1
|
He J, Hou S, Xiong C, Hu L, Gong L, Yu J, Zhou X, Chen Q, Yuan Y, He L, Zhu M, Li W, Shi Y, Sun Y, Pan H, Su B, Lu Y, Wu J. Avian influenza A virus H7N9 in China, a role reversal from reassortment receptor to the donator. J Med Virol 2023; 95:e28392. [PMID: 36484390 DOI: 10.1002/jmv.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.
Collapse
Affiliation(s)
- Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chenglong Xiong
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Linjie Hu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Junling Yu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qingqing Chen
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Meng Zhu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Weiwei Li
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yonglin Shi
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Sun
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Haifeng Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Wu X, Xiao L, Li L. Research progress on human infection with avian influenza H7N9. Front Med 2020; 14:8-20. [PMID: 31989396 PMCID: PMC7101792 DOI: 10.1007/s11684-020-0739-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2–6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.
Collapse
Affiliation(s)
- Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. J Virol 2015. [PMID: 26202239 DOI: 10.1128/jvi.01444-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 μm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored "intrahost" and "interhost" adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. IMPORTANCE We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host determinant PB2 residue 627, we observed that both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Chicken-to-ferret transmission via the airborne route was observed, along with the detection of viral genome in the air at low copy numbers. In ferrets, HK3263 transmitted more efficiently than SCk1772 via direct contact. During the transmission of SCk1772 that contained E and HK3263 that contained V/K/E polymorphism at PB2 residue 627, positive selections of E627 and K627 were observed in chickens and ferrets, respectively. In addition, PB2-V627 was transmitted and stably maintained in both avian and mammalian species. Our results support applying intervention strategies that minimize direct and indirect contact at the poultry markets during epidemics.
Collapse
|
7
|
Fan J, Cui D, Lau S, Xie G, Guo X, Zheng S, Huang X, Yang S, Yang X, Huo Z, Yu F, Lou J, Tian L, Li X, Dong Y, Zhu Q, Chen Y. Detection of a novel avian influenza A (H7N9) virus in humans by multiplex one-step real-time RT-PCR assay. BMC Infect Dis 2014; 14:541. [PMID: 25298249 PMCID: PMC4286936 DOI: 10.1186/1471-2334-14-541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A novel avian influenza A (H7N9) virus emerged in eastern China in February 2013. 413 confirmed human cases, including 157 deaths, have been recorded as of July 31, 2014. METHODS Clinical specimens, including throat swabs, sputum or tracheal aspirates, etc., were obtained from patients exhibiting influenza-like illness (ILIs), especially from those having pneumonia and a history of occupational exposure to poultry and wild birds. RNA was extracted from these samples and a multiplex one-step real-time RT-PCR assay was developed to specifically detect the influenza A virus (FluA). PCR primers targeted the conserved M and Rnase P (RP) genes, as well as the hemagglutinin and neuraminidase genes of the H7N9 virus. RESULTS The multiplex assay specifically detected the avian H7N9 virus, and no cross-reaction with other common respiratory pathogens was observed. The detection limit of the assay was approximately 0.05 50% tissue culture infective doses (TCID50), or 100 copies per reaction. Positive detection of the H7N9 virus in sputum/tracheal aspirates was higher than in throat swabs during the surveillance of patients with ILIs. Additionally, detection of the matrix (M) and Rnase P genes aided in the determination of the novel avian H7N9 virus and ensured the quality of the clinical samples. CONCLUSIONS These results demonstrate that the multiplex assay detected the novel avian H7N9 virus with high specificity and sensitivity, which is essential for the early diagnosis and treatment of infected patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
8
|
Nakauchi M, Takayama I, Takahashi H, Tashiro M, Kageyama T. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid diagnosis of avian influenza A (H7N9) virus infection. J Virol Methods 2014; 204:101-4. [PMID: 24747008 DOI: 10.1016/j.jviromet.2014.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 02/05/2023]
Abstract
A genetic diagnosis system for detecting avian influenza A (H7N9) virus infection using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) technology was developed. The RT-LAMP assay showed no cross-reactivity with seasonal influenza A (H3N2 and H1N1pdm09) or influenza B viruses circulating in humans or with avian influenza A (H5N1) viruses. The sensitivity of the RT-LAMP assay was 42.47 copies/reaction. Considering the high specificity and sensitivity of the assay for detecting the avian influenza A (H7N9) virus and that the reaction was completed within 30 min, the RT-LAMP assay developed in this study is a promising rapid diagnostic tool for avian influenza A (H7N9) virus infection.
Collapse
Affiliation(s)
- Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
9
|
Kalthoff D, Bogs J, Harder T, Grund C, Pohlmann A, Beer M, Hoffmann B. Nucleic acid-based detection of influenza A virus subtypes H7 and N9 with a special emphasis on the avian H7N9 virus. ACTA ACUST UNITED AC 2014; 19. [PMID: 24650867 DOI: 10.2807/1560-7917.es2014.19.10.20731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 2013, a novel influenza A virus of subtype H7N9 was transmitted from avian sources to humans in China, causing severe illness and substantial mortality. Rapid and sensitive diagnostic approaches are the basis of epidemiological studies and of utmost importance for the detection of infected humans and animals. We developed various quantitative reverse transcriptase PCR (RT-qPCR) assays for (i) the generic detection of the haemagglutinin (HA) gene of H7 viruses or the neuraminidase (NA) gene of N9 viruses, and (ii) the specific detection of HA and NA of the novel avian H7N9/2013 virus. The sensitivity of the newly developed assays was compared with previously published PCRs, and the specificity of all RT-qPCRs was examined using a panel of 42 different H7 and 16 different N9 isolates. Furthermore, we analysed the performance of the RT-qPCR assays with dilution series and diagnostic samples obtained from animal experiments. Our study provides a comprehensive set of RT-qPCR assays for the reliable detection of the novel avian H7N9 virus, with high sensitivity and improved and tailored specificity values compared with published assays. Finally, we also present data about the robustness of a duplex assay for the simultaneous detection of HA and NA of the avian influenza H7N9/2013 virus.
Collapse
Affiliation(s)
- D Kalthoff
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of subtype H7N9 avian influenza virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:525064. [PMID: 24689044 PMCID: PMC3933526 DOI: 10.1155/2014/525064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022]
Abstract
A novel influenza A (H7N9) virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans). No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9) virus from different resource samples.
Collapse
|
12
|
Rapid and sensitive detection of H7N9 avian influenza virus by use of reverse transcription-loop-mediated isothermal amplification. J Clin Microbiol 2013; 51:3760-4. [PMID: 24006004 DOI: 10.1128/jcm.01907-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An epidemic of human H7N9 influenza virus infection recently emerged in China whose clinical features include high mortality and which has also resulted in serious economic loss. The novel reassortant avian-origin influenza A (H7N9) virus which was the causative agent of this epidemic raised the possibility of triggering a large-scale influenza pandemic worldwide. It seemed likely that fast molecular detection assays specific for this virus would be in great demand. Here, we report a one-step reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method for rapid detection of the hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 virus, the minimum detection limit of which was evaluated using in vitro RNA transcription templates. In total, 135 samples from clinical specimens (from either patients or poultry) were tested using this method in comparison with the real-time PCR recommended by the World Health Organization (WHO). Our results showed that (i) RT-LAMP-based trials can be completed in approximately 12 to 23 min and (ii) the detection limit for the H7 gene is around 10 copies per reaction, similar to that of the real-time PCR, whereas the detection limit for its counterpart the N9 gene is 5 copies per reaction, a 100-fold-higher sensitivity than the WHO-recommended method. Indeed, this excellent performance of our method was also validated by the results for a series of clinical specimens. Therefore, we believe that the simple, fast, and sensitive method of RT-LAMP might be widely applied for detection of H7N9 infections and may play a role in prevention of an influenza pandemic.
Collapse
|