1
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
2
|
Bäck E, Bjärkby J, Escudero-Ibarz L, Tångefjord S, Jirholt J, Ding M. Enhancing throughput and robustness of the fibroblast to myofibroblast transition assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100226. [PMID: 40090552 DOI: 10.1016/j.slasd.2025.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive age-related lung disease with an average survival of 3-5 years post-diagnosis if left untreated. It is characterized by lung fibrosis, inflammation, and destruction of lung architecture, leading to worsening respiratory symptoms and physiological impairment, ultimately culminating in progressive respiratory failure. The development of novel therapeutics for the treatment of IPF represents a significant unmet medical need. Fibroblast to myofibroblast transition (FMT) in response to fibrogenic mediators such as transforming growth factor beta 1 (TGF-β1) has been identified as a key cellular phenotype driving the formation of myofibroblasts and lung fibrosis in IPF. Establishing a robust and high-throughput in vitro human FMT assay is crucial for uncovering new disease targets and for efficiently screening compounds for the advancement of novel therapeutics aimed at targeting myofibroblast activity. However, creating a robust FMT assay suitable for high-throughput drug screening has proven challenging due to the requisite level of automation. In this study, we focus on evaluating different automation approaches for liquid exchange and compound dosing in the human FMT assay. A semi-automated assay, capable of screening a large number of compounds that inhibit TGF-β1-induced FMT in both Normal Human Lung Fibroblasts (NHLF) and IPF-patient derived Disease Human Lung Fibroblasts (IPF-DHLF), has been successfully developed and optimized. We demonstrate that the optimized FMT assay using liquid handling automation exhibits great assay reproducibility, shows good assay translation using human lung fibroblasts from normal healthy versus IPF-patients, and demonstrates acceptable human primary donor variability. This allows for the standardization of comparisons of compound anti-fibrotic potency across IPF projects.
Collapse
Affiliation(s)
- Elisabeth Bäck
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jessica Bjärkby
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Stefan Tångefjord
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Jirholt
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mei Ding
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
3
|
Du Z, Liu Q, Wang M, Gao Y, Li Q, Yang Y, Lu T, Bao L, Pang Y, Wang H, Niu Y, Zhang R. Reticulophagy promotes EMT-induced fibrosis in offspring's lung tissue after maternal exposure to carbon black nanoparticles during gestation by a m 5C-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136873. [PMID: 39694008 DOI: 10.1016/j.jhazmat.2024.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Accumulating evidence indicates that maternal exposure to carbon black nanoparticles (CBNPs) during gestation can induce multiple system abnormalities in offspring, whereas its potential mechanism in respiratory disease is still largely unknown. In order to explore the effect of maternal exposure to CBNPs on offspring's lung and latent pathogenesis, we respectively established in vivo model of pregnant rats exposed to CBNPs and ex vivo model of lung epithelial cells treated with pups' serum of pregnant rats exposed to CBNPs. After maternal exposure to CBNPs, epithelial-mesenchymal transition (EMT) and fibrosis levels increased as a result of DDRGK1-mediated reticulophagy upregulated in offspring's lung. DDRGK1 as FAM134B's cargo bound with FAM134B to mediate reticulophagy. Transcription factor "SP1" positively regulated DDRGK1 gene expression by binding to its promoter. Furthermore, the upregulation of NSUN2 elevated m5C methylation of SP1 mRNA and the protein level of SP1 subsequently increased through Ybx1 recognizing and stabilizing m5C-methylated SP1 mRNA, followed by the increased levels of reticulophagy and fibrosis in lung epithelial cells treated with offspring's serum of matrix exposed to CBNPs during gestation. In conclusion, NSUN2/Ybx1/m5C-SP1 axis promoted DDRGK1-mediated reticulophagy, which played an important role in EMT-induced fibrosis in offspring's lung tissue after maternal exposure to CBNPs during gestation.
Collapse
Affiliation(s)
- Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yifu Gao
- Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, PR China
| | - Qi Li
- Hunan Institute for Drug Control, Changsha 410001, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tianyu Lu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Haijun Wang
- Department of Maternal and Child Health, Peking University, Beijing 100191, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
4
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2025; 328:L215-L228. [PMID: 39745695 DOI: 10.1152/ajplung.00189.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the transforming growth factor (TGF-β)-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lungs with scar tissue. We and others have shown that TGF-β-mediated activation of the mechanistic target of rapamycin complex 1 (mTORC1) and downstream upregulation of activating transcription factor 4 (ATF4) promotes metabolic reprogramming in lung fibroblasts characterized by upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts, whereas mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single-cell RNA-seq datasets and found increased expression of ATF4 and mTOR-regulated genes in pathologic fibroblast populations from the lungs of patients with IPF. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.NEW & NOTEWORTHY Here, we used transcriptomic and metabolomic approaches to develop a more complete understanding of the role that mTOR, and its downstream effector ATF4, play in promoting metabolic reprogramming in lung fibroblasts. We identify novel metabolic pathways that may promote pathologic phenotypes, and we provide evidence from single-cell RNA-seq datasets that similar metabolic reprogramming occurs in patient lungs.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - M Volkan Atalay
- Department of Information Systems and Supply Chain Management, Loyola University Chicago, Chicago, Illinois, United States
| | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
5
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
6
|
Cambria E, Blazeski A, Ko EC, Thai T, Dantes S, Barbie DA, Shelton SE, Kamm RD. Myofibroblasts reduce angiogenesis and vasculogenesis in a vascularized microphysiological model of lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632378. [PMID: 39868191 PMCID: PMC11760796 DOI: 10.1101/2025.01.10.632378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis. We developed a microphysiological system that recapitulates the pathophysiology of lung fibrosis and disentangles myofibroblast-vascular interactions. Lung myofibroblasts maintained their phenotype in 3D without exogenous TGF-β and displayed anti-angiogenic and anti-vasculogenic activities when cultured with endothelial cells in a microfluidic device. These effects, including decreased endothelial sprouting, altered vascular morphology, and increased vascular permeability, were mediated by increased TGF-β1 and reduced VEGF secretion. Pharmacological interventions targeting these cytokines restored vascular morphology and permeability, demonstrating the potential of this model to screen anti-fibrotic drugs. This system provides insights into myofibroblast-vascular crosstalk in lung fibrosis and offers a platform for therapeutic development.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adriana Blazeski
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunkyung Clare Ko
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shania Dantes
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Guo S, Zhang Q, Guo Y, Yin X, Zhang P, Mao T, Tian Z, Li X. The role and therapeutic targeting of the CCL2/CCR2 signaling axis in inflammatory and fibrotic diseases. Front Immunol 2025; 15:1497026. [PMID: 39850880 PMCID: PMC11754255 DOI: 10.3389/fimmu.2024.1497026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway. Additionally, further in-depth research is needed to explore the clinical significance of the CCL2/CCR2 axis in fibrotic conditions affecting different organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Tsyplakova N, Ismailos G, Karalis VD. Optimising pirfenidone dosage regimens in idiopathic pulmonary fibrosis: towards a guide for personalised treatment. Xenobiotica 2025; 55:25-36. [PMID: 39764686 DOI: 10.1080/00498254.2025.2450440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment. For those who experience intolerable side effects, dose reductions or temporary discontinuations are frequently employed. However, there is limited data on the efficacy of reduced doses, creating uncertainty about the balance between tolerability and therapeutic benefit.The aim of this study is to evaluate the currently proposed dosage adjustments and to develop new dosage regimens tailored to the needs of patients. Simulations were conducted to explore pirfenidone pharmacokinetics under various challenging conditions, including dose titration, withdrawal, retitration, moderate and severe hepatic impairment, co-administration of moderate (e.g. omeprazole) and strong (e.g. smoking) inducers of the CYP1A2 enzyme, gastrointestinal adverse events, and photosensitivity reactions.Simulations led to specific recommendations for physicians regarding dosage regimens in each condition. The recommended dosage adjustments are designed to maintain concentrations within acceptable levels, ensuring both safe and effective treatment.
Collapse
Affiliation(s)
- Nastia Tsyplakova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Ismailos
- Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece
| | - Vangelis D Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Dietrich J, Kang A, Tielemans B, Verleden SE, Khalil H, Länger F, Bruners P, Mentzer SJ, Welte T, Dreher M, Jonigk DD, Ackermann M. The role of vascularity and the fibrovascular interface in interstitial lung diseases. Eur Respir Rev 2025; 34:240080. [PMID: 39909504 PMCID: PMC11795288 DOI: 10.1183/16000617.0080-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Interstitial lung disease (ILD) is a clinical term that refers to a diverse group of non-neoplastic lung diseases. This group includes idiopathic and secondary pulmonary entities that are often associated with progressive pulmonary fibrosis. Currently, therapeutic approaches based on specific structural targeting of pulmonary fibrosis are limited to nintedanib and pirfenidone, which can only slow down disease progression leading to a lower mortality rate. Lung transplantation is currently the only available curative treatment, but it is associated with high perioperative mortality. The pulmonary vasculature plays a central role in physiological lung function, and vascular remodelling is considered a hallmark of the initiation and progression of pulmonary fibrosis. Different patterns of pulmonary fibrosis commonly exhibit detectable pathological features such as morphomolecular changes, including intussusceptive and sprouting angiogenesis, vascular morphometry, broncho-systemic anastomoses, and aberrant angiogenesis-related gene expression patterns. Dynamic cellular interactions within the fibrovascular interface, such as endothelial activation and endothelial-mesenchymal transition, are also observed. This review aims to summarise the current clinical, radiological and pathological diagnostic algorithm for different ILDs, including usual interstitial pneumonia/idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, alveolar fibroelastosis/pleuroparenchymal fibroelastosis, hypersensitivity pneumonitis, systemic sclerosis-related ILD and coronavirus disease 2019 injury. It emphasises an interdisciplinary clinicopathological perspective. Additionally, the review covers current therapeutic strategies and knowledge about associated vascular abnormalities.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Birger Tielemans
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Edegem, Belgium
- Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Hassan Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| | - Maximilian Ackermann
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| |
Collapse
|
10
|
Jin R, Dai Y, Wang Z, Hu Q, Zhang C, Gao H, Yan Q. Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression. BIOLOGY 2024; 14:12. [PMID: 39857243 PMCID: PMC11763183 DOI: 10.3390/biology14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis. Understanding the molecular mechanisms of renal fibrosis is crucial for delaying CKD progression. Ferroptosis is a type of discovered an iron-dependent lipid peroxidation-regulated cell death. Notably, Ferroptosis contributes to tissue and organ fibrosis, which is correlated with the degree of renal fibrosis. This study aims to clarify the complex mechanisms of ferroptosis in renal parenchymal cells and explore how ferroptosis intervention may help alleviate renal fibrosis, particularly by addressing the gap in CKD mechanisms related to abnormal lipid metabolism under the ferroptosis context. The goal is to provide a new theoretical basis for clinically delaying CKD progression.
Collapse
Affiliation(s)
- Rui Jin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinyang Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi 445000, China
| |
Collapse
|
11
|
Yang X, Zhou N, Cao J. Role of Small Airway Epithelial-Mesenchymal Transition and CXCL13 in Pulmonary Lymphoid Follicle Formation in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:2559-2569. [PMID: 39629182 PMCID: PMC11613702 DOI: 10.2147/copd.s487539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by inflammation and airway remodeling. Lymphoid follicles play a crucial role in acquired immunity and the development of COPD. However, the precise mechanisms of lymphoid follicle formation in COPD and the effects of cigarette smoke (CS) exposure on this process remain unclear. Epithelial-mesenchymal transition (EMT) is implicated in the progression of COPD and may serves as a source of stromal cells that produce chemokines crucial for lymphoid follicle formation. This study aims to clarify the contributions and mechanisms of EMT in lymphoid follicle genesis in COPD, focusing specifically on the role of CXCL13. Methods Lung tissue samples were obtained from patients with COPD, smokers, and non-smokers. Immunohistochemistry was performed to assess the lymphoid follicles, EMT-related markers, and CXCL13 expression. In vitro experiments were conducted using CS extract (CSE)-stimulated immortalized human bronchial epithelial cells (iHBECs) to induce EMT. The expression of EMT-related markers and CXCL13 in CSE-stimulated iHBECs was analyzed using Western blotting, real-time PCR, and immunofluorescence staining. The effect of an EMT inhibitor on CXCL13 expression was also examined. Results Patients with COPD and lymphoid follicles exhibited significantly lower forced expiratory volume in 1 s (% predicted) values than those without lymphoid follicles. Enhanced EMT changes were observed in patients with COPD and lymphoid follicles. Increased EMT-related markers and CXCL13 expression were observed in CSE-stimulated iHBECs, and CXCL13 expression gradually increased over time. Inhibiting EMT downregulated CXCL13 expression in iHBECs. Conclusion Lymphoid follicles are associated with enhanced EMT in COPD. EMT may act as a key driver of the adaptive immune response in COPD by promoting a microenvironment conducive to lymphoid follicles formation through the production of CXCL13. This study provides valuable insights into the mechanisms underlying lymphoid follicle formation in COPD and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Xia Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Ning Zhou
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Li Q, Li H, Zhu L, Zhang L, Zheng X, Hao Z. Growth Differentiation Factor 11 Evokes Lung Injury, Inflammation, and Fibrosis in Mice through the Activin A Receptor Type II-Like Kinase, 53kDa-Smad2/3 Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2036-2058. [PMID: 39147236 DOI: 10.1016/j.ajpath.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Growth differentiation factor 11 (GDF11) belongs to the transforming growth factor beta superfamily and participates in various pathophysiological processes. Initially, GDF11 was suggested to act as a rejuvenator by improving age-related phenotypes of the heart, brain, and skeletal muscle in aged mice. Recent studies demonstrate that GDF11 also serves as an adverse risk factor for human frailty and diseases. However, the role of GDF11 in pulmonary fibrosis (PF) remains unclear. This study explored the role and signaling mechanisms of GDF11 in PF. GDF11 expression was markedly up-regulated in fibrotic lung tissues of both humans and mice. Intratracheal administration of commercial recombinant GDF11 caused lung injury, inflammation, and fibrogenesis in mice. Furthermore, adenovirus-mediated secretory expression of mature GDF11 was exacerbated, whereas full-length GDF11 or the GDF11 propeptide (GDF111-298) alleviated bleomycin-induced PF in mice. In in vitro experiments, GDF11 suppressed the growth of alveolar and bronchial epithelial cells (A549 and BEAS-2B) and human pulmonary microvascular endothelial cells, promoted fibroblast activation, and induced epithelial/endothelial-mesenchymal transition. These effects corresponded to the phosphorylation of Smad2/3, and blocking activin A receptor type II-like kinase, 53kDa (ALK5)-Smad2/3 signaling abolished the in vivo and in vitro effects of GDF11. In conclusion, these findings provide evidence that GDF11 acts as a potent injurious, proinflammatory, and profibrotic factor in the lungs via the ALK5-Smad2/3 pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Hamanaka RB, Shin KWD, Atalay MV, Cetin-Atalay R, Shah H, Houpy Szafran JC, Woods PS, Meliton AY, Shamaa OR, Tian Y, Cho T, Mutlu GM. Role of Arginine and its Metabolism in TGF-β-Induced Activation of Lung Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.618293. [PMID: 39554075 PMCID: PMC11565920 DOI: 10.1101/2024.11.01.618293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we used metabolic dropouts and labeling strategies to determine how activated fibroblasts utilize arginine. We found that arginine limitation leads to activation of GCN2 while inhibiting TGF-β-induced mTORC1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an ASS1-dependent manner. Using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Extracellular ornithine or glutamine were the primary sources of ornithine and polyamines, not arginine. Our findings suggest that the major role for arginine in lung fibroblasts is for charging of arginyl-tRNAs and for promotion of mTOR signaling. Highlights Arginine depletion inhibits TGF-β-induced transcription in human lung fibroblasts (HLFs).Arginine is not significantly catabolized in HLFs either through NOS or ARG dependent pathways.Extracellular glutamine and ornithine are the primary sources of polyamines in lung fibroblasts.The primary role of arginine in lung fibroblasts is for signaling through mTOR and GNC2.
Collapse
|
14
|
Lopes GAO, Lima BHF, Freitas CS, Peixoto AC, Soriani FM, Cassali GD, Ryffel B, Teixeira MM, Machado FS, Russo RC. Opposite effects of systemic and local conditional CD11c+ myeloid cell depletion during bleomycin-induced inflammation and fibrosis in mice. Immun Inflamm Dis 2024; 12:e70042. [PMID: 39582275 PMCID: PMC11586507 DOI: 10.1002/iid3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
RATIONALE Elevated levels of CD11c+ myeloid cells are observed in various pulmonary disorders, including Idiopathic Pulmonary Fibrosis (IPF). Dendritic cells (DCs) and macrophages (MΦ) are critical antigen-presenting cells (APCs) that direct adaptive immunity. However, the role of CD11c+ myeloid cells in lung extracellular matrix (ECM) accumulation and pulmonary fibrosis is poorly understood. OBJECTIVE We aimed to investigate the impact of depleting CD11c+ myeloid cells, including DCs and macrophages, during bleomycin-induced pulmonary fibrosis in mice. METHODS We used a diphtheria toxin (DTx) receptor (DTR) transgenic mouse model (CD11c-DTR-Tg) to deplete CD11c+ myeloid cells through two methods: Systemic Depletion (SD) via intraperitoneal injection (i.p.) and local depletion (LD) via intranasal instillation (i.n.). We then assessed the effects of CD11c+ cell depletion during bleomycin-induced lung inflammation and fibrosis. RESULTS Fourteen days after bleomycin instillation, there was a progressive accumulation of myeloid cells, specifically F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ, preceding mortality and pulmonary fibrosis. Systemic depletion of CD11c+ DCs and MΦ via i.p. DTx administration in CD11c-DTR-Tg mice protected against bleomycin-induced mortality and pulmonary fibrosis compared to wild-type (WT) mice. Systemic depletion reduced myeloid cells, airway inflammation (total leukocytes, neutrophils, and CD4+ lymphocytes in bronchoalveolar lavage (BAL), inflammatory and fibrogenic mediators, and fibrosis-related mRNAs (Collagen-1α1 and α-SMA). Increased anti-inflammatory cytokine IL-10 and CXCL9 levels were observed, resulting in lower lung hydroxyproline content and Ashcroft fibrosis score. Conversely, local depletion of CD11c+ cells increased mortality by acute leukocyte influx (predominantly neutrophils, DCs, and MΦ in BAL) correlated to IL-1β, with lung hyper-inflammation and early fibrosis development. CONCLUSION Systemic depletion of CD11c+ cells confers protection against inflammation and fibrosis induced by Bleomycin, underscoring the significance of myeloid cells expressing F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ orchestrating the inflammatory milieu within the lungs, potentially as a source of cytokines sustaining pulmonary chronic inflammation leading to progressive fibrosis and mortality.
Collapse
Affiliation(s)
- Gabriel Augusto Oliveira Lopes
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Braulio Henrique Freire Lima
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Andiara Cardoso Peixoto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and NeurogeneticsUniversity of Orleans, CNRS UMR7355OrleansFrance
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Fabiana Simão Machado
- Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
15
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
16
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
17
|
Chen Z, Xie W, Tang S, Lin M, Ren L, Huang X, Deng L, Qian R, Wang Z, Xiong D, Xie P, Liu W. Taraxerone exerts antipulmonary fibrosis effect through Smad signaling pathway and antioxidant stress response in a Sirtuin1-dependent manner. Phytother Res 2024; 38:3720-3735. [PMID: 38776174 DOI: 10.1002/ptr.8221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 05/24/2024]
Abstract
Idiopathic pulmonary fibrosis treatments are limited, often with severe side effects, highlighting the need for novel options. Taraxerone has diverse biomedical properties, but its mechanism remains unclear. This study investigates taraxerone's impact and the mechanisms involved in bleomycin-induced pulmonary fibrosis in mice. After establishing a pulmonary fibrosis mouse model, taraxerone was intraperitoneally injected continuously for 14-28 days. The in vivo antifibrotic and antioxidative stress effects of taraxerone were assessed. In vitro, the influence of taraxerone on transforming growth factor-β1-induced myofibroblast transformation and oxidative stress was investigated. Subsequently, quantitative polymerase chain reaction screened the histone deacetylase and Sirtuin family, and taraxerone's effects on SIRT1 were assessed. After SIRT1 siRNA treatment, changes in myofibroblast transformation and antioxidant capacity in response to taraxerone were observed. Acetylation and phosphorylation levels of Smad3 were evaluated. We also examined the binding levels of SIRT1 with Pho-Smad3 and Smad3, as well as the nuclear localization of Smad2/3. EX527 confirmed SIRT1's in vivo action in response to taraxerone. In vitro experiments suggested that taraxerone inhibited myofibroblast differentiation by activating SIRT1 and reducing oxidative stress. We also observed a new interaction between SIRT1 and the Smad complex. Taraxerone activates SIRT1, enabling it to bind directly to Smad3. This leads to reduced Smad complex phosphorylation and limited nuclear translocation. As a result, the transcription of fibrotic factors is reduced. In vivo validation confirms taraxerone's SIRT1-mediated antifibrotic effectiveness. This suggests that targeting SIRT1-mediated inhibition of myofibroblast differentiation could be a key strategy in taraxerone-based therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ziwei Chen
- Xiangya Nursing School, Central South University, Changsha, China
- Laboratory Medicine Department, Xiangya Hospital, Central South University, Changsha, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Miao Lin
- Xiangya Nursing School, Central South University, Changsha, China
| | - Lu Ren
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha, China
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Dayang Xiong
- Xiangya Nursing School, Central South University, Changsha, China
| | - Pingli Xie
- National Experimental Teaching Demonstration Center for Medical Function, Central South University, Changsha, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, China
| |
Collapse
|
18
|
Wu M, Li H, Zhai R, Shan B, Guo C, Chen J. Tanshinone IIA positively regulates the Keap1-Nrf2 system to alleviate pulmonary fibrosis via the sestrin2-sqstm1 signaling axis-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155620. [PMID: 38669964 DOI: 10.1016/j.phymed.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Activation of myofibroblasts, linked to oxidative stress, emerges as a pivotal role in the progression of pulmonary fibrosis (PF). Our prior research has underscored the therapeutic promise of tanshinone IIA (Tan-IIA) in mitigating PF by enhancing nuclear factor-erythroid 2-related factor 2 (Nrf2) activity. Nevertheless, the molecular basis through which Tan-IIA influences Nrf2 activity has yet to be fully elucidated. METHODS The influence of Tan-IIA on PF was assessed in vivo and in vitro models. Inhibitors, overexpression plasmids, and small interfering RNA (siRNA) were utilized to probe its underlying mechanism of action in vitro. RESULTS We demonstrate that Tan-IIA effectively activates the kelch-like ECH-associated protein 1 (Keap1)-Nrf2 antioxidant pathway, which in turn inhibits myofibroblast activation and ameliorates PF. Notably, the stability and nucleo-cytoplasmic shuttling of Nrf2 is shown to be dependent on augmented autophagic flux, which is in alignment with the observation that Tan-IIA induces autophagy. Inhibition of autophagy, conversely, fosters the activation of extracellular matrix (ECM)-producing myofibroblasts. Further, Tan-IIA initiates an autophagy program through the sestrin 2 (Sesn2)-sequestosome 1 (Sqstm1) signaling axis, crucial for protecting Nrf2 from Keap1-mediated degradation. Meanwhile, these findings were corroborated in a murine model of PF. CONCLUSION Collectively, we observed for the first time that the Sqstm1-Sesn2 axis-mediated autophagic degradation of Keap1 effectively prevents myofibroblast activation and reduces the synthesis of ECM. This autophagy-dependent degradation of Keap1 can be initiated by the Tan-IIA treatment, which solidifies its potential as an Nrf2-modulating agent for PF treatment.
Collapse
Affiliation(s)
- Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongxia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 22530, China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Yvon R, Black KE, Weigert A, Savai R, Egea-Zorrilla A, Pardo-Saganta A, Lagares D, Woo CM. Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B. JCI Insight 2024; 9:e171162. [PMID: 38900587 PMCID: PMC11383833 DOI: 10.1172/jci.insight.171162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maria-Anna Chrysovergi
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Farah Kabir
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rachael T Lister
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Yvon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Katharine E Black
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Alejandro Egea-Zorrilla
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Ana Pardo-Saganta
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. ATF4 and mTOR regulate metabolic reprogramming in TGF-β-treated lung fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598694. [PMID: 38915485 PMCID: PMC11195155 DOI: 10.1101/2024.06.12.598694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that fibroblast activation is supported by metabolic reprogramming, including the upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. How fibroblast metabolic reprogramming is regulated downstream of TGF-β is incompletely understood. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote increased expression of the enzymes required for de novo glycine synthesis; however, whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression, but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts while mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single cell RNAseq data sets and found increased expression of ATF4 and mTOR metabolic targets in pathologic fibroblast populations from the lungs of IPF patients. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
21
|
Pan D, Di X, Yan B, Su X. Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis. Int J Gen Med 2024; 17:1419-1431. [PMID: 38617054 PMCID: PMC11016256 DOI: 10.2147/ijgm.s455707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Pulmonary fibrosis is a group of chronic, progressive, and irreversible interstitial lung diseases, which are common to most end-stage lung diseases and are one of the most difficult diseases of the respiratory system. In recent years, due to the frequent occurrence of air pollution and smog, the incidence of pulmonary fibrosis in China has increased year by year, the morbidity and mortality rates of pulmonary fibrosis have gradually increased and the age of the disease tends to be younger. However, the pathogenesis of pulmonary fibrosis is not yet fully understood and is needed to further explore new drug targets. Studies have shown that non-coding RNAs play an important role in regulating the process of pulmonary fibrosis, non-coding RNAs and their specifically expressed can promote or inhibit the process. Here, we review the role of some in the regulation of pulmonary fibrosis signaling pathways and provide new ideas for the clinical diagnosis and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dengyun Pan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaomin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
22
|
Huang CW, Lee SY, Du CX, Wu ST, Kuo YH, Ku HC. Caffeic acid ethanolamide induces antifibrosis, anti-inflammatory, and antioxidant effects protects against bleomycin-induced pulmonary fibrosis. Biomed Pharmacother 2024; 173:116298. [PMID: 38394850 DOI: 10.1016/j.biopha.2024.116298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease; its cause is unknown, and it leads to notable health problems. Currently, only two drugs are recommended for IPF treatment. Although these drugs can mitigate lung function decline, neither can improve nor stabilize IPF or the symptoms perceived by patients. Therefore, the development of novel treatment options for pulmonary fibrosis is required. The present study investigated the effects of a novel compound, caffeic acid ethanolamide (CAEA), on human pulmonary fibroblasts and evaluated its potential to mitigate bleomycin-induced pulmonary fibrosis in mice. CAEA inhibited TGF-β-induced α-SMA and collagen expression in human pulmonary fibroblasts, indicating that CAEA prevents fibroblasts from differentiating into myofibroblasts following TGF-β exposure. In animal studies, CAEA treatment efficiently suppressed immune cell infiltration and the elevation of TNF-α and IL-6 in bronchoalveolar lavage fluid in mice with bleomycin-induced pulmonary fibrosis. Additionally, CAEA exerted antioxidant effects by recovering the enzymatic activities of oxidant scavengers. CAEA directly inhibited activation of TGF-β receptors and protected against bleomycin-induced pulmonary fibrosis through inhibition of the TGF-β/SMAD/CTGF signaling pathway. The protective effect of CAEA was comparable to that of pirfenidone, a clinically available drug. Our findings support the potential of CAEA as a viable method for preventing the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
23
|
Wang Y, Hu D, Wan L, Yang S, Liu S, Wang Z, Li J, Li J, Zheng Z, Cheng C, Wang Y, Wang H, Tian X, Chen W, Li S, Zhang J, Zha X, Chen J, Zhang H, Xu KF. GOLM1 Promotes Pulmonary Fibrosis through Upregulation of NEAT1. Am J Respir Cell Mol Biol 2024; 70:178-192. [PMID: 38029327 DOI: 10.1165/rcmb.2023-0151oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive disease with elusive molecular mechanisms and limited therapeutic options. Aberrant activation of fibroblasts is a central hallmark of lung fibrosis. Here, we report that Golgi membrane protein 1 (GOLM1, also known as GP73 or GOLPH2) was increased in the lungs of patients with pulmonary fibrosis and mice with bleomycin (BLM)-induced pulmonary fibrosis. Loss of GOLM1 inhibited proliferation, differentiation, and extracellular matrix deposition of fibroblasts, whereas overexpression of GOLM1 exerted the opposite effects. Similarly, worsening pulmonary fibrosis after BLM treatment was observed in GOLM1-knock-in mice, whereas BLM-treated Golm1-knockout mice exhibited alleviated pulmonary fibrosis and collagen deposition. Furthermore, we identified long noncoding RNA NEAT1 downstream of GOLM1 as a potential mediator of pulmonary fibrosis through increased GOLM1 expression. Depletion of NEAT1 inhibited fibroblast proliferation and extracellular matrix production and reversed the profibrotic effects of GOLM1 overexpression. Additionally, we identified KLF4 as a downstream mediator of GOLM1 signaling to NEAT1. Our findings suggest that GOLM1 plays a pivotal role in promoting pulmonary fibrosis through the GOLM1-KLF4-NEAT1 signaling axis. Targeting GOLM1 and its downstream pathways may represent a novel therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yani Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Danjing Hu
- Department of Pulmonary and Critical Care Medicine and
| | - Linyan Wan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Liu
- Medical Science Center, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jie Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Li
- Department of Pulmonary and Critical Care Medicine and
| | - Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine and
| | | | - Yanan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanghang Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine and
| | - Wenhui Chen
- Department of Lung Transplantation, Centre for Lung Transplantation, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and
| | - Ji Zhang
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine and
| |
Collapse
|
24
|
Yang Y, Yuan T, Wu R, Geng Z, Lian S, Wang J. The effect of bta-miR-1296 on the proliferation and extracellular matrix synthesis of bovine mammary fibroblasts. In Vitro Cell Dev Biol Anim 2024; 60:183-194. [PMID: 38409638 DOI: 10.1007/s11626-024-00851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 02/28/2024]
Abstract
Mammary fibrosis in dairy cows is a chronic condition caused by mastitis, and can lead to serious culling of dairy cows resulting in huge economic losses in the dairy industry. MicroRNAs (miRNAs) exert an important role in regulating mammary gland health in dairy cows. This study investigated whether exosomal miRNAs in mammary epithelial cells can regulate the proliferation of bovine mammary fibroblasts (BMFBs) in mastitis. Liposome transfection technology was used to construct a cellular model of the overexpression and inhibition of miRNAs. The STarMir software, dual luciferase reporter gene test, real-time quantitative PCR (qRT-PCR), a Cell Counting Kit-8 (CCK-8), and a Western Blot and plate clone formation test were used to investigate the mechanism by which bta-miR-1296 regulates the proliferation of BMFBs. Target gene prediction results revealed that glutamate-ammonia ligase was a direct target gene by which bta-miR-1296 regulates cell proliferation. It was found that bta-miR-1296 significantly inhibited the proliferation of BMFBs. After BMFBs were transfected with a bta-miR-1296 mimic, mRNA expression in the extracellular matrix (ECM), α-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1α1) and collagen type III alpha 1 chain (COL3α1), and various cell growth factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β1 (TGF-β1)) were down-regulated, and the expressions of α-SMA, COL1α1, COL3α1, phospho-extracellular regulated protein kinases, phospho-protein kinase B, TGF-β1, and phospho-Smad family member3 proteins were inhibited. In conclusion, bta-miR-1296 can inhibit the proliferation of BMFBs and the synthesis of ECM in BMFBs, thus affecting the occurrence and development of mammary fibrosis in dairy cows and laying the foundation for further studies to clarify the regulatory mechanism of mammary fibrosis.
Collapse
Affiliation(s)
- Yuejie Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Tao Yuan
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Rui Wu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Zijian Geng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Shuai Lian
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China.
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China.
- Veterinary Medicine Faculty, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Daqing, People's Republic of China.
| |
Collapse
|
25
|
Bale LK, West SA, Oxvig C, Andersen KS, Roden AC, Haak AJ, Conover CA. Genetic and Pharmacological Inhibition of PAPP-A Reduces Bleomycin-Induced Pulmonary Fibrosis in Aged Mice via Reduced IGF Signaling. AGING BIOLOGY 2024; 2:e20240023. [PMID: 40110162 PMCID: PMC11922547 DOI: 10.59368/agingbio.20240023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-associated lung disease of unknown etiology that is characterized by exaggerated deposition of extracellular matrix (ECM), leading to distorted lung architecture, respiratory failure, and death. There are no truly effective treatment options for IPF, thus highlighting the importance of exploring new pathogenic mechanisms that underlie the development of fibrosis and of identifying new therapeutic targets. Insulin-like growth factors (IGFs) are known to be pro-fibrotic. However, the ubiquity and essentiality of IGF receptor signaling in normal physiology limit its potential as a direct therapeutic target. In a recent study, we found a highly significant correlation between expression of pregnancy-associated plasma protein (PAPP)-A in human IPF lung tissue and disease severity. PAPP-A is a unique metalloprotease that enhances local IGF action. In vitro studies support a role for proteolytically active PAPP-A in promoting a fibrotic phenotype in adult human lung fibroblasts. Here, we show that PAPP-A is preferentially expressed in mouse lung fibroblasts and that inhibition of PAPP-A in vivo through PAPP-A gene deletion or a specific neutralizing monoclonal antibody against PAPP-A markedly reduced the progression of bleomycin-induced lung fibrosis, as measured by significantly decreased ECM expression and improved lung histology. Surrogate markers of local IGF receptor activity in the lung were also significantly reduced, indicating indirect modulation of IGF signaling through PAPP-A. These results establish a role for PAPP-A in pulmonary fibrosis and point to PAPP-A as a selective and pharmacologically tractable target for IPF and possibly other fibrotic disorders.
Collapse
Affiliation(s)
- Laurie K Bale
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sally A West
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kristian S Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
26
|
Wu S, Liu M, Zhang M, Ye X, Gu H, Jiang C, Zhu H, Ye X, Li Q, Huang X, Cao M. The gene expression of CALD1, CDH2, and POSTN in fibroblast are related to idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1275064. [PMID: 38370408 PMCID: PMC10869495 DOI: 10.3389/fimmu.2024.1275064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung dysfunction due to excessive collagen production and tissue scarring. Despite recent advancements, the molecular mechanisms remain unclear. Methods RNA sequencing identified 475 differentially expressed genes (DEGs) in the TGF-β1-induced primary lung fibrosis model. Gene expression chips GSE101286 and GSE110147 from NCBI gene expression omnibus (GEO) database were analyzed using GEO2R, revealing 94 DEGs in IPF lung tissue samples. The gene ontology (GO) and pathway enrichment, Protein-protein interaction (PPI) network construction, and Maximal Clique Centrality (MCC) scoring were performed. Experimental validation included RT-qPCR, Immunohistochemistry (IHC), and Western Blot, with siRNA used for gene knockdown. A co-expression network was constructed by GeneMANIA. Results GO enrichment highlighted significant enrichment of DEGs in TGF-β cellular response, connective tissue development, extracellular matrix components, and signaling pathways such as the AGE-RAGE signaling pathway and ECM-receptor interaction. PPI network analysis identified hub genes, including FN1, COL1A1, POSTN, KIF11, and ECT2. CALD1 (Caldesmon 1), CDH2 (Cadherin 2), and POSTN (Periostin) were identified as dysregulated hub genes in both the RNA sequencing and GEO datasets. Validation experiments confirmed the upregulation of CALD1, CDH2, and POSTN in TGF-β1-treated fibroblasts and IPF lung tissue samples. IHC experiments probed tissue-level expression patterns of these three molecules. Knockdown of CALD1, CDH2, and POSTN attenuated the expression of fibrotic markers (collagen I and α-SMA) in response to TGF-β1 stimulation in primary fibroblasts. Co-expression analysis revealed interactions between hub genes and predicted genes involved in actin cytoskeleton regulation and cell-cell junction organization. Conclusions CALD1, CDH2, and POSTN, identified as potential contributors to pulmonary fibrosis, present promising therapeutic targets for IPF patients.
Collapse
Affiliation(s)
- Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
27
|
Zhu JH, Wang L, Ma ZX, Duan JA, Tao JH. Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple ameliorates renal interstitial fibrosis in CKD rats by inhibiting the TGF-β1/MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117039. [PMID: 37579922 DOI: 10.1016/j.jep.2023.117039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb couple Rehmannia glutinosa Libosch and Cornus officinalis Sieb (RC), originated from "Liuwei Dihuang Pill" which recorded in Key to Therapeutics of Children's Diseases. Traditionally, they have been used widely for their ability to nourish yin and energize the kidneys. Our previous study indicated that the RC could protect against adenine induced Chronic kidney disease (CKD) rats. Nevertheless, there is still no clear explanation of the mechanisms by which RC affects renal interstitial fibrosis in CKD rats. AIM OF THE STUDY Current Work aims to explore the amelioration and potential mechanism of RC on renal interstitial fibrosis in CKD rats. MATERIALS AND METHODS CKD rats were induced by adenine. Two weeks after administration, blood, urine, and kidney tissue were collected for biochemical analysis. Observing the physiological state of rats through the changes of rat body weight and renal index. The pro-inflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA), while renal tissue damage and fibrosis were assessed with Hematoxylin-eosin staining (H&E) and Masson's trichrome staining. In order to determine the levels of indicators and proteins associated with fibrosis signaling pathways, real time PCR (Rt-PCR), Western blot (WB), and immunofluorescence were employed. RESULTS The renal interstitial fibrosis led to impaired cellular functions with increased the levels of Blood Urea Nitrogen (BUN), Urine protein (UP), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor alpha (TNF-α). and simultaneous up-regulated collagenⅠ(COL-1), fibronection (FN), α-smooth muscle actin (a-SMA), transforming growth factor-β1 (TGF-β1), c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK), down-regulated the expression of the E-cadherin proteins. RC notably improved renal dysfunction in CKD rats as indicated by decreases in BUN, UP, and renal index. In addition, consistent with the morphological changes of renal tissue, renal interstitial fibrosis in CKD rats after RC intervention was significantly improved, mainly manifested by a decrease in the positive expression of COL-1, FN, and a-SMA, and increased levels of E-cadherin protein. Meanwhile, RC reduced the classical pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in adenine-induced CKD rats. Additionally, RC administration also down-regulated TGF-β1, JNK, p38 and ERK. CONCLUSION In conclusion, RC may reduce inflammation in adenine induced CKD rats, improve extracellular matrix (ECM) components deposition, and diminish epithelial-mesenchymal transition (EMT) marker protein levels. Furthermore, RC intervention significantly reduces the release of inflammatory cytokines and inhibits the TGF-β1/MAPK signaling pathway. Based on the results, RC might be useful in the treatment of adenine induced renal fibrosis.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Ling Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Zhen-Xiang Ma
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jin-Ao Duan
- Collaborative Innovation Center of Chinese Medicine Resources, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Jin-Hua Tao
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China.
| |
Collapse
|
28
|
Zeng H, Chen W, Li M, Shao Y, Li X, Zhang R, Jiang Y. Temporal analysis of lung injury induced by real-ambient PM 2 .5 exposure in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:377-387. [PMID: 37782690 DOI: 10.1002/tox.23985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Fine particulate matter (PM2.5 ) has been shown to induce lung injury. However, the pathophysiological mechanisms of PM2.5 -induced pulmonary injury after different exposure times are poorly understood. In this study, we exposed male ICR mice to a whole-body PM2.5 inhalation system at daily mean concentration range from 92.00 to 862.00 μg/m3 for 30, 60, and 90 days. We found that following prolonged exposure to PM2.5 , pulmonary injury was increasingly evident with significant histopathological alterations. Notably, the pulmonary inflammatory response and fibrosis caused by PM2.5 after different exposure times were closely associated with histopathological changes. In addition, PM2.5 exposure caused oxidative stress, DNA damage and impairment of DNA repair in a time-dependent manner in the lung. Importantly, exposure to PM2.5 eventually caused apoptosis in the lung through upregulation of cleaved-caspase-3 and downregulation of Bcl-2. Overall, our data demonstrated that PM2.5 led to pulmonary injury in a time-dependent manner via upregulation of proinflammatory and fibrosis-related genes, and activation of the DNA damage response. Our findings provided a novel perspective on the pathophysiology of respiratory diseases caused by airborne pollution.
Collapse
Affiliation(s)
- Huixian Zeng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Thiam F, Phogat S, Abokor FA, Osei ET. In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 2023; 24:298. [PMID: 38012580 PMCID: PMC10680329 DOI: 10.1186/s12931-023-02608-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
IPF is a fatal lung disease characterized by intensive remodeling of lung tissue leading to respiratory failure. The remodeling in IPF lungs is largely characterized by uncontrolled fibrosis. Fibroblasts and their contractile phenotype the myofibroblast are the main cell types responsible for typical wound healing responses, however in IPF, these responses are aberrant and result in the overactivation of fibroblasts which contributes to the inelasticity of the lung leading to a decrease in lung function. The specific mechanisms behind IPF pathogenesis have been elusive, but recently the innate and adaptive immunity have been implicated in the fibrotic processes of the disease. In connection with this, several in vitro co-culture models have been used to investigate the specific interactions occurring between fibroblasts and immune cells and how this contributes to the pathobiology of IPF. In this review, we discuss the in vitro models that have been used to examine the abnormal interactions between fibroblasts and cells of the innate and adaptive immune system, and how these contribute to the fibrotic processes in the lungs of IPF patients.
Collapse
Affiliation(s)
- Fama Thiam
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Sakshi Phogat
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
31
|
Meliton AY, Cetin-Atalay R, Tian Y, Szafran JCH, Shin KWD, Cho T, Sun KA, Woods PS, Shamaa OR, Chen B, Muir A, Mutlu GM, Hamanaka RB. Mitochondrial One-Carbon Metabolism is Required for TGF-β-Induced Glycine Synthesis and Collagen Protein Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566074. [PMID: 37986788 PMCID: PMC10659399 DOI: 10.1101/2023.11.07.566074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-β induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-β-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-β; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Takugo Cho
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Alexander Muir
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
32
|
Jiang Y, Shi J, Zhou J, He C, Gu R. ErbB4 promotes M2 activation of macrophages in idiopathic pulmonary fibrosis. Open Life Sci 2023; 18:20220692. [PMID: 37800117 PMCID: PMC10549971 DOI: 10.1515/biol-2022-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 10/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal diffuse fibrotic lung disease accompanied by macrophage M2 activation. ErbB4 is involved in and affects the process of inflammation. In this study, we determined that the mRNA level and protein expression of ErbB4 and M2 cytokine members were increased in the serum of IPF patients. In mouse alveolar macrophage MH-S cells, after knocking down ErbB4 by siRNA, the mRNA level and protein expression of M2 activator induced by interleukin (IL)-4 were decreased compared with the control group. Activating by ErbB4 agonist neuromodulatory protein (NRG)-1, IL-4-induced M2 program was promoted. Mechanistically, treated with NRG-1 in MH-S cells, the phosphorylation level of Akt did not change, while the phosphorylation level of ERK increased. Using SCH772984 to inhibit ERK pathway, the increasing IL-4-induced M2 activation by NRG-1 was inhibited, and the high level of M2 activator protein expression and mRNA expression was restored. Collectively, our data support that ErbB4 and M2 programs are implicated in IPF, and ErbB4 participates in the regulation of M2 activation induced by IL-4 through the ERK pathway.
Collapse
Affiliation(s)
- Yu Jiang
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jialin Shi
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Junhao Zhou
- Shaoxing Traditional Chinese Medicine Hospital, Shaoxing 312000, Zhejiang, China
| | - Chunxiao He
- Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang, China
| | - Ruinan Gu
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| |
Collapse
|
33
|
Zhang S, Tong X, Liu S, Huang J, Zhang L, Zhang T, Wang D, Fan H. AAV9-Tspyl2 gene therapy retards bleomycin-induced pulmonary fibrosis by modulating downstream TGF-β signaling in mice. Cell Death Dis 2023; 14:389. [PMID: 37391440 PMCID: PMC10313802 DOI: 10.1038/s41419-023-05889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease characterized by scarring and destruction of the lung architecture, with limited treatment options. Targeted gene therapy to restore cell division autoantigen-1 (CDA1) expression may be a potential treatment approach to delay the progression of pulmonary fibrosis (PF). Here, we focused on CDA1, which was significantly decreased in human IPF, in a mouse model of bleomycin (BLM)-induced PF, and in transforming growth factor (TGF-β)-challenged lung fibroblasts. In vitro, CDA1 overexpression by lentivirus infection in human embryonic lung fibroblasts (HFL1 cells) inhibited the production of pro-fibrotic and pro-inflammatory cytokines, lung fibroblast-to-myofibroblast transition, and extracellular matrix protein expression induced by exogenous TGF-β1 treatment, whereas CDA1 knockdown with small interfering RNA promoted this effect. CDA1 overexpression also inhibited cell proliferation and migration. In a mouse model of BLM-induced PF, we provided novel evidence that the intratracheal delivery of adeno-associated virus serotype 9 carrying the mouse Tspyl2 gene reduced lung tissue inflammation and fibrosis. Mechanistically, CDA1, as a transcription regulator, could repress the TGF-β signal transduction in vivo and in vitro. In conclusion, our results show that Tspyl2 gene therapy plays an antifibrotic role by inhibiting the lung fibroblast-to-myofibroblast transition and downstream TGF-β/Smad3 signaling transduction in BLM-induced PF in mice, suggesting that CDA1 is an appropriate and promising therapeutic target for PF.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
35
|
Ly TD, Sambale M, Klösener L, Traut P, Fischer B, Hendig D, Kuhn J, Knabbe C, Faust-Hinse I. Understanding of arthrofibrosis: New explorative insights into extracellular matrix remodeling of synovial fibroblasts. PLoS One 2023; 18:e0286334. [PMID: 37235555 DOI: 10.1371/journal.pone.0286334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Arthrofibrosis following total knee arthroplasty is a fibroproliferative joint disorder marked by dysregulated biosynthesis of extracellular matrix proteins, such as collagens and proteoglycans. The underlying cellular events remain incompletely understood. Myofibroblasts are highly contractile matrix-producing cells characterized by increased alpha-smooth muscle actin expression and xylosyltransferase-I (XT-I) secretion. Human XT-I has been identified as a key mediator of arthrofibrotic remodeling. Primary fibroblasts from patients with arthrofibrosis provide a useful in vitro model to identify and characterize disease regulators and potential therapeutic targets. This study aims at characterizing primary synovial fibroblasts from arthrofibrotic tissues (AFib) regarding their molecular and cellular phenotype by utilizing myofibroblast cell culture models. Compared to synovial control fibroblasts (CF), AFib are marked by enhanced cell contractility and a higher XT secretion rate, demonstrating an increased fibroblast-to-myofibroblast transition rate during arthrofibrosis. Histochemical assays and quantitative gene expression analysis confirmed higher collagen and proteoglycan expression and accumulation in AFib compared to CF. Furthermore, fibrosis-based gene expression profiling identified novel modifier genes in the context of arthrofibrosis remodeling. In summary, this study revealed a unique profibrotic phenotype in AFib that resembles some traits of other fibroproliferative diseases and can be used for the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Meike Sambale
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Lara Klösener
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Philipp Traut
- Orthopädische Beratung und Begutachtung, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, North Rhine-Westphalia, Germany
| |
Collapse
|
36
|
Zhang Y, Fu J, Han Y, Feng D, Yue S, Zhou Y, Luo Z. Two-Pore-Domain Potassium Channel TREK-1 Mediates Pulmonary Fibrosis through Macrophage M2 Polarization and by Direct Promotion of Fibroblast Differentiation. Biomedicines 2023; 11:biomedicines11051279. [PMID: 37238950 DOI: 10.3390/biomedicines11051279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation and abnormal accumulation of extracellular matrix in the lungs. After lung injury, M2 macrophages mediate the pathogenesis of pulmonary fibrosis by secreting fibrotic cytokines that promote myofibroblast activation. The TWIK-related potassium channel (TREK-1, also known as KCNK2) is a K2P channel that is highly expressed in cardiac, lung, and other tissues; it worsens various tumors, such as ovarian cancer and prostate cancer, and mediates cardiac fibrosis. However, the role of TREK-1 in lung fibrosis remains unclear. This study aimed to examine the effects of TREK-1 on bleomycin (BLM)-induced lung fibrosis. The results show that TREK-1 knockdown, mediated by the adenovirus or pharmacological inhibition of TREK-1 with fluoxetine, resulted in diminished BLM-induced lung fibrosis. TREK-1 overexpression in macrophages remarkably increased the M2 phenotype, resulting in fibroblast activation. Furthermore, TREK-1 knockdown and fluoxetine administration directly reduced the differentiation of fibroblasts to myofibroblasts by inhibiting the focal adhesion kinase (FAK)/p38 mitogen-activated protein kinases (p38)/Yes-associated protein (YAP) signaling pathway. In conclusion, TREK-1 plays a central role in the pathogenesis of BLM-induced lung fibrosis, which serves as a theoretical basis for the inhibition of TREK-1 as a potential therapy protocol for lung fibrosis.
Collapse
Affiliation(s)
- Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiafeng Fu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
| |
Collapse
|
37
|
Chemparathy DT, Sil S, Callen S, Chand HS, Sopori M, Wyatt TA, Acharya A, Byrareddy SN, Fox HS, Buch S. Inflammation-Associated Lung Tissue Remodeling and Fibrosis in Morphine-Dependent SIV-Infected Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:380-391. [PMID: 37003622 PMCID: PMC10116601 DOI: 10.1016/j.ajpath.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023]
Abstract
With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-β, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
Collapse
Affiliation(s)
- Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
38
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Black KE, Lagares D, Woo CM. Sanglifehrin A mitigates multi-organ fibrosis in vivo by inducing secretion of the collagen chaperone cyclophilin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531890. [PMID: 36945535 PMCID: PMC10028952 DOI: 10.1101/2023.03.09.531890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis by myofibroblasts have clinical potential as anti-fibrotic agents. Lysine hydroxylation by the prolyl-3-hydroxylase complex, comprised of cartilage associated protein, prolyl 3-hydroxylase 1, and cyclophilin B, is essential for collagen type I crosslinking and formation of stable fibers. Here, we identify the collagen chaperone cyclophilin B as a major cellular target of the macrocyclic natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Our studies reveal a unique mechanism of action in which SfA binding to cyclophilin B in the endoplasmic reticulum (ER) induces the secretion of cyclophilin B to the extracellular space, preventing TGF-β1-activated myofibroblasts from synthesizing collagen type I in vitro without inhibiting collagen type I mRNA transcription or inducing ER stress. In addition, SfA prevents collagen type I secretion without affecting myofibroblast contractility or TGF-β1 signaling. In vivo, we provide chemical, molecular, functional, and translational evidence that SfA mitigates the development of lung and skin fibrosis in mouse models by inducing cyclophilin B secretion, thereby inhibiting collagen synthesis from fibrotic fibroblasts in vivo . Consistent with these findings in preclinical models, SfA reduces collagen type I secretion from fibrotic human lung fibroblasts and precision cut lung slices from patients with idiopathic pulmonary fibrosis, a fatal fibrotic lung disease with limited therapeutic options. Our results identify the primary liganded target of SfA in cells, the collagen chaperone cyclophilin B, as a new mechanistic target for the treatment of organ fibrosis.
Collapse
|
39
|
Bogatkevich GS, Atanelishvili I, Bogatkevich AM, Silver RM. Critical Role of LMCD1 in Promoting Profibrotic Characteristics of Lung Myofibroblasts in Experimental and Scleroderma-Associated Lung Fibrosis. Arthritis Rheumatol 2023; 75:438-448. [PMID: 36103378 PMCID: PMC9998340 DOI: 10.1002/art.42344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a serious complication and leading cause of mortality in patients with systemic sclerosis (SSc). In this study, we explored the role of LIM and cysteine-rich domains protein 1 (LMCD1) as a novel factor in the pathogenesis of SSc-related ILD (SSc-ILD). METHODS The expression and effects of LMCD1 were studied in lung tissue samples and fibroblasts from SSc-ILD patients and control subjects as well as in lung tissue samples from animal models. RESULTS LMCD1 was consistently elevated in lung tissue samples and in fibroblasts isolated from SSc-ILD patients as compared to controls. Additionally, LMCD1 was found to be highly expressed in the lung in the fibroblast-specific protein (FSP)-driven, constitutively active transforming growth factor β receptor type I (TGFβR1) transgenic mouse model of ILD and the bleomycin-induced mouse model of ILD. In lung fibroblasts from SSc-ILD patients, LMCD1 is an essential factor for the TGFβ-induced generation of type I collagen, fibronectin, and α-smooth muscle actin (α-SMA). Depletion of LMCD1 by small interfering RNA reduced the expression of extracellular matrix proteins and lowered transcriptional activity and expression of α-SMA, as well as decreased the proliferation and contractile activity of SSc-ILD lung fibroblasts. In dense fibrotic areas of affected lung tissue, lung LMCD1 colocalized with α-SMA. In cultured scleroderma lung fibroblasts, LMCD1 colocalized and interacted with serum response factor which mediates LMCD1-induced contractile activity of lung fibroblasts. CONCLUSION Our study identifies LMCD1 as a profibrotic molecule contributing to the activation of myofibroblasts and the persistent fibroproliferation observed in SSc-ILD. Thus, LMCD1 may be a potential novel therapeutic target for patients with SSc-ILD.
Collapse
Affiliation(s)
- Galina S Bogatkevich
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston
| | - Ilia Atanelishvili
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston
| | - Andrew M Bogatkevich
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, and College of Charleston (BSc Student), Charleston, South Carolina
| | - Richard M Silver
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston
| |
Collapse
|
40
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
42
|
Ding J, Li J, Qi J, Fu L. Characterization of dental dust particles and their pathogenicity to respiratory system: a narrative review. Clin Oral Investig 2023; 27:1815-1829. [PMID: 36773127 PMCID: PMC9918839 DOI: 10.1007/s00784-023-04910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES Dental professionals are exposed to large amounts of dust particles during routine treatment and denture processing. This article provides a narrative review to investigate the most prevalent dust-related respiratory diseases among dental professionals and to discuss the effects of dental dust on human respiratory health. MATERIALS AND METHODS A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1990 and 2022. Any articles on the occupational respiratory health effects of dental dust were included. RESULTS The characterization and toxicity evaluation of dental dust show a correlation between dust exposure and respiratory system injury, and the possible pathogenic mechanism of dust is to cause lung injury and abnormal repair processes. The combination use of personal protective equipment and particle removal devices can effectively reduce the adverse health effects of dust exposure. CONCLUSIONS Dental dust should be considered an additional occupational hazard in dental practice. However, clinical data and scientific evidence on this topic are still scarce. Further research is required to quantify dust in the dental work environment and clarify its pathogenicity and potential toxicological pathways. Nonetheless, the prevention of dust exposure should become a consensus among dental practitioners. CLINICAL RELEVANCE This review provides dental practitioners with a comprehensive understanding and preventive advice on respiratory health problems associated with dust exposure.
Collapse
Affiliation(s)
- Jiaxin Ding
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Junxuan Li
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Junnan Qi
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Fu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun, 130021, China.
| |
Collapse
|
43
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
44
|
Wang D, Deng B, Cheng L, Li J, Zhang J, Zhang X, Guo X, Yan T, Yue X, An Y, Zhang B, Yang W, Xie J, Wang R. A novel and low-toxic peptide DR3penA alleviates pulmonary fibrosis by regulating the MAPK/miR-23b-5p/AQP5 signaling axis. Acta Pharm Sin B 2023; 13:722-738. [PMID: 36873181 PMCID: PMC9979266 DOI: 10.1016/j.apsb.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Guo
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Yue
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingying An
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
45
|
Farkas L, Horowitz JC, Mora AL. How a fibroblast ages: a role for bone morphogenetic protein 4 in protecting lung fibroblasts from senescence in pulmonary fibrosis. Eur Respir J 2022; 60:2201702. [PMID: 36522139 PMCID: PMC10210359 DOI: 10.1183/13993003.01702-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Luo J, Tugade T, Sun E, Pena Diaz AM, O’Gorman DB. Sustained AWT1 expression by Dupuytren's disease myofibroblasts promotes a proinflammatory milieu. J Cell Commun Signal 2022; 16:677-690. [PMID: 35414143 PMCID: PMC9733761 DOI: 10.1007/s12079-022-00677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Palmar fibromatosis, also known as Dupuytren's disease (DD), is a common and heritable fibrosis of the hand. It is characterized by the formation of myofibroblastic nodules that can progress to palmar-digital contractures and permanent loss of dexterity. The presence of inflammatory cell infiltrate within these nodules has been interpreted to suggest a pathogenesis mediated by a proinflammatory microenvironment. However, the molecular mechanisms driving the formation of pro-fibrotic microenvironments in this and other fibroses remain unclear. To gain insights into this process, we have assessed the contributions of an alternatively spliced, multi-functional transcription factor, Wilms Tumor 1 (WT1), previously shown to be upregulated in primary myofibroblasts derived from DD tissues. Proinflammatory cytokine stimuli of DD myofibroblasts enhanced the expression of several distinct WT1 variants, the most sustained being a 5' truncated version of WT1, alternative WT1 (AWT1). Constitutive adenoviral expression of AWT1 in myofibroblasts derived from phenotypically non-fibrotic palmar fascia significantly induced the expression and secretion of proinflammatory cytokines, including some with potential as novel therapeutic targets. In summary, these data implicate roles for sustained AWT1 expression in DD as a transcriptional driver of a proinflammatory fascial milieu.
Collapse
Affiliation(s)
- Johnny Luo
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Trisiah Tugade
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Emmy Sun
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Ana Maria Pena Diaz
- grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2 Canada
| | - David B. O’Gorman
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Surgery, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2 Canada
| |
Collapse
|
47
|
CHEN Z, RUAN B, LONG G, LIN W. Adipose tissue-derived mesenchymal stem cells attenuate lung inflammation and fibrosis in the bleomycin-induced pulmonary fibrosis rat model via caveolin-1/NF-kB signaling axis. Physiol Res 2022; 71:657-666. [PMID: 36047729 PMCID: PMC9841806 DOI: 10.33549/physiolres.934892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stem cells have emerged as promising therapeutic options for several human diseases, including pulmonary fibrosis (PF). In this study, we investigated the therapeutic effects of adipose tissue-derived mesenchymal stem cells (ADMSCs) in the bleomycin-induced PF model rats and the underlying mechanisms. The PF model rats were generated by intratracheal injections of 5 mg/kg bleomycin sulfate. The ADMSC group rats were generated by injecting 2×10(6) ADMSCs via the tail vein at 0, 12, and 24 h after bleomycin injection. The control, PF, and ADMSC group rats were sacrificed on day 21 after bleomycin injections and the changes in lung histology and the levels of pro-inflammatory cytokines, collagen I, and caveolin-1 (Cav-1), and the activity of the NF-kappaB signaling pathway in the lung tissues was assessed by hematoxylin-eosin staining, ELISA, and western blotting assays. The lung tissues of the PF model rats showed significant infiltration of neutrophils, tissue destruction, and collagen deposition, but these effects were abrogated by the ADMSCs. The levels of pro-inflammatory cytokines such as IL-6, IL-1beta, and TGF-beta1 were elevated in the lung tissues and the bronchoalveolar lavage fluid (BALF) of the bleomycin-induced PF model rats, but these effects were reversed by the ADMSCs. The lung tissues of the PF model rats showed significant downregulation of Cav-1 and significantly higher activation of the pro-inflammatory NF-kappaB pathway. However, administration of the ADMSCs restored the expression levels of Cav-1 and suppressed the NF-kappaB signaling pathway in the lungs of the bleomycin-induced PF model rats. In conclusion, this study demonstrated that the ADMSCs protected against bleomycin-induced PF in the rat model by modulating the Cav-1/NF-kappaB axis.
Collapse
Affiliation(s)
- Zhe CHEN
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Wenling, Zhejiang, China
| | - Bingqing RUAN
- Department of Internal Medicine, Wenling Women’s and Children’s Hospital, Zhejiang, China
| | - Guangyan LONG
- Department of Infectious Diseases, The First People’s Hospital of Wenling, Zhejiang, China
| | - Wei LIN
- Department of Respirology, The First People’s Hospital of Wenling, Zhejiang, China
| |
Collapse
|
48
|
Zhou X, Franklin RA, Adler M, Carter TS, Condiff E, Adams TS, Pope SD, Philip NH, Meizlish ML, Kaminski N, Medzhitov R. Microenvironmental sensing by fibroblasts controls macrophage population size. Proc Natl Acad Sci U S A 2022; 119:e2205360119. [PMID: 35930670 PMCID: PMC9371703 DOI: 10.1073/pnas.2205360119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-β target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of Csf1, the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.
Collapse
Affiliation(s)
- Xu Zhou
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruth A. Franklin
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Miri Adler
- bBroad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Trevor S. Carter
- cDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emily Condiff
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Taylor S. Adams
- dPulmonary Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Scott D. Pope
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
- eHHMI, Yale University School of Medicine, New Haven, CT 06510
| | - Naomi H. Philip
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Matthew L. Meizlish
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Naftali Kaminski
- dPulmonary Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- aDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
- eHHMI, Yale University School of Medicine, New Haven, CT 06510
- 5To whom correspondence may be addressed.
| |
Collapse
|
49
|
Cai Z, Guo H, Qian J, Liu W, Li Y, Yuan L, Zhou Y, Lin R, Xie X, Yang Q, Wu G, Li Q, Zhao L, Liu F, Wang J, Lu W. Effects of bone morphogenetic protein 4 on TGF- β1-induced cell proliferation, apoptosis, activation and differentiation in mouse lung fibroblasts via ERK/p38 MAPK signaling pathway. PeerJ 2022; 10:e13775. [PMID: 35915750 PMCID: PMC9338752 DOI: 10.7717/peerj.13775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Fibroblasts, in particular myofibroblasts, are the critical effector cells in idiopathic pulmonary fibrosis (IPF), a deadly lung disease characterized by abnormal lung remodeling and the formation of "fibroblastic foci". Aberrant activation of TGF-β1 is frequently encountered and promotes fibroblast proliferation, activation, and differentiation in pulmonary fibrosis. Hence, the inhibition of TGF-β1-induced lung fibroblast activation holds promise as a therapeutic strategy for IPF. The present study aimed to investigate the potential effect and underlying mechanisms of bone morphogenetic protein 4 (BMP4) on TGF-β1-induced proliferation, apoptosis, activation and myofibroblast differentiation of adult lung fibroblasts. Here, we demonstrated that BMP4 expression was significantly decreased in TGF-β1-stimulated mouse primary lung fibroblasts (PLFs). BMP4 inhibited proliferation and apoptosis resistance of TGF-β1-stimulated mouse PLFs. BMP4 suppressed TGF-β1-induced fibroblast activation and differentiation in mouse PLFs. We also found that BMP4 inhibited TGF-β1-induced ERK and p38 MAPK phosphorylation. Our findings indicate that BMP4 exerts its anti-fibrotic effects by regulating fibroblast proliferation, apoptosis, activation and differentiation via the inhibition of the ERK/p38 MAPK signaling pathway, and thus has a potential for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Qian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Guoying Wu
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Qiongqiong Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Han X, Yuan T, Zhang J, Shi Y, Li D, Dong Y, Fan S. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J Cell Mol Med 2022; 26:3269-3280. [PMID: 35510614 PMCID: PMC9170815 DOI: 10.1111/jcmm.17333] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial lung disease with limited treatment options. The incidence and prevalence of PF is increasing with age, cell senescence has been proposed as a pathogenic driver, the clearance of senescent cells could improve lung function in PF. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide, has been reported to selectively kill senescent cells in aged mice. However, it remains unknown if FOXO4-DRI could clear senescent cells in PF and reverse this disease. In this study, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model. We found that similar as the approved medication Pirfenidone, FOXO4-DRI decreased senescent cells, downregulated the expression of senescence-associated secretory phenotype (SASP) and attenuated BLM-induced morphological changes and collagen deposition. Furthermore, FOXO4-DRI could increase the percentage of type 2 alveolar epithelial cells (AEC2) and fibroblasts, and decrease the myofibroblasts in bleomycin (BLM)-induced PF mouse model. Compared with mouse and human lung fibroblast cell lines, FOXO4-DRI is inclined to kill TGF-β-induced myofibroblast in vitro. The inhibited effect of FOXO4-DRI on myofibroblast lead to a downregulation of extracellular matrix (ECM) receptor interaction pathway in BLM-induced PF. Above all, FOXO4-DRI ameliorates BLM-induced PF in mouse and may be served as a viable therapeutic option for PF.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tong Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yonggang Shi
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|