORN with the target sequence. Previously, we reported that ORNi-PCR could detect nucleotide mutations in DNA purified from cultured cancer cell lines or genome-edited cells. In this study, we investigated whether ORNi-PCR can discriminate nucleotide differences and CpG methylation status in damaged DNA, such as tissue specimen DNA and bisulfite-treated DNA. First, we showed that ORNi-PCR could discriminate nucleotide differences in DNA extracted from acetone-fixed paraffin-embedded rat liver specimens or formalin-fixed paraffin-embedded human specimens. Rat whole blood specimens were compatible with ORNi-PCR for the same purpose. Next, we showed that ORNi-PCR could discriminate CpG methylation status in bisulfite-treated DNA. These results demonstrate that ORNi-PCR can discriminate nucleotide differences and CpG methylation status in multiple types of DNA samples. Thus, ORNi-PCR is potentially useful in a wide range of fields, including molecular biology and medical diagnosis.
Collapse
|
27
|
Han Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, Hapala J, Koop BE, Strathmann K, Ritz-Timme S, Wagner W. New targeted approaches for epigenetic age predictions. BMC Biol 2020; 18:71. [PMID: 32580727 PMCID: PMC7315536 DOI: 10.1186/s12915-020-00807-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. Results In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. Conclusion Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.
Collapse
Affiliation(s)
- Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Stiehl
- Interdisciplinary Center for Scientific Computing (IWR), Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Michael Gobs
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Jan Hapala
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute for Legal Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
28
|
Lam D, Luu PL, Song JZ, Qu W, Risbridger GP, Lawrence MG, Lu J, Trau M, Korbie D, Clark SJ, Pidsley R, Stirzaker C. Comprehensive evaluation of targeted multiplex bisulphite PCR sequencing for validation of DNA methylation biomarker panels. Clin Epigenetics 2020; 12:90. [PMID: 32571390 PMCID: PMC7310104 DOI: 10.1186/s13148-020-00880-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND DNA methylation is a well-studied epigenetic mark that is frequently altered in diseases such as cancer, where specific changes are known to reflect the type and severity of the disease. Therefore, there is a growing interest in assessing the clinical utility of DNA methylation as a biomarker for diagnosing disease and guiding treatment. The development of an accurate loci-specific methylation assay, suitable for use on low-input clinical material, is crucial for advancing DNA methylation biomarkers into a clinical setting. A targeted multiplex bisulphite PCR sequencing approach meets these needs by allowing multiple DNA methylated regions to be interrogated simultaneously in one experiment on limited clinical material. RESULTS Here, we provide an updated protocol and recommendations for multiplex bisulphite PCR sequencing (MBPS) assays for target DNA methylation analysis. We describe additional steps to improve performance and reliability: (1) pre-sequencing PCR optimisation which includes assessing the optimal PCR cycling temperature and primer concentration and (2) post-sequencing PCR optimisation to achieve uniform coverage of each amplicon. We use a gradient of methylated controls to demonstrate how PCR bias can be assessed and corrected. Methylated controls also allow assessment of the sensitivity of methylation detection for each amplicon. Here, we show that the MBPS assay can amplify as little as 0.625 ng starting DNA and can detect methylation differences of 1% with a sequencing coverage of 1000 reads. Furthermore, the multiplex bisulphite PCR assay can comprehensively interrogate multiple regions on 1-5 ng of formalin-fixed paraffin-embedded DNA or circulating cell-free DNA. CONCLUSIONS The MBPS assay is a valuable approach for assessing methylated DNA regions in clinical samples with limited material. The optimisation and additional quality control steps described here improve the performance and reliability of this method, advancing it towards potential clinical applications in biomarker studies.
Collapse
Affiliation(s)
- Dilys Lam
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, 2010, Australia
| | - Jenny Z Song
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Wenjia Qu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jennifer Lu
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, 2010, Australia.
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, 2010, Australia.
| |
Collapse
|
29
|
Stastny I, Zubor P, Kajo K, Kubatka P, Golubnitschaja O, Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin Breast Cancer 2020; 20:e711-e722. [PMID: 32792225 DOI: 10.1016/j.clbc.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Breast malignancies are the leading type of cancer among women. Its prevention and early detection, particularly in young women, remains challenging. To this end, cell-free DNA (cfDNA) detected in body fluids demonstrates great potential for early detection of tissue transformation and altered molecular setup, such as epigenetic profiles. Aberrantly methylated cfDNA in body fluids could therefore serve as a potential diagnostic and prognostic tool in breast cancer management. Abnormal methylation may lead to both an activation of oncogenes via hypomethylation and an inactivation of tumor suppressor genes by hypermethylation. We update the state of the art in the area of aberrant cfDNA methylation analyses as a diagnostic and prognostic tool in breast cancer, report on the main technological challenges, and provide an outlook for advancing the overall management of breast malignancies based on cfDNA as a target for diagnosis and tailored therapies.
Collapse
Affiliation(s)
- Igor Stastny
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Obstetrics and Gynaecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Pavol Zubor
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Hospital, Rheinische, Excellence University of Bonn, Bonn, Germany; Breast Cancer Research Centre, Rheinische, Excellence University of Bonn, Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Excellence University of Bonn, Bonn, Germany
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
30
|
Rolfo C, Cardona AF, Cristofanilli M, Paz-Ares L, Diaz Mochon JJ, Duran I, Raez LE, Russo A, Lorente JA, Malapelle U, Gil-Bazo I, Jantus-Lewintre E, Pauwels P, Mok T, Serrano MJ. Challenges and opportunities of cfDNA analysis implementation in clinical practice: Perspective of the International Society of Liquid Biopsy (ISLB). Crit Rev Oncol Hematol 2020; 151:102978. [PMID: 32428812 DOI: 10.1016/j.critrevonc.2020.102978] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine was born with the development of new diagnostic techniques and targeted drugs, yielding better outcomes in cancer care. With the evolution and increasing sensitivity for detecting oncogenic drivers, liquid biopsies (LBs), specifically cell-free DNA (cfDNA) analysis, have been proposed as a minimally-invasive technique for genomic profiling. Ranging from sequencing techniques to PCR-based methods and other more complex strategies, this approach, currently applicable in some solid tumors with robust evidence, is showing promising opportunities in other cancers. However, difficulties in validating their clinical utility exist within limitation at different levels among several techniques, reporting of the results, lack of appropriate clinical trial designs, and unknown economic impact. One of the aims of the ISLB is to create recommendations to develop reliable and sustainable diagnostic, prognostic and predictive tools using LBs. This paper is addressing these objectives, helping the healthcare providers and scientific community to understand the potential of LB.
Collapse
Affiliation(s)
- Christian Rolfo
- Thoracic Oncology Department and Early Phase Clinical Trials Section, School of Medicine, Maryland University, Maryland, USA.
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia; Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 710 N Fairbanks Court, Suite 8-250A, Chicago, IL, 60611, USA
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Universidad Complutense and CIBERONC, Madrid, Spain
| | - Juan Jose Diaz Mochon
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain; GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
| | - Ignacio Duran
- Servicio de Oncologia Medica, Medical Oncology Department, Hospital Universitario Marques de Valdecilla, Edificio Sur, 2 Planta, Despacho 277, 39008, Santander, Spain
| | - Luis E Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Florida, USA
| | - Alessandro Russo
- Thoracic Oncology Department and Early Phase Clinical Trials Section, School of Medicine, Maryland University, Maryland, USA; Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Jose A Lorente
- Laboratory of Genetic Identification, Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071, Granada, Spain; Centre for Genomics and Oncological Research - GENYO, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; University of Navarra, Center for Applied Medical Research, Program of Solid Tumors, Pamplona, Navarra, Spain; Idisna, Navarra Institute for Health Research, Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Valencia General University Hospital, Valencia, Spain
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, & Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Tony Mok
- State Key Laboratory in Oncology in South China, Hong Kong, China
| | - María José Serrano
- Centre for Genomics and Oncological Research - GENYO, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain; Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Spain; Complejo Hospitalario Universitario Granada (CHUG), Department of Medical Oncology, University of Granada, Granada, Spain.
| | | |
Collapse
|
31
|
Murat K, Grüning B, Poterlowicz PW, Westgate G, Tobin DJ, Poterlowicz K. Ewastools: Infinium Human Methylation BeadChip pipeline for population epigenetics integrated into Galaxy. Gigascience 2020; 9:giaa049. [PMID: 32401319 PMCID: PMC7219210 DOI: 10.1093/gigascience/giaa049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Infinium Human Methylation BeadChip is an array platform for complex evaluation of DNA methylation at an individual CpG locus in the human genome based on Illumina's bead technology and is one of the most common techniques used in epigenome-wide association studies. Finding associations between epigenetic variation and phenotype is a significant challenge in biomedical research. The newest version, HumanMethylationEPIC, quantifies the DNA methylation level of 850,000 CpG sites, while the previous versions, HumanMethylation450 and HumanMethylation27, measured >450,000 and 27,000 loci, respectively. Although a number of bioinformatics tools have been developed to analyse this assay, they require some programming skills and experience in order to be usable. RESULTS We have developed a pipeline for the Galaxy platform for those without experience aimed at DNA methylation analysis using the Infinium Human Methylation BeadChip. Our tool is integrated into Galaxy (http://galaxyproject.org), a web-based platform. This allows users to analyse data from the Infinium Human Methylation BeadChip in the easiest possible way. CONCLUSIONS The pipeline provides a group of integrated analytical methods wrapped into an easy-to-use interface. Our tool is available from the Galaxy ToolShed, GitHub repository, and also as a Docker image. The aim of this project is to make Infinium Human Methylation BeadChip analysis more flexible and accessible to everyone.
Collapse
Affiliation(s)
- Katarzyna Murat
- Center for Skin Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Björn Grüning
- Freiburg Galaxy Team, University of Freiburg, Fahnenbergplatz, 79085 Freiburg im Breisgau, Germany
| | | | - Gillian Westgate
- Center for Skin Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Desmond J Tobin
- The Charles Institute for Dermatology, Belfield, School of Medicine, University College Dublin, Ireland
| | - Krzysztof Poterlowicz
- Center for Skin Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| |
Collapse
|
32
|
Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. SENSORS INTERNATIONAL 2020; 1:100034. [PMID: 34766041 PMCID: PMC7434487 DOI: 10.1016/j.sintl.2020.100034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
DNA carries important genetic instructions and plays vital roles in regulating biological activities in living cells. Proteins such as transcription factors binds to DNA to regulate the biological functions of DNA, and similarly many drug molecules also bind to DNA to modulate its functions. Due to the importance of protein-DNA and drug-DNA binding, there has been intense effort in developing novel nanosensors in the same length scale as DNA, to effectively study these binding interactions in details. In addition, aptamers can be artificially selected to detect metal ions and pathogens such as bacteria and viruses, making nucleic acid nanosensors more versatile in detecting a large variety of analytes. In this minireview, we first explained the different types and binding modes of protein-DNA and drug-DNA interactions in the biological systems, as well as aptamer-target binding. This was followed by the review of five types of nucleic acid nanosensors based on optical or electrochemical detection. The five types of nucleic acid nanosensors utilizing colorimetric, dynamic light scattering (DLS), surface-enhanced Raman spectroscopy (SERS), fluorescence and electrochemical detections have been recently developed to tackle some of the challenges in high-throughput screening technology for large scale analysis, which is especially useful for drug development and mass screening for pandemic outbreak such as SARS or COVID-19.
Collapse
|
33
|
Thakur GK, Sharma T, Krishna Latha T, Banerjee BD, Shah HK, Guleria K. High Resolution Based Quantitative Determination of Methylation Status of CDH1 and VIM Gene in Epithelial Ovarian Cancer. Asian Pac J Cancer Prev 2019; 20:2923-2928. [PMID: 31653136 PMCID: PMC6982649 DOI: 10.31557/apjcp.2019.20.10.2923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND DNA promoter methylation is widely explored epigenetic phenomena, known to effect gene expression and further perturbation in cellular homeostasis. Myriad of studies have leveraged promoter methylation and its potential as biomarker for various types of cancer. Aim of present study is to investigate promoter methylation of CDH1 and VIM gene and etiology of epithelial ovarian cancer (EOC). METHODS Most of previous studies were qualitative; we have quantitatively assessed methylation levels in 50 EOC cases and control each through high recognition melt (HRM) technique. RESULTS At 10 % cutoff for CDH1 94% of EOC cases were found to be methylated with mean methylation of 45±13.8, whereas for control mean methylation was found to be 7.3±3.7 amongst 16 % methylation positive control samples. For VIM methylation was detected in 96% of cases with mean of 50.44±11.7 in EOC and in 12% methylation positive samples for control mean methylation was 6.24±4.3. CONCLUSION In short HRM based DNA methylation can serve as a robust and sensitive diagnostic method for promoter methylation detection and as a biomarker for early epithelial ovarian cancer detection.
Collapse
Affiliation(s)
- Gaurav Kr Thakur
- Environmental and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| | - Tusha Sharma
- Environmental and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| | - T Krishna Latha
- Environmental and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| | - B D Banerjee
- Environmental and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| | - Harendra Kr Shah
- Environmental and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| | - Kiran Guleria
- Department of Obst and Gynae, University College of Medical Sciences (Delhi University) and GTB Hospital, Dilshad Garden, Delhi, India
| |
Collapse
|
34
|
Ribeiro Ferreira I, Darleans Dos Santos Cunha W, Henrique Ferreira Gomes L, Azevedo Cintra H, Lopes Cabral Guimarães Fonseca L, Ferreira Bastos E, Clinton Llerena J, Farias Meira de Vasconcelos Z, da Cunha Guida L. A rapid and accurate methylation-sensitive high-resolution melting analysis assay for the diagnosis of Prader Willi and Angelman patients. Mol Genet Genomic Med 2019; 7:e637. [PMID: 31033246 PMCID: PMC6565559 DOI: 10.1002/mgg3.637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background Prader Willi (PWS) and Angelman (AS) syndromes are rare genetic disorders characterized by deletions, uniparental disomy, and imprinting defects at chromosome 15. The loss of function of specific genes caused by genetic alterations in paternal allele causes PWS while the absence in maternal allele results AS. The laboratory diagnosis of PWS and AS is complex and demands molecular biology and cytogenetics techniques to identify the genetic mechanism related to the development of the disease. The DNA methylation analysis in chromosome 15 at the SNURF‐SNRPN locus through MS‐PCR confirms the diagnosis and distinguishes between PWS and AS. Our study aimed to establish the MS‐PCR technique associated with High‐Resolution Melting (MS‐HRM) in PWS and AS diagnostic with a single pair of primers. Methods We collected blood samples from 43 suspected patients to a cytogenetic and methylation analysis. The extracted DNA was treated with bisulfite to perform comparative methylation analysis. Results MS‐HRM and MS‐PCR agreed in 100% of cases, identifying 19(44%) PWS, 3(7%) AS, and 21(49%) Normal. FISH analysis detected four cases of PWS caused by deletions in chromosome 15. Conclusion The MS‐HRM showed good performance with a unique pair of primers, dispensing electrophoresis gel analysis, offering a quick and reproducible diagnostic.
Collapse
Affiliation(s)
- Igor Ribeiro Ferreira
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Wilton Darleans Dos Santos Cunha
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Hiago Azevedo Cintra
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Elenice Ferreira Bastos
- Departamento de Genética, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Juan Clinton Llerena
- Departamento de Genética, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Letícia da Cunha Guida
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Menschikowski M, Jandeck C, Friedemann M, Nacke B, Hantsche S, Tiebel O, Sukocheva O, Hagelgans A. Identification of rare levels of methylated tumor DNA fragments using an optimized bias based pre-amplification-digital droplet PCR (OBBPA-ddPCR). Oncotarget 2018; 9:36137-36150. [PMID: 30546833 PMCID: PMC6281424 DOI: 10.18632/oncotarget.26315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The analysis of aberrant DNA methylations is used for the diagnosis of cancer as significant changes in the gene methylation pattern are often detected during early carcinogenesis. In this study, we evaluated the performance of a two-step method that combines pre-amplification with ddPCR technique. RESULTS By using ddPCR, the dependence of amplification efficiency for methylated and unmethylated DNA fragments on the relevant MgCl2 concentration and the annealing temperature was established in addition to the primer design. We found that the efficiency can be adjusted toward methylated sequences by using primers covering one to four CpG sites under appropriately selected MgCl2 concentration and annealing temperature. Applying a PCR bias between 85% and 95%, five copies of methylated tumor DNA fragments were detected against a background of 700,000 copies of unmethylated DNA fragments with a high signal-to-noise ratio. The analysis of serum samples from patients with prostate cancer showed a significantly improved performance of the new method in comparison with the MS-HRM technique, ddPCR alone, or ddPCR in combination with an unbiased pre-amplification using methylation-independent primers. CONCLUSIONS We define this method as an optimized bias-based pre-amplification-digital droplet PCR (OBBPA-ddPCR) technique. This novel method is recommended for the early detection of cancer-specific DNA methylation biomarkers in the form of a liquid biopsy.
Collapse
Affiliation(s)
- Mario Menschikowski
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Carsten Jandeck
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Markus Friedemann
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Brit Nacke
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Saskia Hantsche
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Oliver Tiebel
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Olga Sukocheva
- 2 School of Health Sciences, Flinders University of South Australia, Adelaide, Australia
| | - Albert Hagelgans
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
36
|
Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA, Cheng WF. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics 2018; 10:1397-1413. [PMID: 30324802 DOI: 10.2217/epi-2018-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the CDH1, DLEC1 and SFRP5 gene methylation panel for advanced epithelial ovarian carcinoma (EOC). MATERIALS & METHODS One hundred and seventy-seven advanced EOC specimens were evaluated by methylation-specific PCR. We also used The Cancer Genome Atlas dataset to evaluate the panel. RESULTS The presence of two or more methylated genes was significant in recurrence (hazard ratio [HR]: 1.91 [1.33-2.76]; p = 0.002) and death (HR: 1.96 [1.26-3.06]; p = 0.006) in our cohort. In The Cancer Genome Atlas dataset, the presence of two or three methylated genes was significant in death (HR: 1.59 [1.15-2.18]; p = 0.0047) and close to the significance level in recurrence (HR: 1.37 [0.99-1.88]; p = 0.058). CONCLUSION The CDH1, DLEC1 and SFRP5 methylation panel is a potential prognostic biomarker for advanced EOC.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Chi-Feng Fu
- Department of Obstetrics & Gynecology, E-da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan 32546, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
37
|
Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J 2018; 16:370-378. [PMID: 30364656 PMCID: PMC6197739 DOI: 10.1016/j.csbj.2018.10.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
Precision medicine in the clinical management of cancer may be achieved through the diagnostic platform called “liquid biopsy”. This method utilizes the detection of biomarkers in blood for prognostic and predictive purposes. One of the latest blood born markers under investigation in the field of liquid biopsy in cancer patients is circulating tumor DNA (ctDNA). ctDNA is released by tumor cells through different mechanisms and can therefore provide information about the genomic make-up of the tumor currently present in the patient. Through longitudinal ctDNA-based liquid biopsies, tumor dynamics may be monitored to predict and assess drug response and/or resistance. However, because ctDNA is highly fragmented and because its concentration can be extremely low in a high background of normal circulating DNA, screening for clinical relevant mutations is challenging. Although significant progress has been made in advancing the detection and analysis of ctDNA in the last few years, the current challenges include standardization and increasing current techniques to single molecule sensitivity in combination with perfect specificity. This review focuses on the potential role of ctDNA in the clinical management of cancer patients, the current technologies that are being employed, and the hurdles that still need to be taken to achieve ctDNA-based liquid biopsy towards precision medicine.
Collapse
Affiliation(s)
- Maha Elazezy
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Simon A Joosse
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
38
|
Fujita K, Hashimoto M. Separation-free single-base extension assay with fluorescence resonance energy transfer for rapid and convenient determination of DNA methylation status at specific cytosine and guanine dinucleotide sites. Electrophoresis 2018; 40:281-288. [PMID: 30280389 DOI: 10.1002/elps.201800144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/15/2018] [Accepted: 09/29/2018] [Indexed: 11/08/2022]
Abstract
A separation-free single-base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele-specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5'-end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite-converted genomic DNA, and a DNA polymerase. A single base-extended primer (i.e., SBE product) that was 5'-Cy3- and 3'-Cy5-tagged was formed by incorporation of the Cy5-labeled terminator into the 3'-end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.
Collapse
Affiliation(s)
- Keisuke Fujita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
39
|
Long-term effects of H. pylori eradication on epigenetic alterations related to gastric carcinogenesis. Sci Rep 2018; 8:14369. [PMID: 30254207 PMCID: PMC6156585 DOI: 10.1038/s41598-018-32717-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The risk of gastric cancer (GC) remains in precancerous conditions, including atrophic mucosa and intestinal mucosa (IM), even after H. pylori treatment. To define the molecular changes following H. pylori eradication, molecular alterations in the gastric mucosa with and without GC were evaluated in a long-term follow-up study. A total of 232 biopsy specimens from 78 consecutive patients, including atrophic gastritis patients with follow-up ≥3 y after successful H. pylori eradication (AG group), patients who developed early GC after successful eradication (≥3 y) (GC group), and patients with H. pylori-positive atrophic gastritis (Hp group), were analyzed. H. pylori eradication was associated with significant reductions of methylation of several genes/loci in atrophic mucosa (non-IM), but not in IM. In contrast, the incidence of CpG island methylator phenotype (CIMP) in IM was significantly higher in the GC group than in the AG group. miR-124a-3 methylation and miR-34c methylation were more frequently identified in IM, with very few in non-IM mucosa among the three groups. H. pylori eradication can reverse methylation only in non-IM mucosa. CIMP in IM may have potential as a surrogate maker of GC development, and methylation of miR-124a-3 and miR-34c is a molecular event in IM that may not be associated with GC development.
Collapse
|
40
|
Vu TL, Nguyen TT, Doan VTH, Vo LTT. Methylation Profiles of BRCA1, RASSF1A and GSTP1 in Vietnamese Women with Breast Cancer. Asian Pac J Cancer Prev 2018; 19:1887-1893. [PMID: 30049201 PMCID: PMC6165660 DOI: 10.22034/apjcp.2018.19.7.1887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: This study investigated the DNA promoter methylation profiles of BRCA1, RASSF1A and GSTP1 genes, both individually and in an integrative manner in order to clarify their correlation with clinicopathological parameters of breast cancer from Vietnamese patients, and establish new potential integrative methylation biomarkers for breast cancer detection. Material and methods: The methylation frequencies of BRCA1, RASSF1A and GSTP1 were analyzed by methylation specific polymerase chain reaction (MSP) in 70 specimens of breast carcinomas and 79 pairs of tumor and matched adjacent normal tissues from breast cancer patients. Results: All the three analyzed genes showed a concordance concerning their promoter methylation in tumor and adjacent normal tissue. The methylation of BRCA1, RASSF1A and GSTP1 was found in 58.23 %, 74.68 % and 59.49 % of tumor tissues and 51.90 %, 63.29 % and 35.44 % of corresponding adjacent tissues, respectively. When each gene was assessed individually, only the methylation of GSTP1 was significantly associated with tumor tissues (p=0.003). However, the methylation frequency of at least one of the three genes and the methylation frequency of all the three genes both showed significant association with tumor (p=0.008 and p=0.04, respectively). The methylation of BRCA1 was found to be significantly associated with tumor grade (p=0.01). Conclusion: This study emphasized that the panel of the three genes BRCA1, RASSF1A and GSTP1 can be further developed as potential biomarkers in diagnosis and classification of breast cancer in Vietnamese women.
Collapse
Affiliation(s)
- Trang Lan Vu
- Sorbonne University, UPMC Univ. Paris 06, École Normale Supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Paris, France.
| | | | | | | |
Collapse
|
41
|
A prospective study on the predictive value of DNA methylation in cervical intraepithelial neoplasia prognosis. Arch Gynecol Obstet 2018; 298:589-596. [PMID: 29971561 DOI: 10.1007/s00404-018-4796-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To study the predictive value of the DNA methylation levels of JAM3, SOX1, SLIT2, C13ORF18, and TERT in the cervical intraepithelial neoplasia prognosis. METHOD In the present study, 139 cases were collected and followed up for 24 months. The DNA methylation levels of JAM3, SOX1, SLIT2, C13ORF18, and TERT were tested from their exfoliated cells. One-way ANOVA, receiver operating characteristic (ROC) curve analyses were conducted to analyze the data. RESULTS The DNA methylation of the five genes was associated with prognosis of CIN. The levels of methylation increased as the progression of lesion for the prognosis. For CIN1, difference between DNA methylation of JAM3, SOX1, SLIT2, and C13ORF18 had significance statistically (P < 0.001). Sensitivity (95.2%) and specificity (93.1%) of JAM3 were the highest compared with other genes for the prognosis of CIN1. In addition, for CIN2/3, DNA methylation of JAM3, SOX1, SLIT2, TERT, and C13ORF18 had difference statistically (P < 0.001). JAM3 were also the highest in sensitivity (95.2%) and specificity (93.1%) compared with other genes for the prognosis of CIN2/3. CONCLUSIONS Our data suggest for the first time that DNA methylation levels are associated with prognosis of CIN significantly. DNA methylation levels of some genes, especially JAM3, may serve as markers for the prediction of the CIN prognosis, including CIN1 nature prognosis and CIN2/3 after treatment.
Collapse
|
42
|
Lan VTT, Son HV, Trang VL, Trang NT, Phuong NT, Toan NL, Duong PAT. Methylation profiles of miR34 gene family in Vietnamese patients suffering from breast and lung cancers. Mol Med Rep 2018; 18:2476-2484. [PMID: 29916548 DOI: 10.3892/mmr.2018.9182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/03/2018] [Indexed: 11/05/2022] Open
Abstract
The three genes encoding small non‑coding microRNA (miR)34a, MIR34b and MIR34c act as tumor‑suppressor genes. Their aberrant expressions regulated by DNA methylation have been frequently found in various types of cancer. In the present study, the DNA promoter methylation profiles of the MIR34 gene family were analyzed using the methylation specific polymerase chain reaction in order to clarify their association with breast and lung cancer, non‑cancerous or normal adjacent tissues. The methylation frequency of MIR34a was significantly higher in breast cancer (49.37%) compared with normal adjacent tissues (30.38%). The methylation frequency of MIR34b/c was 59.49 and 62.03% in breast cancer and normal adjacent tissues, respectively. MIR34a methylation showed a significant concordance with that of MIR34b/c only in breast cancer tissue. MIR34a methylation was significantly associated with cancer and the invasive ductal carcinoma type of breast cancer (P=0.015 and P=0.02, respectively). Methylation frequency of MIR34a and MIR34b/c was 48.42 and 56.84% in lung cancer, and 47.22 and 51.39% in pulmonary diseases, respectively. No significant association was observed between the methylation status of MIR34a and MIR34b/c, and the clinicopathological features of lung cancer or with those of non‑cancerous pulmonary diseases. Promoter methylation of MIR34a and MIR34b/c occurs frequently and concomitantly in breast and lung cancer, as well as in pulmonary diseases tissues, but not in breast normal tissues adjacent to tumor. These results of the present study emphasize the involvement of MIR34 methylation in human diseases, including cancer. Furthermore, MIR34a methylation may be a promising marker for a subtype of breast cancer.
Collapse
Affiliation(s)
| | - Ho Van Son
- Department of Pathophysiology, 175 Hospital, Ho Chi Minh, Vietnam
| | - Vu Lan Trang
- Laboratoire des Biomolécules, Sorbonne Universités, Université Pierre et Marie Curie University Paris 06, École Normale Supérieure, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, Institut National de la Santé Et de la Recherche Médicale, Assistance Publique Hôpitaux de Paris, 75012 Paris, France
| | | | | | - Nguyen Linh Toan
- Department of Pathophysiology, Medical University, Ha Dong, Vietnam
| | - Pham Anh Thuy Duong
- Department of Gene Technology, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| |
Collapse
|
43
|
Wilting SM, Miok V, Jaspers A, Boon D, Sørgård H, Lando M, Snoek BC, van Wieringen WN, Meijer CJLM, Lyng H, Snijders PJF, Steenbergen RDM. Aberrant methylation-mediated silencing of microRNAs contributes to HPV-induced anchorage independence. Oncotarget 2018; 7:43805-43819. [PMID: 27270309 PMCID: PMC5190061 DOI: 10.18632/oncotarget.9698] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer and a subset of anogenital and head-and-neck carcinomas are caused by high-risk types of the human papillomavirus (hrHPV). During hrHPV-induced malignant transformation keratinocytes become able to grow anchorage independently, a tumorigenic trait at least partly associated with inactivation of tumor suppressor genes. We used hrHPV-containing keratinocytes to investigate the role of DNA methylation-mediated silencing of microRNAs (miRNAs) in the acquisition of anchorage independence. Anchorage dependent (n=11) and independent passages (n=19) of 4 hrHPV-immortalized keratinocyte cell lines were treated with 2′-deoxy-5-azacytidine (DAC). Genome-wide miRNA expression profiles before and after treatment were compared to identify miRNAs silenced by methylation. Bisulfite sequencing and methylation-specific PCR showed increased methylation of hsa-mir-129-2/-137/-935/-3663/-3665 and -4281 in anchorage independent HPV-transformed keratinocytes and cervical cancer cell lines. Mature miRNAs derived from hsa-mir-129-2/-137/-3663 and -3665 showed functional relevance as they decreased anchorage independence in cervical cancer cell lines. Cervical (pre)cancerous lesions demonstrated increased methylation of hsa-mir-129-2/-935/-3663/-3665 and -4281, underlining the clinical relevance of our findings. In conclusion, methylation-mediated silencing of tumor suppressive miRNAs contributes to acquisition of an anchorage independent phenotype. This study further substantiates the importance of miRNAs during early stages of carcinogenesis and underlines their potential as both disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Saskia M Wilting
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Viktorian Miok
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annelieke Jaspers
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Debby Boon
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanne Sørgård
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Malin Lando
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Barbara C Snoek
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wessel N van Wieringen
- Department of Epidemiology & Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Chris J L M Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter J F Snijders
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Choudhury JH, Das R, Laskar S, Kundu S, Kumar M, Das PP, Choudhury Y, Mondal R, Ghosh SK. Detection of p16 Promoter Hypermethylation by Methylation-Specific PCR. Methods Mol Biol 2018; 1726:111-122. [PMID: 29468548 DOI: 10.1007/978-1-4939-7565-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA methylation plays a decisive role in the regulation and control of gene expression. DNA methylation is a covalent modification, in which a methyl group is attached to the 5th carbon of the cytosine ring of a CpG dinucleotide that is located upstream from the promoter region of a gene. Promoter hypermethylation (gain of DNA methylation) of the p16 gene may cause silencing of gene expression and plays an important role in cancer. Therefore, detection of the methylation status of p16 gene is an important tool in epigenetic studies of various human cancers. The methylation-specific PCR (MSP) is the most commonly used technique for studying DNA methylation. This technique is based on bisulfite modification of DNA, which converts unmethylated cytosine (C) into uracil (U) and leaving methylated cytosine (Cm) unchanged. Here we describe the bisulfite modification of DNA samples and detection of promoter methylation of p16 gene from bisulfite-treated DNA using MSP. In MSP, modified DNA samples are subjected to PCR amplification using methylated and unmethylated specific primers for the p16 gene separately. The PCR amplified products are then analyzed in a 2.5-3% agarose gel containing ethidium bromide. The PCR amplified band generated by specific sets of primers is used to determine the methylation status of the p16 gene.
Collapse
Affiliation(s)
- Javed Hussain Choudhury
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Raima Das
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Shaheen Laskar
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Manish Kumar
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Partha Pratim Das
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Yashmin Choudhury
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Rosy Mondal
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India.
- University of Kalyani, Kalyani, West Bengal, India.
| |
Collapse
|
45
|
Wu HC, Yang HI, Wang Q, Chen CJ, Santella RM. Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population. Carcinogenesis 2017; 38:1021-1028. [PMID: 28981677 PMCID: PMC5862336 DOI: 10.1093/carcin/bgx078] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
Metastases in the later stages of hepatocellular carcinoma (HCC) cause the majority of deaths associated with the disease, making early detection crucial to patient survival. Risk models assessing HCC risk in the general population can be used for risk stratification for further HCC surveillance, however, none have been validated externally. Methylation of circulating DNA shows potential for non-invasive diagnosis of HCC. We conducted a prospective case-control study nested within a community-based cohort. We measured methylation levels in six genes (CDKN2A, RASSF1A, STEAP4, TBX2, VIM and ZNF154) which were identified in our previous work, using pre-diagnostic plasma DNA from 237 HCC cases and 257 matched controls. We found TBX2 hypermethylation was associated with increased HCC risk, with ORs (95% CI) of 3.2 (1.8-6.0). The associations were mainly among high-risk subjects; among subjects infected with HBV/HCV, the OR (95% CI) of TBX2 methylation was 5.3 (2.2-12.7). Among subjects with high risk scores, the ORs (95% CIs) were 7.8 (1.5-38.6) for Wen-HCC model ≥16, 5.8 (2.2-15.5) for Hung-HCC ≥15 and 7.5 (2.2-26.0) for Michikawa-HCC ≥8. Adding TBX2 methylation improved the accuracy of risk models for a high-risk population, with the area under the curve (AUC) of 76% for Wen-HCC score with TBX2 methylation compared with 69% with Wen-HCC alone. The AUCs were 63% for Hung-HCC score plus TBX2 methylation, and 53% for Hung-HCC alone, 65% for Michikawa-HCC score plus TBX2 methylation and 58% for Michikawa-HCC alone. Our findings suggest the potential increase in risk assessment discrimination and accuracy from incorporation of DNA methylation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 112, Taiwan and
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,USA
| |
Collapse
|
46
|
Chae YK, Arya A, Chiec L, Shah H, Rosenberg A, Patel S, Raparia K, Choi J, Wainwright DA, Villaflor V, Cristofanilli M, Giles F. Challenges and future of biomarker tests in the era of precision oncology: Can we rely on immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) to select the optimal patients for matched therapy? Oncotarget 2017; 8:100863-100898. [PMID: 29246028 PMCID: PMC5725070 DOI: 10.18632/oncotarget.19809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Molecular techniques have improved our understanding of the pathogenesis of cancer development. These techniques have also fueled the rational development of targeted drugs for patient populations stratified by their genetic characteristics. These novel methods have changed the classic paradigm of diagnostic pathology; among them are IHC, FISH, polymerase chain reaction (PCR) and microarray technology. IHC and FISH detection methods for human epidermal growth factor receptor-2 (HER2), epidermal growth factor receptor (EGFR) and programmed death ligand-1 (PD-L1) were recently approved by the Food and Drug Administration (FDA) as routine clinical practice for cancer patients. Here, we discuss general challenges related to the predictive power of these molecular biomarkers for targeted therapy in cancer medicine. We will also discuss the prospects of utilizing new biomarkers for fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (cMET/MET) targeted therapies for developing new and robust predictive biomarkers in oncology.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ayush Arya
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Lauren Chiec
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Hiral Shah
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Ari Rosenberg
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Sandip Patel
- University of California San Diego, San Diego, CA, USA
| | - Kirtee Raparia
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A Wainwright
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
47
|
Nielsen HM, Andersen CL, Westman M, Kristensen LS, Asmar F, Kruse TA, Thomassen M, Larsen TS, Skov V, Hansen LL, Bjerrum OW, Hasselbalch HC, Punj V, Grønbæk K. Epigenetic changes in myelofibrosis: Distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations. Sci Rep 2017; 7:6774. [PMID: 28754985 PMCID: PMC5533802 DOI: 10.1038/s41598-017-07057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
This is the first study to compare genome-wide DNA methylation profiles of sorted blood cells from myelofibrosis (MF) patients and healthy controls. We found that differentially methylated CpG sites located to genes involved in 'cancer' and 'embryonic development' in MF CD34+ cells, in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation pattern using an unsupervised approach. However, in a supervised analysis of ASXL1 mutated versus wild-type cases, differentially methylated CpG sites were enriched in regions marked by histone H3K4me1, histone H3K27me3, and the bivalent histone mark H3K27me3 + H3K4me3 in human CD34+ cells. Hypermethylation of selected CpG sites was confirmed in a separate validation cohort of 30 MF patients by pyrosequencing. Altogether, we show that individual MF cell populations have distinct differentially methylated genes relative to their normal counterparts, which likely contribute to the phenotypic characteristics of MF. Furthermore, differentially methylated CpG sites in ASXL1 mutated MF cases are found in regulatory regions that could be associated with aberrant gene expression of ASXL1 target genes.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christen Lykkegaard Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Maj Westman
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Arvid Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | | | - Ole Weis Bjerrum
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Vasu Punj
- Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. .,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Wedge E, Hansen JW, Garde C, Asmar F, Tholstrup D, Kristensen SS, Munch-Petersen HD, Ralfkiaer E, Brown P, Grønbaek K, Kristensen LS. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol 2017; 92:689-694. [PMID: 28378885 DOI: 10.1002/ajh.24751] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Global hypomethylation has been linked to disease progression in several cancers, but has not been reported for Diffuse Large B Cell Lymphoma (DLBCL). This study aimed to assess global methylation in DLBCL and describe its prognostic value. Mean LINE1 methylation, a validated surrogate measure for global methylation, was measured in DNA from 67 tumor biopsies. Additionally, cell-free circulating DNA (cfDNA) in plasma samples from 74 patients was tested to assess the feasibility of global hypomethylation as a biomarker in liquid biopsies. LINE1 methylation was assessed using a commercially available kit, based on pyrosequencing of PCR amplified bisulfite-treated DNA. Global hypomethylation was detected in a subset of cases and was associated with poor overall survival in both tumor biopsies (P = .001) and cfDNA (P = .009). It was the strongest risk factor in multivariate analysis in both biopsies (HR: 10.65, CI: 2.03-55.81, P = .005) and cfDNA (HR: 11.87, CI: 2.80-50.20, P = .001), outperforming conventional clinical risk factors. Finally, hierarchical cluster analyses were performed for the cfDNA samples using previously published gene-specific methylation data. This analysis shows that global hypomethylation co-occurs with other epigenetic abnormalities, including DAPK1 promoter hypermethylation. In conclusion, we have shown that global hypomethylation is strongly associated with poor survival in DLBCL both when present in tumor biopsy DNA and when detected in plasma cfDNA, and has potential for clinical application as a prognostic biomarker.
Collapse
Affiliation(s)
- Eileen Wedge
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
| | | | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen
| | - Fazila Asmar
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
| | - Dorte Tholstrup
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
| | | | - Helga D. Munch-Petersen
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
- Department of Pathology; Rigshospitalet; Copenhagen Denmark
| | | | - Peter Brown
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
| | | | - Lasse Sommer Kristensen
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus Denmark
| |
Collapse
|
49
|
Krejcova L, Richtera L, Hynek D, Labuda J, Adam V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens Bioelectron 2017. [PMID: 28641203 DOI: 10.1016/j.bios.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, CZ-166 28 Prague, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Jan Labuda
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
50
|
Daugaard I, Knudsen A, Kjeldsen TE, Hager H, Hansen LL. The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Exp Mol Pathol 2017; 102:484-491. [PMID: 28512015 DOI: 10.1016/j.yexmp.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022]
Abstract
Lung cancer has the highest mortality rate amongst human cancers and the majority of deaths can be attributed to metastatic spread. The miR-34 family includes three tumor suppressive miRs: miR-34a, miR-34b and miR-34c. miR-34 downregulation is a frequent observation in human malignancies and is often attributed to hypermethylation of the miR-34a and miR-34b/c promoters. Here, the potential association between aberrant miR-34 expression and promoter methylation and distant metastases formation in lung adenocarcinoma (LAC) is investigated. The expression levels of miR-34a, miR-34b and miR-34c, as well as the methylation status of the miR-34a and miR-34b/c promoters were determined in a LAC patient cohort comprising 26 non-metastasizing and 26 metastasizing primary LACs, as well as 24 paired distant metastases and 25 tumor-adjacent normal lung samples using RT-qPCR and Methylation-Sensitive High Resolution Melting (MS-HRM) analysis. No difference in expression was observed for miR-34a when comparing metastasizing and non-metastasizing LACs (p=0.793). For both miR-34b and miR-34c, a significantly lower expression level was determined in metastasizing LACs compared to non-metastasizing LACs (p=0.0005 and p=0.002) with similarly decreased expression levels observed in the paired distant metastases. Hypermethylation was detected in 35/51 LACs compared to 0/25 tumor-adjacent normal lungs for the miR-34a promoter (p<0.0001). Similarly, 18/51 LACs compared to 1/25 tumor-adjacent normal lungs showed hypermethylation of the miR-34b/c promoter (p=0.003). No difference in methylation was observed between metastasizing and non-metastasizing LACs for neither the miR-34a (p=0.832) nor the miR-34b/c (p=0.900) promoter. In conclusion, miR-34a and miR-34b/c promoter hypermethylation is a frequent event in LAC occurring in 68.7% and 35.3% of tested cases (n=51), respectively. Low miR-34b and miR-34c expression was associated with distant metastases formation in LAC. These changes can be targeted as novel biomarkers in LAC.
Collapse
Affiliation(s)
- Iben Daugaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark.
| | - Alice Knudsen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Tina E Kjeldsen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Nørrebrogade 45, DK-8000 Aarhus C, Denmark; Department of Clinical Pathology, Vejle Hospital, Kabbeltoft 25, DK-7100 Vejle, Denmark
| | - Lise Lotte Hansen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus C, Denmark
| |
Collapse
|