1
|
Alshawsh M, Wake M, Gecz J, Corbett M, Saffery R, Pitt J, Greaves R, Williams K, Field M, Cheong J, Bui M, Arora S, Sadedin S, Lunke S, Wall M, Amor DJ, Godler DE. Epigenomic newborn screening for conditions with intellectual disability and autistic features in Australian newborns. Epigenomics 2024; 16:1203-1214. [PMID: 39365098 PMCID: PMC11487350 DOI: 10.1080/17501911.2024.2402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
This study describes a protocol to assess a novel workflow called Epi-Genomic Newborn Screening (EpiGNs) on 100,000 infants from the state of Victoria, Australia. The workflow uses a first-tier screening approach called methylation-specific quantitative melt analysis (MS-QMA), followed by second and third tier testing including targeted methylation and copy number variation analyzes with droplet digital PCR, EpiTYPER system and low-coverage whole genome sequencing. EpiGNs utilizes only two 3.2 mm newborn blood spot punches to screen for genetic conditions, including fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, Dup15q syndrome and sex chromosome aneuploidies. The program aims to: identify clinically actionable methylation screening thresholds for the first-tier screen and estimate prevalence for the conditions screened.
Collapse
Affiliation(s)
- Mohammed Alshawsh
- Department of Paediatrics, Monash University, Melbourne, VIC, 3168, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
| | - Melissa Wake
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Jozef Gecz
- Robinson Research Institute & Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Corbett
- Robinson Research Institute & Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - James Pitt
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
| | - Ronda Greaves
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Melbourne, VIC, 3168, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Jeanie Cheong
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Royal Women's Hospital, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Carlton, Australia
| | - Sheena Arora
- Centre for Health Economics Research & Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Meg Wall
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - David E Godler
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Baker EK, Arpone M, Bui M, Kraan CM, Ling L, Francis D, Hunter MF, Rogers C, Field MJ, Santa María L, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Tissue mosaicism, FMR1 expression and intellectual functioning in males with fragile X syndrome. Am J Med Genet A 2023; 191:357-369. [PMID: 36349505 PMCID: PMC10952635 DOI: 10.1002/ajmg.a.63027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome (FXS) is caused by hypermethylation of the FMR1 promoter due to the full mutation expansion (full mutation [FM]: CGG ≥ 200 repeats) and silencing of FMR1. Assessment of mosaicism for active-unmethylated alleles has prognostic utility. This study examined relationships between FMR1 methylation in different tissues with FMR1 messenger ribonucleic acid (mRNA) and intellectual functioning in 87 males with FXS (1.89-43.17 years of age). Methylation sensitive Southern blot (mSB) and Methylation Specific-Quantitative Melt Aanalysis (MS-QMA) were used to examine FMR1 methylation. FMR1 mRNA levels in blood showed strong relationships with FMR1 methylation assessed using MS-QMA in blood (n = 68; R2 = 0.597; p = 1.4 × 10-10 ) and buccal epithelial cells (BEC) (n = 62; R2 = 0.24; p = 0.003), with these measures also showing relationships with intellectual functioning scores (p < 0.01). However, these relationships were not as strong for mSB, with ~40% of males with only FM alleles that were 100% methylated and non-mosaic by mSB, showing methylation mosaicism by MS-QMA. This was confirmed through presence of detectable levels of FMR1 mRNA in blood. In summary, FMR1 methylation levels in blood and BEC examined by MS-QMA were significantly associated with FMR1 mRNA levels and intellectual functioning in males with FXS. These relationships were not as strong for mSB, which underestimated prevalence of mosaicism.
Collapse
Affiliation(s)
- Emma K. Baker
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychology and Public HealthLa Trobe UniversityBundooraVictoriaAustralia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Brain and Mind, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Claudine M. Kraan
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research InstituteThe Royal Children's HospitalMelbourneVictoriaAustralia
| | - Mathew F. Hunter
- Monash GeneticsMonash HealthClaytonVictoriaAustralia
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Carolyn Rogers
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Michael J. Field
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Lorena Santa María
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Víctor Faundes
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Bianca Curotto
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Paulina Morales
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Cesar Trigo
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Isabel Salas
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | | | - David J. Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Neurodisability and Rehabilitation, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David E. Godler
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Godler DE, Ling L, Gamage D, Baker EK, Bui M, Field MJ, Rogers C, Butler MG, Murgia A, Leonardi E, Polli R, Schwartz CE, Skinner CD, Alliende AM, Santa Maria L, Pitt J, Greaves R, Francis D, Oertel R, Wang M, Simons C, Amor DJ. Feasibility of Screening for Chromosome 15 Imprinting Disorders in 16 579 Newborns by Using a Novel Genomic Workflow. JAMA Netw Open 2022; 5:e2141911. [PMID: 34982160 PMCID: PMC8728620 DOI: 10.1001/jamanetworkopen.2021.41911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPORTANCE Newborn screening for Angelman syndrome (AS), Prader-Willi syndrome (PWS), and chromosome 15 duplication syndrome (Dup15q) may lead to benefit from early diagnosis and treatment. OBJECTIVE To examine the feasibility of newborn screening for these chromosome 15 imprinting disorders at population scale. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, the validation data set for the first-tier SNRPN test, called methylation-specific quantitative melt analysis (MS-QMA), included 109 PWS, 48 AS, 9 Dup15q, and 1190 population control newborn blood spots (NBS) and peripheral tissue samples from participants recruited from January 2000 to December 2016. The test data set included NBS samples from 16 579 infants born in 2011. Infants with an NBS identified as positive for PWS, AS, or Dup15q by the first-tier test were referred for droplet digital polymerase chain reaction, real-time polymerase chain reaction, and low-coverage whole-genome sequencing for confirmatory testing. Data analyses were conducted between February 12, 2015, and August 15, 2020. RESULTS In the validation data set, the median age for the 77 patients with PWS was 3.00 years (IQR, 0.01-44.50 years); for the 46 patients with AS, 2.76 years (IQR, 0.028 to 49.00 years); and for the 9 patients with Dup15q, 4.00 years (IQR, 1.00 to 28.00 years). Thirty-eight patients (51.4%) in the PWS group, 20 patients (45.5%) in the AS group, and 6 patients (66.7%) in the Dup15q group who had sex reported were male. The validation data set showed MS-QMA sensitivity of 99.0% for PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15q; positive predictive and negative predictive values of 100% for PWS and AS; and a positive predictive value of 87.5% and negative predictive value of 100% for Dup15q. In the test data set of NBS samples from 16 579 infants, 92 had a positive test result using a methylation ratio cut-off of 3 standard deviations from the mean. Of these patients, 2 were confirmed to have PWS; 2, AS; and 1, maternal Dup15q. With the use of more conservative PWS- and AS-specific thresholds for positive calls from the validation data set, 9 positive NBS results were identified by MS-QMA in this cohort. The 2 PWS and 2 AS calls were confirmed by second-tier testing, but the 1 Dup15q case was not confirmed. Together, these results provided prevalence estimates of 1 in 8290 for both AS and PWS and 1 in 16 579 for maternal Dup15q, with positive predictive values for first-tier testing at 67.0% for AS, 33.0% for PWS, and 44.0% for combined detection of chromosome 15 imprinting disorders for the validation data set. CONCLUSIONS AND RELEVANCE The findings of this diagnostic study suggest that it is feasible to screen for all chromosome 15 imprinting disorders using SNRPN methylation analysis, with 5 individuals identified with these disorders out of 16 579 infants screened.
Collapse
Affiliation(s)
- David E. Godler
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- E.D.G. Innovations and Consulting, St Kilda, Victoria, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
| | - Dinusha Gamage
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
| | - Emma K. Baker
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Michael J. Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Merlin G. Butler
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Charles E. Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Cindy D. Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Angelica M. Alliende
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome (CDTSXF), INTA University of Chile, Santiago, Chile
| | - Lorena Santa Maria
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome (CDTSXF), INTA University of Chile, Santiago, Chile
| | - James Pitt
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Ronda Greaves
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Ralph Oertel
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Min Wang
- Translational Bioinformatics, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Cas Simons
- Translational Bioinformatics, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - David J. Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurodisability and Rehabilitation, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Adayev T, LaFauci G, Xu W, Dobkin C, Kascsak R, Brown WT, Goodman JH. Development of a Quantitative FMRP Assay for Mouse Tissue Applications. Genes (Basel) 2021; 12:genes12101516. [PMID: 34680911 PMCID: PMC8535242 DOI: 10.3390/genes12101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome results from the absence of the FMR1 gene product—Fragile X Mental Retardation Protein (FMRP). Fragile X animal research has lacked a reliable method to quantify FMRP. We report the development of an array of FMRP-specific monoclonal antibodies and their application for quantitative assessment of FMRP (qFMRPm) in mouse tissue. To characterize the assay, we determined the normal variability of FMRP expression in four brain structures of six different mouse strains at seven weeks of age. There was a hierarchy of FMRP expression: neocortex > hippocampus > cerebellum > brainstem. The expression of FMRP was highest and least variable in the neocortex, whereas it was most variable in the hippocampus. Male C57Bl/6J and FVB mice were selected to determine FMRP developmental differences in the brain at 3, 7, 10, and 14 weeks of age. We examined the four structures and found a developmental decline in FMRP expression with age, except for the brainstem where it remained stable. qFMRPm assay of blood had highest values in 3 week old animals and dropped by 2.5-fold with age. Sex differences were not significant. The results establish qFMRPm as a valuable tool due to its ease of methodology, cost effectiveness, and accuracy.
Collapse
Affiliation(s)
- Tatyana Adayev
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Correspondence: ; Tel.: +1-718-494-5314
| | - Giuseppe LaFauci
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Weimin Xu
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Carl Dobkin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Richard Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - W. Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Perkins Center, University of Sydney Camperdown, Sydney, NSW 2006, Australia
| | - Jeffrey H. Goodman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| |
Collapse
|
5
|
Bartlett E, Archibald AD, Francis D, Ling L, Thomas R, Chandler G, Ward L, O'Farrell G, Pandelache A, Delatycki MB, Bennetts BH, Ho G, Fisk K, Baker EK, Amor DJ, Godler DE. Paternal retraction of a fragile X allele to normal size, showing normal function over two generations. Am J Med Genet A 2021; 188:304-309. [PMID: 34545686 DOI: 10.1002/ajmg.a.62500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
The FMR1 premutation (PM:55-199 CGG) is associated with fragile X-associated tremor/ataxia syndrome (FXTAS) and when maternally transmitted is at risk of expansion to a hypermethylated full mutation (FM: ≥ 200 CGG) that causes fragile X syndrome (FXS). We describe a maternally transmitted PM (77 CGG) that was passed to a son (103 CGG), and to a daughter (220-1822 CGG), who were affected with FXTAS and FXS, respectively. The male with the PM showed low-level mosaicism for normal size of 30 and 37 CGG. This male had two offspring: one female mosaic for PM and FM (56, 157, >200 CGG) and another with only a 37 CGG allele detected in multiple tissues, neither with a clinical phenotype. The female with the 37 CGG allele showed normal levels of FMR1 methylation and mRNA and passed this 37 CGG allele to one of her daughters, who was also unaffected. These findings show that post-zygotic paternal retraction can lead to low-level mosaicism for normal size alleles, with these normal alleles being functional when passed over two generations.
Collapse
Affiliation(s)
- Essra Bartlett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Alison D Archibald
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rob Thomas
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gabrielle Chandler
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Lisa Ward
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gemma O'Farrell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Alison Pandelache
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Bruce H Bennetts
- Sydney Genome Diagnostics-Molecular Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Gladys Ho
- Sydney Genome Diagnostics-Molecular Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Katrina Fisk
- Sydney Genome Diagnostics-Molecular Genetics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David J Amor
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Baker EK, Arora S, Amor DJ, Date P, Cross M, O'Brien J, Simons C, Rogers C, Goodall S, Slee J, Cahir C, Godler DE. The Cost of Raising Individuals with Fragile X or Chromosome 15 Imprinting Disorders in Australia. J Autism Dev Disord 2021; 53:1682-1692. [PMID: 34292487 DOI: 10.1007/s10803-021-05193-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
The study characterised differences in costs associated with raising a child between four rare disorders and examined the associations between these costs with clinical severity. Caregivers of 108 individuals with Prader-Willi, Angelman (AS), Chromosome 15q Duplication and fragile X (FXS) syndromes completed a modified Client Services Receipt Inventory and participants completed intellectual/developmental functioning and autism assessments. AS incurred the highest yearly costs per individual ($AUD96,994), while FXS had the lowest costs ($AUD33,221). Intellectual functioning negatively predicted total costs, after controlling for diagnosis. The effect of intellectual functioning on total costs for those with AS was significantly different to the other syndromes. The study highlights the significant costs associated with these syndromes, particularly AS, linked with severity of intellectual functioning.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Sheena Arora
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Perrin Date
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Meagan Cross
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - James O'Brien
- Prader-Willi Syndrome Australia Ltd, Melbourne, VIC, Australia
| | - Chloe Simons
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, WA, Australia
| | - Chris Cahir
- Dup15q Australia Ltd, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Detection of Cryptic Fragile X Full Mutation Alleles by Southern Blot in a Female and Her Foetal DNA via Chorionic Villus Sampling, Complicated by Mosaicism for 45,X0/46,XX/47,XXX. Genes (Basel) 2021; 12:genes12060798. [PMID: 34073864 PMCID: PMC8225079 DOI: 10.3390/genes12060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
We describe a female with a 72 CGG FMR1 premutation (PM) (CGG 55–199) and family history of fragile X syndrome (FXS), referred for prenatal testing. The proband had a high risk of having an affected pregnancy with a full mutation allele (FM) (CGG > 200), that causes FXS through hypermethylation of the FMR1 promoter. The CGG sizing analysis in this study used AmplideX triplet repeat primed polymerase chain reaction (TP-PCR) and long-range methylation sensitive PCR (mPCR). These methods detected a 73 CGG PM allele in the proband’s blood, and a 164 CGG PM allele in her male cultured chorionic villus sample (CVS). In contrast, the Southern blot analysis showed mosaicism for: (i) a PM (71 CGG) and an FM (285–768 CGG) in the proband’s blood, and (ii) a PM (165 CGG) and an FM (408–625 CGG) in the male CVS. The FMR1 methylation analysis, using an EpiTYPER system in the proband, showed levels in the range observed for mosaic Turner syndrome. This was confirmed by molecular and cytogenetic karyotyping, identifying 45,X0/46,XX/47,XXX lines. In conclusion, this case highlights the importance of Southern blot in pre- and postnatal testing for presence of an FM, which was not detected using AmplideX TP-PCR or mPCR in the proband and her CVS.
Collapse
|
8
|
Kraan CM, Baker EK, Arpone M, Bui M, Ling L, Gamage D, Bretherton L, Rogers C, Field MJ, Wotton TL, Francis D, Hunter MF, Cohen J, Amor DJ, Godler DE. DNA Methylation at Birth Predicts Intellectual Functioning and Autism Features in Children with Fragile X Syndrome. Int J Mol Sci 2020; 21:ijms21207735. [PMID: 33086711 PMCID: PMC7589848 DOI: 10.3390/ijms21207735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2–17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.
Collapse
Affiliation(s)
- Claudine M Kraan
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3052, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3052, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora VIC 3086, Australia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3052, Australia
- Brain and Mind, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC 3052, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne VIC 3052, Australia;
| | - Ling Ling
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
| | - Dinusha Gamage
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
| | - Lesley Bretherton
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
| | - Carolyn Rogers
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle NSW 2298, Australia; (C.R.); (M.J.F.)
| | - Michael J Field
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle NSW 2298, Australia; (C.R.); (M.J.F.)
| | - Tiffany L Wotton
- New South Wales Newborn Screening Program, Children’s Hospital at Westmead, Sydney NSW 2145, Australia;
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia;
| | - Matt F Hunter
- Monash Genetics, Monash Health, Clayton, VIC 3168, Australia;
| | - Jonathan Cohen
- Centre for Developmental Disability Health Victoria, Monash University, Doveton VIC 3177, Australia;
- Fragile X Alliance Inc., North Caulfield VIC 3161, Australia
| | - David J Amor
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3052, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne VIC 3052, Australia; (C.M.K.); (E.K.B.); (M.A.); (L.L.); (D.G.); (L.B.); (D.J.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3052, Australia
- Correspondence: ; Tel.: +613-8341-6496
| |
Collapse
|
9
|
DNA methylation analysis for screening and diagnostic testing in neurodevelopmental disorders. Essays Biochem 2020; 63:785-795. [PMID: 31696914 DOI: 10.1042/ebc20190056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation (mDNA) plays an important role in the pathogenesis of neurodevelopmental disorders (NDDs), however its use in diagnostic testing has been largely restricted to a handful of methods for locus-specific analysis in monogenic syndromes. Recent studies employing genome-wide methylation analysis (GWMA) have explored utility of a single array-based test to detect methylation changes in probands negative by exome sequencing, and to diagnose different monogenic NDDs with defined epigenetic signatures. While this may be a more efficient approach, several significant barriers remain. These include non-uniform and low coverage of regulatory regions that may have CG-rich sequences, and lower analytical sensitivity as compared with locus-specific analyses that may result in methylation mosaicism not being detected. A major challenge associated with the above technologies, regardless of whether the analysis is locus specific or genome wide, is the technical bias introduced by indirect analysis of methylation. This review summarizes evidence from the most recent studies in this field and discusses future directions, including direct analysis of methylation using long-read technologies and detection of 5-methylcytosine (5-mC or total mDNA) and 5-hydroxymethylacytosine (5-hmC) as biomarkers of NDDs.
Collapse
|
10
|
Baker EK, Arpone M, Vera SA, Bretherton L, Ure A, Kraan CM, Bui M, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field MJ, Cohen J, Maria LS, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord 2019; 11:41. [PMID: 31878865 PMCID: PMC6933737 DOI: 10.1186/s11689-019-9288-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fragile X syndrome (FXS) is a common cause of intellectual disability and autism spectrum disorder (ASD) usually associated with a CGG expansion, termed full mutation (FM: CGG ≥ 200), increased DNA methylation of the FMR1 promoter and silencing of the gene. Mosaicism for presence of cells with either methylated FM or smaller unmethylated pre-mutation (PM: CGG 55–199) alleles in the same individual have been associated with better cognitive functioning. This study compares age- and sex-matched FM-only and PM/FM mosaic individuals on intellectual functioning, ASD features and maladaptive behaviours. Methods This study comprised a large international cohort of 126 male and female participants with FXS (aged 1.15 to 43.17 years) separated into FM-only and PM/FM mosaic groups (90 males, 77.8% FM-only; 36 females, 77.8% FM-only). Intellectual functioning was assessed with age appropriate developmental or intelligence tests. The Autism Diagnostic Observation Schedule-2nd Edition was used to examine ASD features while the Aberrant Behavior Checklist-Community assessed maladaptive behaviours. Results Comparing males and females (FM-only + PM/FM mosaic), males had poorer intellectual functioning on all domains (p < 0.0001). Although females had less ASD features and less parent-reported maladaptive behaviours, these differences were no longer significant after controlling for intellectual functioning. Participants with PM/FM mosaicism, regardless of sex, presented with better intellectual functioning and less maladaptive behaviours compared with their age- and sex-matched FM-only counterparts (p < 0.05). ASD features were similar between FM-only and PM/FM mosaics within each sex, after controlling for overall intellectual functioning. Conclusions Males with FXS had significantly lower intellectual functioning than females with FXS. However, there were no significant differences in ASD features and maladaptive behaviours, after controlling for intellectual functioning, independent of the presence or absence of mosaicism. This suggests that interventions that primarily target cognitive abilities may in turn reduce the severity of maladaptive behaviours including ASD features in FXS.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange Aliaga Vera
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Alexandra Ure
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pediatrics, Monash University, Clayton, VIC, Australia
| | - Claudine M Kraan
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, VIC, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Department of Pediatrics, Monash University, Clayton, VIC, Australia.,Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, Centre for Developmental Disability Health Victoria, Monash University, North Caulfield, Clayton, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Victor Faundes
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Bianca Curotto
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Paulina Morales
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Cesar Trigo
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Isabel Salas
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Early Diagnosis in Prader-Willi Syndrome Reduces Obesity and Associated Co-Morbidities. Genes (Basel) 2019; 10:genes10110898. [PMID: 31698873 PMCID: PMC6896038 DOI: 10.3390/genes10110898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Prader–Willi syndrome (PWS) is an imprinting genetic disorder characterized by lack of expression of genes on the paternal chromosome 15q11–q13 region. Growth hormone (GH) replacement positively influences stature and body composition in PWS. Our hypothesis was that early diagnosis delays onset of obesity in PWS. We studied 352 subjects with PWS, recruited from the NIH Rare Disease Clinical Research Network, to determine if age at diagnosis, ethnicity, gender, and PWS molecular class influenced the age they first become heavy, as determined by their primary care providers, and the age they first developed an increased appetite and began seeking food. The median ages that children with PWS became heavy were 10 years, 6 years and 4 years for age at diagnosis < 1 year, between 1 and 3 years, and greater than 3 years of age, respectively. The age of diagnosis and ethnicity were significant factors influencing when PWS children first became heavy (p < 0.01), however gender and the PWS molecular class had no influence. Early diagnosis delayed the onset of becoming heavy in individuals with PWS, permitting early GH and other treatment, thus reducing the risk of obesity-associated co-morbidities. Non-white individuals had an earlier onset of becoming heavy.
Collapse
|
12
|
Hensel CH, Vanzo RJ, Martin MM, Ling L, Aliaga SM, Bui M, Francis DI, Twede H, Field MH, Morison JW, Amor DJ, Godler DE. Abnormally Methylated FMR1 in Absence of a Detectable Full Mutation in a U.S.A Patient Cohort Referred for Fragile X Testing. Sci Rep 2019; 9:15315. [PMID: 31653898 PMCID: PMC6814816 DOI: 10.1038/s41598-019-51618-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
In 2016, Methylation-Specific Quantitative Melt Analysis (MS-QMA) on 3,340 male probands increased diagnostic yield from 1.60% to 1.84% for fragile X syndrome (FXS) using a pooling approach. In this study probands from Lineagen (UT, U.S.A.) of both sexes were screened using MS-QMA without sample pooling. The cohorts included: (i) 279 probands with no FXS full mutation (FM: CGG > 200) detected by AmplideX CGG sizing; (ii) 374 negative and 47 positive controls. MS-QMA sensitivity and specificity in controls approached 100% for both sexes. For male probands with no FM detected by standard testing (n = 189), MS-QMA identified abnormal DNA methylation (mDNA) in 4% normal size (NS: < 44 CGGs), 6% grey zone (CGG 45–54) and 12% premutation (CGG 54–199) alleles. The abnormal mDNA was confirmed by AmplideX methylation sensitive (m)PCR and EpiTYPER tests. In contrast, no abnormal mDNA was detected in 89 males with NS alleles from the general population. For females, 11% of 43 probands with NS alleles by the AmplideX sizing assay had abnormal mDNA by MS-QMA, with FM / NS mosaicism confirmed by AmplideX mPCR. FMR1 MS-QMA analysis can cost-effectively screen probands of both sexes for methylation and FM mosaicism that may be missed by standard testing.
Collapse
Affiliation(s)
| | - Rena J Vanzo
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Megan M Martin
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange M Aliaga
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - David I Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Hope Twede
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Michael H Field
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle, NSW, Australia
| | - Jonathon W Morison
- Business Development and Legal Office, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Significantly Elevated FMR1 mRNA and Mosaicism for Methylated Premutation and Full Mutation Alleles in Two Brothers with Autism Features Referred for Fragile X Testing. Int J Mol Sci 2019; 20:ijms20163907. [PMID: 31405222 PMCID: PMC6721168 DOI: 10.3390/ijms20163907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 11/26/2022] Open
Abstract
Although fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥200 cytosine-guanine-guanine (CGG) repeats, and a decrease in FMR1 mRNA and its protein (FMRP), incomplete silencing has been associated with more severe autism features in FXS males. This study reports on brothers (B1 and B2), aged 5 and 2 years, with autistic features and language delay, but a higher non-verbal IQ in comparison to typical FXS. CGG sizing using AmplideX PCR only identified premutation (PM: 55–199 CGGs) alleles in blood. Similarly, follow-up in B1 only revealed PM alleles in saliva and skin fibroblasts; whereas, an FM expansion was detected in both saliva and buccal DNA of B2. While Southern blot analysis of blood detected an unmethylated FM, methylation analysis with a more sensitive methodology showed that B1 had partially methylated PM alleles in blood and fibroblasts, which were completely unmethylated in buccal and saliva cells. In contrast, B2 was partially methylated in all tested tissues. Moreover, both brothers had FMR1 mRNA ~5 fold higher values than those of controls, FXS and PM cohorts. In conclusion, the presence of unmethylated FM and/or PM in both brothers may lead to an overexpression of toxic expanded mRNA in some cells, which may contribute to neurodevelopmental problems, including elevated autism features.
Collapse
|
14
|
Clinical and Molecular Differences between 4-Year-Old Monozygous Male Twins Mosaic for Normal, Premutation and Fragile X Full Mutation Alleles. Genes (Basel) 2019; 10:genes10040279. [PMID: 30959842 PMCID: PMC6523498 DOI: 10.3390/genes10040279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/04/2023] Open
Abstract
This study describes monozygotic (MZ) male twins with fragile X syndrome (FXS), mosaic for normal size (NS: <44 CGGs), premutation (PM: 55–199 CGG) and full mutation (FM alleles ≥ 200) alleles, with autism. At 4 years of age chromosomal microarray confirmed monozygosity with both twins showing an XY sex complement. Normal size (30 CGG), PM (99 CGG) and FM (388–1632 CGGs) alleles were detected in Twin 1 (T1) by standard polymerase chain reaction (PCR) and Southern blot testing, while only PM (99 CGG) and FM (672–1025) alleles were identified in Twin 2 (T2). At ~5 years, T2 had greater intellectual impairments with a full scale IQ (FSIQ) of 55 and verbal IQ (VIQ) of 59, compared to FSIQ of 62 and VIQ of 78 for T1. This was consistent with the quantitative FMR1 methylation testing, revealing 10% higher methylation at 80% for T2; suggesting that less active unmethylated alleles were present in T2 as compared to T1. AmplideX methylation PCR also identified partial methylation, including an unmethylated NS allele in T2, undetected by standard testing. In conclusion, this report demonstrates significant differences in intellectual functioning between the MZ twins mosaic for NS, PM and FM alleles with partial FMR1 promoter methylation.
Collapse
|
15
|
Kraan CM, Godler DE, Amor DJ. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol 2019; 61:121-127. [PMID: 30084485 DOI: 10.1111/dmcn.13985] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
The fragile X mental retardation 1 gene (FMR1)-related disorder fragile X syndrome (FXS) is the most common heritable form of cognitive impairment and the second most common cause of comorbid autism. FXS usually results when a premutation trinucleotide CGG repeat in the 5' untranslated region of the FMR1 gene (CGG 55-200) expands over generations to a full mutation allele (CGG >200). This expansion is associated with silencing of the FMR1 promoter via an epigenetic mechanism that involves DNA methylation of the CGG repeat and the surrounding regulatory regions. Decrease in FMR1 transcription is associated with loss of the FMR1 protein that is needed for typical brain development. The past decade has seen major advances in our understanding of the genetic and epigenetic processes that underlie FXS. Here we review these advances and their implications for diagnosis and treatment for individuals who have FMR1-related disorders. WHAT THIS PAPER ADDS: Improved analysis of DNA methylation allows better epigenetic evaluation of the fragile X gene. New testing techniques have unmasked interindividual variation among children with fragile X syndrome. New testing methods have also detected additional cases of fragile X.
Collapse
Affiliation(s)
- Claudine M Kraan
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - David E Godler
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Phillips TM, Wellner EF. Analysis of Inflammatory Mediators in Newborn Dried Blood Spot Samples by Chip-Based Immunoaffinity Capillary Electrophoresis. Methods Mol Biol 2019; 1972:185-198. [PMID: 30847792 DOI: 10.1007/978-1-4939-9213-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A chip-based immunoaffinity capillary electrophoresis (ICE) system has been developed for measuring inflammatory mediators in dried blood samples routinely taken from newborn babies. A defined area of each dried blood spot was removed from the sample card and its contents eluted. The recovered eluates were injected into the chip and the analytes of interest isolated by the immunoaffinity disk within the chip. The captured analytes were labeled in-situ with a red light-emitting laser dye and electro-eluted into the chip separation channel. Electrophoretic separation of all of the analytes was achieved within 2.0 min with quantification of each peak being performed by online LIF detection and integration of each peak area. The degree of accuracy and precision achieved by the chip-based system is comparable to conventional immunoassays and the system is robust enough to be applied to the analysis of clinical samples.
Collapse
Affiliation(s)
- Terry M Phillips
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Washington, DC, USA.
| | - Edward F Wellner
- National Institute of Bioimaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Mahmoud R, Singh P, Weiss L, Lakatos A, Oakes M, Hossain W, Butler MG, Kimonis V. Newborn screening for Prader-Willi syndrome is feasible: Early diagnosis for better outcomes. Am J Med Genet A 2018; 179:29-36. [PMID: 30556641 DOI: 10.1002/ajmg.a.60681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
Prader-Willi syndrome (PWS), is a complex genetic disease affecting 1/15,000 individuals, characterized by lack of expression of genes on the paternal chromosome 15q11-q13 region. Clinical features include central hypotonia, poor suck, learning and behavior problems, growth hormone deficiency with short stature, hyperphagia, and morbid obesity. Despite significant advances in genetic testing, the mean age for diagnosis in PWS continues to lag behind. Our goal was to perform a pilot feasibility study to confirm the diagnosis utilizing different genetic technologies in a cohort of 34 individuals with genetically confirmed PWS and 16 healthy controls from blood samples spotted and stored on newborn screening (NBS) filter paper cards. DNA was isolated from NBS cards, and PWS testing performed using DNA methylation-specific PCR (mPCR) and the methylation specific-multiplex ligation dependent probe amplification (MS-MLPA) chromosome 15 probe kit followed by DNA fragment analysis for methylation and copy number status. DNA extraction was successful in 30 of 34 PWS patients and 16 controls. PWS methylation testing was able to correctly identify all PWS patients and MS-MLPA was able to differentiate between 15q11-q13 deletion and non-deletion status and correctly identify deletion subtype (i.e., larger Type I or smaller Type II). mPCR can be used to diagnose PWS and MS-MLPA testing to determine both methylation status as well as the type of deletion or non-deletion status from DNA extracted from NBS filter paper. We propose that PWS testing in newborns is possible and could be included in the Recommended Uniform Screening Panel after establishing a validated cost-effective method.
Collapse
Affiliation(s)
- Ranim Mahmoud
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California.,Faculty of Medicine, Department of Pediatrics, Genetics Unit, Mansoura University, Mansoura, Egypt
| | - Preeti Singh
- Department of Pediatrics, Division of Neonatology, University of California, Irvine, California
| | - Lan Weiss
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California
| | - Anita Lakatos
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California
| | - Melanie Oakes
- Genomics High Throughput Facility, University of California, Irvine, California
| | - Waheeda Hossain
- Department of Psychiatry and Behavioral Sciences, Kansas University Medical Center, Kansas City, Kansas.,Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, Kansas University Medical Center, Kansas City, Kansas.,Department of Pediatrics, Kansas University Medical Center, Kansas City, Kansas
| | - Virginia Kimonis
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California
| |
Collapse
|
18
|
Prenatal Diagnosis of Fragile X Syndrome in a Twin Pregnancy Complicated by a Complete Retraction. Genes (Basel) 2018; 9:genes9060287. [PMID: 29880767 PMCID: PMC6027392 DOI: 10.3390/genes9060287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023] Open
Abstract
Fragile X syndrome (FXS) is usually associated with a CGG repeat expansion >200 repeats within the FMR1 gene, known as a full mutation (FM). FM alleles produce abnormal methylation of the FMR1 promoter with reduction or silencing of FMR1 gene expression. Furthermore, premutation (PM: 55–199 CGGs) and full mutation alleles usually expand in size when maternally transmitted to progeny. This study describes a PM allele carried by the mother decreasing to a normal sized allele in a male from a dichorionic diamniotic (DCDA) twin pregnancy, with the female twin inheriting FM (200–790 CGGs), PM (130 CGGs) and normal-sized (39 CGGs) alleles. Further evidence of instability of the maternal PM allele was shown by a male proband (older brother) mosaic for PM (CGG 78 and 150 CGGs) and FM (200–813 CGGs), and a high level of FMR1 promoter methylation, between 50 and 70%, in multiple tissues. The fully-retracted, normal-sized allele was identified by PCR CGG sizing in the male twin, with no evidence of a FM allele identified using Southern blot analysis in multiple tissues collected postnatally and prenatally. Consistent with this, prenatal PCR sizing (35 CGGs) showed inconsistent inheritance of the maternal normal allele (30 CGGs), with single-nucleotide polymorphism (SNP) linkage analysis confirming that the abnormal FMR1 chromosome had been inherited from the mother’s PM chromosome. Importantly, the male twin showed no significant hypermethylation of the FMR1 promoter in all pre and postnatal tissues tested, as well as normal levels of FMR1 mRNA in blood. In summary, this report demonstrates the first postnatal follow up of a prenatal case in which FMR1 mRNA levels were approaching normal, with normal levels of FMR1 promoter methylation and normal CGG size in multiple pre and postnatally collected tissues.
Collapse
|
19
|
Kular L, Kular S. Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry Clin Neurosci 2018; 72:195-211. [PMID: 29292553 DOI: 10.1111/pcn.12634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are clinically heterogeneous and debilitating chronic diseases resulting from a complex interplay between gene variants and environmental factors. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, instruct the cell/tissue to correctly interpret external signals and adjust its functions accordingly. Given that epigenetic modifications are sensitive to environment, stable, and reversible, epigenetic studies in psychiatry could represent a promising approach to better understanding and treating disease. In the present review, we aim to discuss the clinical opportunities and challenges arising from the epigenetic research in psychiatry. Using selected examples, we first recapitulate key findings supporting the role of adverse life events, alone or in combination with genetic risk, in epigenetic programming of neuropsychiatric systems. Epigenetic studies further report encouraging findings about the use of methylation changes as diagnostic markers of disease phenotype and predictive tools of progression and response to treatment. Then we discuss the potential of using targeted epigenetic pharmacotherapy, combined with psychosocial interventions, for future personalized medicine for patients. Finally, we review the methodological limitations that could hinder interpretation of epigenetic data in psychiatry. They mainly arise from heterogeneity at the individual and tissue level and require future strategies in order to reinforce the biological relevance of epigenetic data and its translational use in psychiatry. Overall, we suggest that epigenetics could provide new insights into a more comprehensive interpretation of mental illness and might eventually improve the nosology, treatment, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonia Kular
- Adult Psychiatry Unit of Laval Secteur Est, Laval, France
| |
Collapse
|
20
|
Wotton T, Wiley V, Bennetts B, Christie L, Wilcken B, Jenkins G, Rogers C, Boyle J, Field M. Are We Ready for Fragile X Newborn Screening Testing?-Lessons Learnt from a Feasibility Study. Int J Neonatal Screen 2018; 4:9. [PMID: 33072935 PMCID: PMC7548904 DOI: 10.3390/ijns4010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent heritable cause of cognitive impairment but is not yet included in a newborn screening (NBS) program within Australia. This paper aims to assess the feasibility and reliability of population screening for FXS using a pilot study in one hospital. A total of 1971 mothers consented for 2000 newborns to be tested using routine NBS dried blood spot samples. DNA was extracted and a modified PCR assay with a chimeric CGG primer was used to detect fragile X alleles in both males and females in the normal, premutation, and full mutation ranges. A routine PCR-based fragile X assay was run in parallel to validate the chimeric primer assay. Babies with CGG repeat number ≥59 were referred for family studies. One thousand nine hundred and ninety NBS samples had a CGG repeat number less than 55 (1986 < 50); 10 had premutation alleles >54 CGG repeats (1/123 females and 1/507 males). There was complete concordance between the two PCR-based assays. A recent review revealed no clinically identified cases in the cohort up to 5 years later. The cost per test was $AUD19. Fragile X status can be determined on routine NBS samples using the chimeric primer assay. However, whilst this assay may not be considered cost-effective for population screening, it could be considered as a second-tier assay to a developed immunoassay for fragile X mental retardation protein (FMRP).
Collapse
Affiliation(s)
- Tiffany Wotton
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Correspondence:
| | - Veronica Wiley
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bruce Bennetts
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Louise Christie
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Bridget Wilcken
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma Jenkins
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Jackie Boyle
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Michael Field
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| |
Collapse
|
21
|
Arpone M, Baker EK, Bretherton L, Bui M, Li X, Whitaker S, Dissanayake C, Cohen J, Hickerton C, Rogers C, Field M, Elliott J, Aliaga SM, Ling L, Francis D, Hearps SJC, Hunter MF, Amor DJ, Godler DE. Intragenic DNA methylation in buccal epithelial cells and intellectual functioning in a paediatric cohort of males with fragile X. Sci Rep 2018; 8:3644. [PMID: 29483611 PMCID: PMC5827525 DOI: 10.1038/s41598-018-21990-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Increased intragenic DNA methylation of the Fragile X Related Epigenetic Element 2 (FREE2) in blood has been correlated with lower intellectual functioning in females with fragile X syndrome (FXS). This study explored these relationships in a paediatric cohort of males with FXS using Buccal Epithelial Cells (BEC). BEC were collected from 25 males with FXS, aged 3 to 17 years and 19 age-matched male controls without FXS. Methylation of 9 CpG sites within the FREE2 region was examined using the EpiTYPER approach. Full Scale IQ (FSIQ) scores of males with FXS were corrected for floor effect using the Whitaker and Gordon (WG) extrapolation method. Compared to controls, children with FXS had significant higher methylation levels for all CpG sites examined (p < 3.3 × 10−7), and within the FXS group, lower FSIQ (WG corrected) was associated with higher levels of DNA methylation, with the strongest relationship found for CpG sites within FMR1 intron 1 (p < 5.6 × 10−5). Applying the WG method to the FXS cohort unmasked significant epi-genotype-phenotype relationships. These results extend previous evidence in blood to BEC and demonstrate FREE2 DNA methylation to be a sensitive epigenetic biomarker significantly associated with the variability in intellectual functioning in FXS.
Collapse
Affiliation(s)
- Marta Arpone
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia. .,Child Neuropsychology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
| | - Emma K Baker
- Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lesley Bretherton
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Child Neuropsychology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Xin Li
- Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Simon Whitaker
- School of Human and Health Science, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Cheryl Dissanayake
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, North Caulfield, VIC, Australia and Centre for Developmental Disability Health Victoria, Monash University, Dandenong, VIC, Australia
| | - Chriselle Hickerton
- Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle, NSW, Australia
| | - Mike Field
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle, NSW, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Solange M Aliaga
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Ling Ling
- Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Stephen J C Hearps
- Child Neuropsychology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia and Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - David E Godler
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Cyto-Molecular Diagnostics Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
22
|
Yu F, Xiong YM, Yu SC, He LL, Niu SS, Wu YM, Liu J, Qu LB, Liu LE, Wu YJ. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample. Int J Nanomedicine 2018; 13:429-437. [PMID: 29403274 PMCID: PMC5777376 DOI: 10.2147/ijn.s152618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1), a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase) detection have focused on the prokaryote MTase and its activity. Methods A magnetic fluorescence-linked immunosorbent assay (FLISA) using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized. Results Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1-1,500 ng/mL, the recovery was 91.67%-106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%-11.29% and 7.03%-11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA) kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001). The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter than ELISA kits. Conclusion These indicated that the proposed FLISA method was sensitive and high throughput and can quickly screen the level of DNMT1 in serum samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | | |
Collapse
|
23
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
25
|
Shelton AL, Cornish KM, Godler D, Bui QM, Kolbe S, Fielding J. White matter microstructure, cognition, and molecular markers in fragile X premutation females. Neurology 2017; 88:2080-2088. [DOI: 10.1212/wnl.0000000000003979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
Objective:To examine the interrelationships between fragile X mental retardation 1 (FMR1) mRNA and the FMR1 exon 1/intron 1 boundary methylation, white matter microstructure, and executive function, in women with a FMR1 premutation expansion (PM; 55–199 CGG repeats) and controls (CGG < 44).Methods:Twenty women with PM without fragile X-associated tremor/ataxia syndrome (FXTAS) and 20 control women between 22 and 54 years of age completed this study. FMR1 mRNA and methylation levels for 9 CpG sites within the FMR1 exon 1/intron 1 boundary from peripheral blood samples were analyzed. To measure white matter microstructure, diffusion-weighted imaging was used, from which fractional anisotropy (FA) and mean diffusivity (MD) values from anatomic regions within the corpus callosum and cerebellar peduncles were extracted. Executive function was assessed across a range of tasks.Results:No differences were revealed in white matter microstructure between women with PM and controls. However, we reveal that for women with PM (but not controls), higher FMR1 mRNA correlated with lower MD values within the middle cerebellar peduncle and Paced Auditory Serial Addition Test scores, higher methylation of the FMR1 exon 1/intron 1 boundary correlated with lower MD within the inferior and middle cerebellar peduncles and longer prosaccade latencies, and higher FA values within the corpus callosum and cerebellar peduncle regions corresponded to superior executive function.Conclusions:We provide evidence linking white matter microstructure to executive dysfunction and elevated FMR1 mRNA and FMR1 exon 1/intron 1 boundary methylation in women with PM without FXTAS. This suggests that the FXTAS phenotype may not be distinct but may form part of a spectrum of PM involvement.
Collapse
|
26
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Macpherson JN, Murray A. Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations. Genes (Basel) 2016; 7:genes7120110. [PMID: 27916885 PMCID: PMC5192486 DOI: 10.3390/genes7120110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
The identification of a trinucleotide (CGG) expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation”) as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion.
Collapse
Affiliation(s)
- James N Macpherson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury SP2 8BJ, UK.
| | - Anna Murray
- Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
28
|
Molecular Correlates and Recent Advancements in the Diagnosis and Screening of FMR1-Related Disorders. Genes (Basel) 2016; 7:genes7100087. [PMID: 27754417 PMCID: PMC5083926 DOI: 10.3390/genes7100087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability and autism. Molecular diagnostic testing of FXS and related disorders (fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS)) relies on a combination of polymerase chain reaction (PCR) and Southern blot (SB) for the fragile X mental retardation 1 (FMR1) CGG-repeat expansion and methylation analyses. Recent advancements in PCR-based technologies have enabled the characterization of the complete spectrum of CGG-repeat mutation, with or without methylation assessment, and, as a result, have reduced our reliance on the labor- and time-intensive SB, which is the gold standard FXS diagnostic test. The newer and more robust triplet-primed PCR or TP-PCR assays allow the mapping of AGG interruptions and enable the predictive analysis of the risks of unstable CGG expansion during mother-to-child transmission. In this review, we have summarized the correlation between several molecular elements, including CGG-repeat size, methylation, mosaicism and skewed X-chromosome inactivation, and the extent of clinical involvement in patients with FMR1-related disorders, and reviewed key developments in PCR-based methodologies for the molecular diagnosis of FXS, FXTAS and FXPOI, and large-scale (CGG)n expansion screening in newborns, women of reproductive age and high-risk populations.
Collapse
|
29
|
Butler MG. Benefits and limitations of prenatal screening for Prader-Willi syndrome. Prenat Diagn 2016; 37:81-94. [PMID: 27537837 DOI: 10.1002/pd.4914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/15/2022]
Abstract
This review summarizes the status of genetic laboratory testing in Prader-Willi syndrome (PWS) with different genetic subtypes, most often a paternally derived 15q11-q13 deletion and discusses benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of PWS and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in PWS. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Molecular Inconsistencies in a Fragile X Male with Early Onset Ataxia. Genes (Basel) 2016; 7:genes7090068. [PMID: 27657133 PMCID: PMC5042398 DOI: 10.3390/genes7090068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022] Open
Abstract
Mosaicism for FMR1 premutation (PM: 55–199 CGG)/full mutation (FM: >200 CGG) alleles or the presence of unmethylated FM (UFM) have been associated with a less severe fragile X syndrome (FXS) phenotype and fragile X associated tremor/ataxia syndrome (FXTAS)—a late onset neurodegenerative disorder. We describe a 38 year old male carrying a 100% methylated FM detected with Southern blot (SB), which is consistent with complete silencing of FMR1 and a diagnosis of fragile X syndrome. However, his formal cognitive scores were not at the most severe end of the FXS phenotype and he displayed tremor and ataxic gait. With the association of UFM with FXTAS, we speculated that his ataxia might be related to an undetected proportion of UFM alleles. Such UFM alleles were confirmed by more sensitive PCR based methylation testing showing FM methylation between 60% and 70% in blood, buccal, and saliva samples and real-time PCR analysis showing incomplete silencing of FMR1. While he did not meet diagnostic criteria for FXTAS based on MRI findings, the underlying cause of his ataxia may be related to UFM alleles not detected by SB, and follow-up clinical and molecular assessment are justified if his symptoms worsen.
Collapse
|
31
|
Schenkel LC, Schwartz C, Skinner C, Rodenhiser DI, Ainsworth PJ, Pare G, Sadikovic B. Clinical Validation of Fragile X Syndrome Screening by DNA Methylation Array. J Mol Diagn 2016; 18:834-841. [PMID: 27585064 DOI: 10.1016/j.jmoldx.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 01/11/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. It is most frequently caused by an abnormal expansion of the CGG trinucleotide repeat (>200 repeats) located in the promoter of the fragile X mental retardation gene (FMR1), resulting in promoter DNA hypermethylation and gene silencing. Current clinical tests for FXS are technically challenging and labor intensive, and may involve use of hazardous chemicals or radioisotopes. We clinically validated the Illumina Infinium HumanMethylation450 DNA methylation array for FXS screening. We assessed genome-wide and FMR1-specific DNA methylation in 32 males previously diagnosed with FXS, including nine with mosaicism, as well as five females with full mutation, and premutation carrier males (n = 11) and females (n = 11), who were compared to 300 normal control DNA samples. Our findings demonstrate 100% sensitivity and specificity for detection of FXS in male patients, as well as the ability to differentiate patients with mosaic methylation defects. Full mutation and premutation carrier females did not show FMR1 methylation changes. We have clinically validated this genome-wide DNA methylation assay as a cost- and labor-effective alternative for sensitive and specific screening for FXS, while ruling out the most common differential diagnoses of FXS, Prader-Willi syndrome, and Sotos syndrome in the same assay.
Collapse
Affiliation(s)
- Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Cindy Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - David I Rodenhiser
- Department of Biochemistry, Oncology and Paediatrics, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | - Peter J Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Department of Biochemistry, Oncology and Paediatrics, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Molecular Genetics Laboratory, London Health Sciences Center, London, Ontario, Canada
| | - Guillaume Pare
- Departments of Pathology and Molecular Medicine and Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Molecular Genetics Laboratory, London Health Sciences Center, London, Ontario, Canada.
| |
Collapse
|
32
|
Hayward BE, Zhou Y, Kumari D, Usdin K. A Set of Assays for the Comprehensive Analysis of FMR1 Alleles in the Fragile X-Related Disorders. J Mol Diagn 2016; 18:762-774. [PMID: 27528259 DOI: 10.1016/j.jmoldx.2016.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022] Open
Abstract
The diagnosis and study of the fragile X-related disorders is complicated by the difficulty of amplifying the long CGG/CCG-repeat tracts that are responsible for disease pathology, the potential presence of AGG interruptions within the repeat tract that can ameliorate expansion risk, the occurrence of variable DNA methylation that modulates disease severity, and the high frequency of mosaicism for both repeat number and methylation status. These factors complicate patient risk assessment. In addition, the variability in these parameters that is seen when patient cells are grown in culture requires their frequent monitoring to ensure reproducible results in a research setting. Many existing assays have the limited ability to amplify long alleles, particularly in a mixture of different allele sizes. Others are better at this, but are too expensive for routine use in most laboratories or for newborn screening programs and use reagents that are proprietary. We describe herein a set of assays to routinely evaluate all of these important parameters in a time- and cost-effective way.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yifan Zhou
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
33
|
Aliaga SM, Slater HR, Francis D, Du Sart D, Li X, Amor DJ, Alliende AM, Santa Maria L, Faundes V, Morales P, Trigo C, Salas I, Curotto B, Godler DE. Identification of Males with Cryptic Fragile X Alleles by Methylation-Specific Quantitative Melt Analysis. Clin Chem 2016; 62:343-52. [DOI: 10.1373/clinchem.2015.244681] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
Abstract
BACKGROUND
FMR1 full mutations (FMs) (CGG expansion >200) in males mosaic for a normal (<45 CGG) or gray-zone (GZ) (45–54 CGG) allele can be missed with the standard 2-step fragile X syndrome (FXS) testing protocols, largely because the first-line PCR tests showing a normal or GZ allele are not reflexed to the second-line test that can detect FM.
METHODS
We used methylation-specific quantitative melt analysis (MS-QMA) to determine the prevalence of cryptic FM alleles in 2 independent cohorts of male patients (994 from Chile and 2392 from Australia) referred for FXS testing from 2006 to 2013. All MS-QMA–positive cases were retested with commercial triplet primed PCR, methylation-sensitive Southern blot, and a methylation-specific EpiTYPER-based test.
RESULTS
All 38 FMs detected with the standard 2-step protocol were detected with MS-QMA. However, MS-QMA identified methylation mosaicism in an additional 15% and 11% of patients in the Chilean and Australian cohorts, respectively, suggesting the presence of a cryptic FM. Of these additional patients, 57% were confirmed to carry cryptic expanded alleles in blood, buccal mucosa, or saliva samples. Further confirmation was provided by identifying premutation (CGG 55–199) alleles in mothers of probands with methylation-sensitive Southern blot. Neurocognitive assessments showed that low-level mosaicism for cryptic FM alleles was associated with cognitive impairment or autism.
CONCLUSIONS
A substantial number of mosaic FM males who have cognitive impairment or autism are not diagnosed with the currently recommended 2-step testing protocol and can be identified with MS-QMA as a first-line test.
Collapse
Affiliation(s)
- Solange M Aliaga
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Howard R Slater
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David Francis
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Desiree Du Sart
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Xin Li
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David J Amor
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angelica M Alliende
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Lorena Santa Maria
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Víctor Faundes
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Paulina Morales
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Cesar Trigo
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Isabel Salas
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Bianca Curotto
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - David E Godler
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Abstract
Fragile X syndrome (FXS), a trinucleotide repeat disorder, is the most common heritable form of cognitive impairment. Since the discovery of the FMR1 gene in 1991, great strides have been made in the field of molecular diagnosis for FXS. Cytogenetic analysis, which was the method of diagnosis in the early 1990, was replaced by Southern blot and PCR analysis albeit with some limitations. In the past few years many PCR-based methodologies, able to amplify large full mutation expanded alleles, with or without methylation, have been proposed. Reviewed here are the advantages, disadvantages and limitations of the most recent developments in the field of FXS diagnosis.
Collapse
Affiliation(s)
- Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, Davis, School of Medicine , Davis , CA 95616 , USA.,b MIND Institute , University of California Davis Medical Center , Sacramento , CA 95817 , USA
| |
Collapse
|
35
|
Miclea D, Peca L, Cuzmici Z, Pop IV. Genetic testing in patients with global developmental delay / intellectual disabilities. A review. ACTA ACUST UNITED AC 2015; 88:288-92. [PMID: 26609258 PMCID: PMC4632884 DOI: 10.15386/cjmed-461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/15/2015] [Indexed: 12/28/2022]
Abstract
Genetic factors are responsible for up to 40% developmental disability cases, such as global developmental delay/intellectual disability (GDD/DI). The American and more recently the European guidelines on this group of diseases state that genetic testing is essential and should become a standardized diagnostic practice. The main arguments for the necessity of implementing such a practice are: (1) the high prevalence of developmental disabilities (3% of the population); (2) the high genetic contribution to this type of pathology; (3) insufficient referral for genetic consultation. In an attempt to address these issues, the purpose of this paper is to present the genetic etiology of global developmental delay / intellectual disability with emphasis on the need to implement a genetic testing protocol for the patients with GDD/DI, as indicated by the current guidelines. Chromosomal abnormalities and fragile X syndrome are the most frequent causes of developmental disabilities and the techniques employed to detect such genetic disorders should be used as first line investigations of GDD/DI.
Collapse
Affiliation(s)
- Diana Miclea
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Loredana Peca
- Faculty of Psychology and Educational Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Zina Cuzmici
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Victor Pop
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis. Expert Rev Mol Med 2015; 17:e13. [PMID: 26132880 PMCID: PMC4836209 DOI: 10.1017/erm.2015.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1
boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed
X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200)
females. XCI skewing has been also linked to abnormal X-linked gene expression with the
broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2
CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA),
including 3 sites that could not be analysed with previously used EpiTYPER system. The
method was applied for detection of skewed XCI in FM females and in different types of
SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40),
and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y
chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM
females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X
chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant
correlation with the EpiTYPER reference method in FM males and females
(P < 0.0001) and SCAs (P < 0.05). In
conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with
diagnostic utility.
Collapse
|
37
|
Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJC, Adams J. Current status of newborn screening worldwide: 2015. Semin Perinatol 2015; 39:171-87. [PMID: 25979780 DOI: 10.1053/j.semperi.2015.03.002] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Newborn screening describes various tests that can occur during the first few hours or days of a newborn's life and have the potential for preventing severe health problems, including death. Newborn screening has evolved from a simple blood or urine screening test to a more comprehensive and complex screening system capable of detecting over 50 different conditions. While a number of papers have described various newborn screening activities around the world, including a series of papers in 2007, a comprehensive review of ongoing activities since that time has not been published. In this report, we divide the world into 5 regions (North America, Europe, Middle East and North Africa, Latin America, and Asia Pacific), assessing the current NBS situation in each region and reviewing activities that have taken place in recent years. We have also provided an extensive reference listing and summary of NBS and health data in tabular form.
Collapse
Affiliation(s)
- Bradford L Therrell
- National Newborn Screening and Genetics Resource Center (NNSGRC), Austin, TX; Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| | - Carmencita David Padilla
- College of Medicine, University of the Philippines Manila, Manila, Philippines; Newborn Screening Reference Center, National Institutes of Health (Philippines), Manila, Ermita, Philippines
| | - J Gerard Loeber
- International Society for Neonatal Screening, Bilthoven, Netherlands
| | - Issam Kneisser
- Newborn Screening Unit, Medical Genetic Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Amal Saadallah
- Newborn Screening and Biochemical Genetics Laboratory, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gustavo J C Borrajo
- Programa de Detección de Errores Congénitos, Fundación Bioquímica Argentina, La Plata, Argentina
| | - John Adams
- Canadian Organization for Rare Disorders, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Cornish KM, Kraan CM, Bui QM, Bellgrove MA, Metcalfe SA, Trollor JN, Hocking DR, Slater HR, Inaba Y, Li X, Archibald AD, Turbitt E, Cohen J, Godler DE. Novel methylation markers of the dysexecutive-psychiatric phenotype in FMR1 premutation women. Neurology 2015; 84:1631-8. [PMID: 25809302 DOI: 10.1212/wnl.0000000000001496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To examine the epigenetic basis of psychiatric symptoms and dysexecutive impairments in FMR1 premutation (PM: 55 to 199 CGG repeats) women. METHODS A total of 35 FMR1 PM women aged between 22 and 55 years and 35 age- and IQ-matched women controls (CGG <45) participated in this study. All participants completed a range of executive function tests and self-reported symptoms of psychiatric disorders. The molecular measures included DNA methylation of the FMR1 CpG island in blood, presented as FMR1 activation ratio (AR), and 9 CpG sites located at the FMR1 exon1/intron 1 boundary, CGG size, and FMR1 mRNA levels. RESULTS We show that FMR1 intron 1 methylation levels could be used to dichotomize PM women into greater and lower risk categories (p = 0.006 to 0.037; odds ratio = 14-24.8), with only FMR1 intron 1 methylation, and to a lesser extent AR, being significantly correlated with the likelihood of probable dysexecutive or psychiatric symptoms (p < 0.05). Furthermore, the significant relationships between methylation and social anxiety were found to be mediated by executive function performance, but only in PM women. FMR1 exon 1 methylation, CGG size, and FMR1 mRNA could not predict probable dysexecutive/psychiatric disorders in PM women. CONCLUSIONS This is the first study supporting presence of specific epigenetic etiology associated with increased risk of developing comorbid dysexecutive and social anxiety symptoms in PM women. These findings could have implications for early intervention and risk estimate recommendations aimed at improving the outcomes for PM women and their families.
Collapse
Affiliation(s)
- Kim M Cornish
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia.
| | - Claudine M Kraan
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Quang Minh Bui
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Mark A Bellgrove
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Sylvia A Metcalfe
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Julian N Trollor
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Darren R Hocking
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Howard R Slater
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Yoshimi Inaba
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Xin Li
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Alison D Archibald
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Erin Turbitt
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Jonathan Cohen
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - David E Godler
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| |
Collapse
|
39
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña MI, Alliende MA. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia 2014; 32:241-252. [PMID: 25529181 DOI: 10.1016/j.nrl.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/08/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause of intellectual disability, is associated with a broad spectrum of disorders across different generations of a single family. This study reviews the clinical manifestations of fragile X-associated disorders as well as the spectrum of mutations of the fragile X mental retardation 1 gene (FMR1) and the neurobiology of the fragile X mental retardation protein (FMRP), and also provides an overview of the potential therapeutic targets and genetic counselling. DEVELOPMENT This disorder is caused by expansion of the CGG repeat (>200 repeats) in the 5 prime untranslated region of FMR1, resulting in a deficit or absence of FMRP. FMRP is an RNA-binding protein that regulates the translation of several genes that are important in synaptic plasticity and dendritic maturation. It is believed that CGG repeat expansions in the premutation range (55 to 200 repeats) elicit an increase in mRNA levels of FMR1, which may cause neuronal toxicity. These changes manifest clinically as developmental problems such as autism and learning disabilities as well as neurodegenerative diseases including fragile X-associated tremor/ataxia syndrome (FXTAS). CONCLUSIONS Advances in identifying the molecular basis of fragile X syndrome may help us understand the causes of neuropsychiatric disorders, and they will probably contribute to development of new and specific treatments.
Collapse
Affiliation(s)
- A Pugin
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - V Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - L Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - S Aliaga
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - I Salas
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Soto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Bravo
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M I Peña
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M A Alliende
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|