1
|
Titz A, Schneider S, Mueller J, Mayer L, Lichtblau M, Ulrich S. Symposium review: high altitude travel with pulmonary vascular disease. J Physiol 2024; 602:5505-5513. [PMID: 38780974 DOI: 10.1113/jp284585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension are the main precapillary forms of pulmonary hypertension (PH) summarized as pulmonary vascular diseases (PVD). PVDs are characterized by exertional dyspnoea and oxygen desaturation, and reduced quality of life and survival. Medical therapies improve life expectancy and physical performance of PVD patients, of whom many wish to participate in professional work and recreational activities including traveling to high altitude. The exposure to the hypobaric hypoxic environment of mountain regions incurs the risk of high altitude adverse events (AEHA) due to severe hypoxaemia exacerbating symptoms and further increase in pulmonary artery pressure, which may lead to right heart decompensation. Recent prospective and randomized trials show that altitude-induced hypoxaemia, pulmonary haemodynamic changes and impairment of exercise performance in PVD patients are in the range found in healthy people. The vast majority of optimally treated stable PVD patients who do not require long-term oxygen therapy at low altitude can tolerate short-term exposure to moderate altitudes up to 2500 m. PVD patients that reveal persistent severe resting hypoxaemia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ <80% for >30 min) at 2500 m respond well to supplemental oxygen therapy. Although there are no accurate predictors for AEHA, PVD patients with unfavourable risk profiles at low altitude, such as higher WHO functional class, lower exercise capacity with more pronounced exercise-induced desaturation and more severely impaired haemodynamics, are at increased risk of AEHA. Therefore, doctors with experience in PVD and high-altitude medicine should counsel PVD patients before any high-altitude sojourn. This review aims to summarize recent literature and clinical recommendations about PVD patients travelling to high altitude.
Collapse
Affiliation(s)
- Anna Titz
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | | | | | - Laura Mayer
- University Hospital of Zurich, Zurich, Switzerland
| | | | - Silvia Ulrich
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ulrich S, Lichtblau M, Schneider SR, Saxer S, Bloch KE. Clinician's Corner: Counseling Patients with Pulmonary Vascular Disease Traveling to High Altitude. High Alt Med Biol 2022; 23:201-208. [PMID: 35852848 DOI: 10.1089/ham.2022.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ulrich, Silvia, Mona Lichtblau, Simon R. Schneider, Stéphanie Saxer, and Konrad E. Bloch, Clinician's corner: counseling patients with pulmonary vascular disease traveling to high altitude. High Alt Med Biol. 23:201-208, 2022.-Pulmonary vascular diseases (PVDs) with precapillary pulmonary hypertension (PH), such as pulmonary arterial or chronic thromboembolic PH, impair exercise performance and survival in patients. Vasodilators and other treatments improve quality of life and prognosis to an extent in patients who have PVDs as chronic disorders. Obviously, patients with PVD wish to participate in usual daily activities, including travel to popular settlements and mountainous regions located at high altitude. However, the pulmonary hemodynamic impairment due to PVD leads to blood and tissue hypoxia, particularly during exercise and sleep. It is thus of concern that alveolar hypoxia at higher altitude may exacerbate patients' symptoms and lead to decompensation. Current PH guidelines discourage high-altitude exposure for fear of altitude-related adverse health effects. However, several recent well-designed prospective and randomized trials show that despite altitude-induced hypoxemia, pulmonary hemodynamic changes and impairment of exercise performance in patients with PVD are similar to the responses in healthy people or in patients with mild chronic obstructive pulmonary disease. The vast majority of patients with PVD can tolerate short-term exposure to moderate altitudes up to 2,500 m. For the roughly 10% of patients with stable disease who develop severe hypoxemia when ascending to 2,500 m, they respond well to low-level supplemental oxygen support. The best low-altitude predictors for adverse health effects at high altitude are the known clinical risk factors for PVD such as symptoms, functional class, exercise capacity, and exertional oxygen desaturation, whereas hypoxia altitude simulation testing is of little additive value. In any case, patients should be instructed that altitude-related adverse health effects may be difficult to predict and that in case of worsening symptoms, immediate accompanied descent to lower altitude and oxygen therapy are required. Patients with severe hypoxemia near sea level may safely visit high-altitude regions up to 1,500-2,000 m while continuing oxygen therapy and avoiding strenuous exercise. All PH patients should be counseled before any high-altitude sojourn by doctors with experience in PVD and high-altitude medicine and have an action plan for the occurrence of severe hypoxemia and other altitude-related conditions such as acute mountain sickness.
Collapse
Affiliation(s)
- Silvia Ulrich
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Simon R Schneider
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Stéphanie Saxer
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Williams AM, Levine BD, Stembridge M. A change of heart: Mechanisms of cardiac adaptation to acute and chronic hypoxia. J Physiol 2022; 600:4089-4104. [PMID: 35930370 PMCID: PMC9544656 DOI: 10.1113/jp281724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.
Collapse
Affiliation(s)
- Alexandra M. Williams
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
4
|
Adami PE, Koutlianos N, Baggish A, Bermon S, Cavarretta E, Deligiannis A, Furlanello F, Kouidi E, Marques-Vidal P, Niebauer J, Pelliccia A, Sharma S, Solberg EE, Stuart M, Papadakis M. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: a position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2022; 29:559-575. [PMID: 35081615 DOI: 10.1093/eurjpc/zwab198] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
The use of substances and medications with potential cardiovascular effects among those practicing sports and physical activity has progressively increased in recent years. This is also connected to the promotion of physical activity and exercise as core aspects of a healthy lifestyle, which has led also to an increase in sport participation across all ages. In this context, three main users' categories can be identified, (i) professional and amateur athletes using substances to enhance their performance, (ii) people with chronic conditions, which include physical activity and sport in their therapeutic plan, in association with prescribed medications, and (iii) athletes and young individuals using supplements or ergogenic aids to integrate their diet or obtaining a cognitive enhancement effect. All the substances used for these purposes have been reported to have side effects, among whom the cardiovascular consequences are the most dangerous and could lead to cardiac events. The cardiovascular effect depends on the type of substance, the amount, the duration of use, and the individual response to the substances, considering the great variability in responses. This Position Paper reviews the recent literature and represents an update to the previously published Position Paper published in 2006. The objective is to inform physicians, athletes, coaches, and those participating in sport for a health enhancement purpose, about the adverse cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids, when associated with sport and exercise.
Collapse
Affiliation(s)
- Paolo Emilio Adami
- Health and Science Department, World Athletics, 6-8 Quai Antoine 1er, Monaco 98000, Monaco
| | - Nikolaos Koutlianos
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, 55 Fruit Street Boston, MA 02114, USA
| | - Stéphane Bermon
- Health and Science Department, World Athletics, 6-8 Quai Antoine 1er, Monaco 98000, Monaco
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79 - 04100 - Latina (LT), Italy.,Mediterranea Cardiocentro, Via Orazio, 2, 80122, Napoli (NA), Italy
| | - Asterios Deligiannis
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Francesco Furlanello
- Aritmologia Clinica e Sportiva, IRCCS Gruppo MultiMedica Elettrofisiologia, Via Milanese 300, 20099, Sesto San Giovanni(MI), Italy
| | - Evangelia Kouidi
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Josef Niebauer
- Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Antonio Pelliccia
- Sports Medicine and Science Institute, CONI, Largo Piero Gabrielli, 1, 00197, Rome, Italy
| | - Sanjay Sharma
- Cardiovascular Clinical Academic Group, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Mark Stuart
- International Testing Agency-ITA, Av. de Rhodanie 58, 1007 Lausanne, Switzerland
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
5
|
Mamazhakypov A, Sartmyrzaeva M, Kushubakova N, Duishobaev M, Maripov A, Sydykov A, Sarybaev A. Right Ventricular Response to Acute Hypoxia Exposure: A Systematic Review. Front Physiol 2022; 12:786954. [PMID: 35095556 PMCID: PMC8791628 DOI: 10.3389/fphys.2021.786954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Acute hypoxia exposure is associated with an elevation of pulmonary artery pressure (PAP), resulting in an increased hemodynamic load on the right ventricle (RV). In addition, hypoxia may exert direct effects on the RV. However, the RV responses to such challenges are not fully characterized. The aim of this systematic review was to describe the effects of acute hypoxia on the RV in healthy lowland adults. Methods: We systematically reviewed PubMed and Web of Science and article references from 2005 until May 2021 for prospective studies evaluating echocardiographic RV function and morphology in healthy lowland adults at sea level and upon exposure to simulated altitude or high-altitude. Results: We included 37 studies in this systematic review, 12 of which used simulated altitude and 25 were conducted in high-altitude field conditions. Eligible studies reported at least one of the RV variables, which were all based on transthoracic echocardiography assessing RV systolic and diastolic function and RV morphology. The design of these studies significantly differed in terms of mode of ascent to high-altitude, altitude level, duration of high-altitude stay, and timing of measurements. In the majority of the studies, echocardiographic examinations were performed within the first 10 days of high-altitude induction. Studies also differed widely by selectively reporting only a part of multiple RV parameters. Despite consistent increase in PAP documented in all studies, reports on the changes of RV function and morphology greatly differed between studies. Conclusion: This systematic review revealed that the study reports on the effects of acute hypoxia on the RV are controversial and inconclusive. This may be the result of significantly different study designs, non-compliance with international guidelines on RV function assessment and limited statistical power due to small sample sizes. Moreover, the potential impact of other factors such as gender, age, ethnicity, physical activity, mode of ascent and environmental factors such as temperature and humidity on RV responses to hypoxia remained unexplored. Thus, this comprehensive overview will promote reproducible research with improved study designs and methods for the future large-scale prospective studies, which eventually may provide important insights into the RV response to acute hypoxia exposure.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Meerim Sartmyrzaeva
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Nadira Kushubakova
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Melis Duishobaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Akpay Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
- Kyrgyz Indian Mountain Biomedical Research Center, Bishkek, Kyrgyzstan
- *Correspondence: Akpay Sarybaev
| |
Collapse
|
6
|
Yuan F, Qin Z, Liu C, Yu S, Yang J, Jin J, Bian S, Gao X, Zhang J, Zhang C, Hu M, Ke J, Yang Y, Tian J, He C, Gu W, Li C, Rao R, Huang L. Echocardiographic Right Ventricular Outflow Track Notch Formation and the Incidence of Acute Mountain Sickness. High Alt Med Biol 2021; 22:263-273. [PMID: 34152862 DOI: 10.1089/ham.2020.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yuan, Fangzhengyuan, Zhexue Qin, Chuan Liu, Shiyong Yu, Jie Yang, Jun Jin, Shizhu Bian, Xubin Gao, Jihang Zhang, Chen Zhang, Mingdong Hu, Jingbin Ke, Yuanqi Yang, Jingdu Tian, Chunyan He, Wenzhu Gu, Chun Li, Rongsheng Rao, and Lan Huang. Echocardiographic right ventricular outflow track notch formation and the incidence of acute mountain sickness. High Alt Med Biol. 00:000-000, 2021. Background: High-altitude exposure causes acute mountain sickness (AMS) and increases pulmonary arterial pressure (PAP). The notching of echocardiographic right ventricular outflow tract flow velocity envelope (right ventricular outflow tract [RVOT] notching), is related to increased PAP. We speculate that acute high-altitude exposure may trigger RVOT notching, which may be associated with AMS. Methods: All 130 subjects, ascended to 4,100 m from low altitude by bus within 7 days, underwent physiological and echocardiographic testing. The subjects with a total score of 3 or above and in the presence of a headache were diagnosed with AMS according to Lake Louise criteria. Results: After high-altitude exposure, the incidence of RVOT notching and AMS was 20% and 28.5%, respectively. The subjects with AMS had a higher incidence (37.8%) of RVOT notching than those without AMS (12.9%). Multivariate logistic regression analysis showed that RVOT notching was associated with systolic pulmonary artery pressure (SPAP) (odds ratio [OR], 1.11; 95% confidence interval [CI], 1.05-1.17; p < 0.001) and the occurrence of AMS (OR, 5.48; 95% CI, 1.96-15.35; p = 0.001). Although linear regression analysis showed a weak correlation between SPAP and Lake Louise AMS score in the overall population (r = 0.20, p = 0.020), this correlation was more pronounced in the subpopulation with RVOT notching (r = 0.44, p = 0.023) and SPAP was not related to Lake Louise AMS score in the subpopulation without RVOT notching (r = 0.03, p = 0.698). Among AMS symptoms, the incidence of headache and fatigue were higher in subjects with RVOT notching than those in subjects without RVOT notching. Conclusions: We first observe that high-altitude exposure triggers RVOT notching formation, which is associated with AMS occurrence. Clinical Trial Registration No: ChiCTR-RCS-12002232.
Collapse
Affiliation(s)
- Fangzhengyuan Yuan
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhexue Qin
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Jin
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shizhu Bian
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingdong Hu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbin Ke
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingdu Tian
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan He
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenzhu Gu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chun Li
- Department of Medical Ultrasonics, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rongsheng Rao
- Department of Medical Ultrasonics, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Durand F, Raberin A. Exercise-Induced Hypoxemia in Endurance Athletes: Consequences for Altitude Exposure. Front Sports Act Living 2021; 3:663674. [PMID: 33981992 PMCID: PMC8107360 DOI: 10.3389/fspor.2021.663674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Exercise-induced hypoxemia (EIH) is well-described in endurance-trained athletes during both maximal and submaximal exercise intensities. Despite the drop in oxygen (O2) saturation and provided that training volumes are similar, athletes who experience EIH nevertheless produce the same endurance performance in normoxia as athletes without EIH. This lack of a difference prompted trainers to consider that the phenomenon was not relevant to performance but also suggested that a specific adaptation to exercise is present in EIH athletes. Even though the causes of EIH have been extensively studied, its consequences have not been fully characterized. With the development of endurance outdoor activities and altitude/hypoxia training, athletes often train and/or compete in this stressful environment with a decrease in the partial pressure of inspired O2 (due to the drop in barometric pressure). Thus, one can reasonably hypothesize that EIH athletes can specifically adapt to hypoxemic episodes during exercise at altitude. Although our knowledge of the interactions between EIH and acute exposure to hypoxia has improved over the last 10 years, many questions have yet to be addressed. Firstly, endurance performance during acute exposure to altitude appears to be more impaired in EIH vs. non-EIH athletes but the corresponding physiological mechanisms are not fully understood. Secondly, we lack information on the consequences of EIH during chronic exposure to altitude. Here, we (i) review research on the consequences of EIH under acute hypoxic conditions, (ii) highlight unresolved questions about EIH and chronic hypoxic exposure, and (iii) suggest perspectives for improving endurance training.
Collapse
Affiliation(s)
- Fabienne Durand
- Images Espace Dev, Université de Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
8
|
Abstract
BACKGROUND Pulmonary arterial hypertension is a devastating disease that leads to right heart failure and premature death. Endothelin receptor antagonists have shown efficacy in the treatment of pulmonary arterial hypertension. OBJECTIVES To evaluate the efficacy of endothelin receptor antagonists (ERAs) in pulmonary arterial hypertension. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and the reference sections of retrieved articles. The searches are current as of 4 November 2020. SELECTION CRITERIA We included randomised trials and quasi-randomised trials involving participants with pulmonary arterial hypertension. DATA COLLECTION AND ANALYSIS Two of five review authors selected studies, extracted data and assessed study quality according to established criteria. We used standard methods expected by Cochrane. The primary outcomes were exercise capacity (six-minute walk distance, 6MWD), World Health Organization (WHO) or New York Heart Association (NYHA) functional class, Borg dyspnoea scores and dyspnoea-fatigue ratings, and mortality. MAIN RESULTS We included 17 randomised controlled trials involving a total of 3322 participants. Most trials were of relatively short duration (12 weeks to six months). Sixteen trials were placebo-controlled, and of these nine investigated a non-selective ERA and seven a selective ERA. We evaluated two comparisons in the review: ERA versus placebo and ERA versus phosphodiesterase type 5 (PDE5) inhibitor. The abstract focuses on the placebo-controlled trials only and presents the pooled results of selective and non-selective ERAs. After treatment, participants receiving ERAs could probably walk on average 25.06 m (95% confidence interval (CI) 17.13 to 32.99 m; 2739 participants; 14 studies; I2 = 34%, moderate-certainty evidence) further than those receiving placebo in a 6MWD. Endothelin receptor antagonists probably improved more participants' WHO functional class (odds ratio (OR) 1.41, 95% CI 1.16 to 1.70; participants = 3060; studies = 15; I2 = 5%, moderate-certainty evidence) and probably lowered the odds of functional class deterioration (OR 0.43, 95% CI 0.26 to 0.72; participants = 2347; studies = 13; I2 = 40%, moderate-certainty evidence) compared with placebo. There may be a reduction in mortality with ERAs (OR 0.78, 95% CI 0.58, 1.07; 2889 participants; 12 studies; I2 = 0%, low-certainty evidence), and pooled data suggest that ERAs probably improve cardiopulmonary haemodynamics and may reduce Borg dyspnoea score in symptomatic patients. Hepatic toxicity was not common, but may be increased by ERA treatment from 37 to 67 (95% CI 34 to 130) per 1000 over 25 weeks of treatment (OR 1.88, 95% CI 0.91 to 3.90; moderate-certainty evidence). Although ERAs were well tolerated in this population, several cases of irreversible liver failure caused by sitaxsentan have been reported, which led the licence holder for sitaxsentan to withdraw the product from all markets worldwide. As planned, we performed subgroup analyses comparing selective and non-selective ERAs, and with the exception of mean pulmonary artery pressure, did not detect any clear subgroup differences for any outcome. AUTHORS' CONCLUSIONS For people with pulmonary arterial hypertension with WHO functional class II and III, endothelin receptor antagonists probably increase exercise capacity, improve WHO functional class, prevent WHO functional class deterioration, result in favourable changes in cardiopulmonary haemodynamic variables compared with placebo. However, they are less effective in reducing dyspnoea and mortality. The efficacy data were strongest in those with idiopathic pulmonary hypertension. The irreversible liver failure caused by sitaxsentan and its withdrawal from global markets emphasise the importance of hepatic monitoring in people treated with ERAs. The question of the effects of ERAs on pulmonary arterial hypertension has now likely been answered.. The combined use of ERAs and phosphodiesterase inhibitors may provide more benefit in pulmonary arterial hypertension; however, this needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Chao Liu
- Division of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junmin Chen
- Department of Haematology and Rheumatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanqiu Gao
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao Deng
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kunshen Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
10
|
Dempsey JA, La Gerche A, Hull JH. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise? J Appl Physiol (1985) 2020; 129:1235-1256. [PMID: 32790594 DOI: 10.1152/japplphysiol.00444.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the healthy, untrained young adult, a case is made for a respiratory system (airways, pulmonary vasculature, lung parenchyma, respiratory muscles, and neural ventilatory control system) that is near ideally designed to ensure a highly efficient, homeostatic response to exercise of varying intensities and durations. Our aim was then to consider circumstances in which the intra/extrathoracic airways, pulmonary vasculature, respiratory muscles, and/or blood-gas distribution are underbuilt or inadequately regulated relative to the demands imposed by the cardiovascular system. In these instances, the respiratory system presents a significant limitation to O2 transport and contributes to the occurrence of locomotor muscle fatigue, inhibition of central locomotor output, and exercise performance. Most prominent in these examples of an "underbuilt" respiratory system are highly trained endurance athletes, with additional influences of sex, aging, hypoxic environments, and the highly inbred equine. We summarize by evaluating the relative influences of these respiratory system limitations on exercise performance and their impact on pathophysiology and provide recommendations for future investigation.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Robert Sutton Professor of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia.,National Center for Sports Cardiology, St. Vincent's Hospital, Melbourne, Fitzroy, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.,Institute of Sport, Exercise and Health (ISEH), University College London, United Kingdom
| |
Collapse
|
11
|
Cheng HY, Frise MC, Curtis MK, Bart NK, Petousi N, Talbot NP, Balanos GM, Robbins PA, Dorrington KL. Intravenous iron delivers a sustained (8-week) lowering of pulmonary artery pressure during exercise in healthy older humans. Physiol Rep 2020; 7:e14164. [PMID: 31270967 PMCID: PMC6610221 DOI: 10.14814/phy2.14164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/20/2023] Open
Abstract
In older individuals, pulmonary artery pressure rises markedly during exercise, probably due in part to increased pulmonary vascular resistance and in part to an increase in left-heart filling pressure. Older individuals also show more marked pulmonary vascular response to hypoxia at rest. Treatment with intravenous iron reduces the rise in pulmonary artery pressure observed during hypoxia. Here, we test the hypothesis that intravenous iron administration may also attenuate the rise in pulmonary artery pressure with exercise in older individuals. In a randomized double-blind placebo-controlled physiology study in 32 healthy participants aged 50-80 years, we explored the hypothesis that iron administration would deliver a fall in systolic pulmonary artery pressure (SPAP) during moderate cycling exercise (20 min duration; increase in heart rate of 30 min-1 ) and a change in maximal cycling exercise capacity ( V ˙ O 2 m a x ). Participants were studied before, and at 3 h to 8 weeks after, infusion. SPAP was measured using Doppler echocardiography. Iron administration resulted in marked changes in indices of iron homeostasis over 8 weeks, but no significant change in hemoglobin concentration or inflammatory markers. Resting SPAP was also unchanged, but SPAP during exercise was lower by ~3 mmHg in those receiving iron (P < 0.0001). This effect persisted for 8 weeks. Although V ˙ O 2 m a x remained unaffected in the iron-replete healthy participants studied here, this study demonstrates for the first time the ability of intravenous iron supplementation to reduce systolic pulmonary artery pressure during exercise.
Collapse
Affiliation(s)
- Hung-Yuan Cheng
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew C Frise
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicole K Bart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nayia Petousi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Keith L Dorrington
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med 2018; 145:145-152. [DOI: 10.1016/j.rmed.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
13
|
Stembridge M, Ainslie PN, Boulet LM, Anholm J, Subedi P, Tymko MM, Willie CK, Cooper SM, Shave R. The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 2018; 597:1059-1072. [PMID: 29808473 DOI: 10.1113/jp275278] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Christopher K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Stephen-Mark Cooper
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
14
|
Faoro V, Deboeck G, Vicenzi M, Gaston AF, Simaga B, Doucende G, Hapkova I, Roca E, Subirats E, Durand F, Naeije R. Pulmonary Vascular Function and Aerobic Exercise Capacity at Moderate Altitude. Med Sci Sports Exerc 2018; 49:2131-2138. [PMID: 28915226 DOI: 10.1249/mss.0000000000001320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE There has been suggestion that a greater "pulmonary vascular reserve" defined by a low pulmonary vascular resistance (PVR) and a high lung diffusing capacity (DL) allow for a superior aerobic exercise capacity. How pulmonary vascular reserve might affect exercise capacity at moderate altitude is not known. METHODS Thirty-eight healthy subjects underwent an exercise stress echocardiography of the pulmonary circulation, combined with measurements of DL for nitric oxide (NO) and carbon monoxide (CO) and a cardiopulmonary exercise test at sea level and at an altitude of 2250 m. RESULTS At rest, moderate altitude decreased arterial oxygen content (CaO2) from 19.1 ± 1.6 to 18.4 ± 1.7 mL·dL, P < 0.001, and slightly increased PVR, DLNO, and DLCO. Exercise at moderate altitude was associated with decreases in maximum O2 uptake (V˙O2max), from 51 ± 9 to 43 ± 8 mL·kg⋅min, P < 0.001, and CaO2 to 16.5 ± 1.7 mL·dL, P < 0.001, but no different cardiac output, PVR, and pulmonary vascular distensibility. DLNO was inversely correlated to the ventilatory equivalent of CO2 (V˙E/V˙CO2) at sea level and at moderate altitude. Independent determinants of V˙O2max as determined by a multivariable analysis were the slope of mean pulmonary artery pressure-cardiac output relationship, resting stroke volume, and resting DLNO at sea level as well as at moderate altitude. The magnitude of the decrease in V˙O2max at moderate altitude was independently predicted by more pronounced exercise-induced decrease in CaO2 at moderate altitude. CONCLUSION Aerobic exercise capacity is similarly modulated by pulmonary vascular reserve at moderate altitude and at sea level. Decreased aerobic exercise capacity at moderate altitude is mainly explained by exercise-induced decrease in arterial oxygenation.
Collapse
Affiliation(s)
- Vitalie Faoro
- 1Laboratory of Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, BELGIUM; 2Department of Cardiology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, BELGIUM; 3U.O.C. Cardiovascular Diseases, Fondazione IRCCS Granda Hospital Maggiore Policlinico, Milan, ITALY; 4European Laboratory of Performance Health and Altitude, University of Perpignan, Font-Romeu, FRANCE; 5Faculty of Medicine, University of Girona, Girona, SPAIN; and 6Hospital Transfronterer de Cerdanya, Puigcerdà, SPAIN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ulrich S, Schneider SR, Bloch KE. Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review. J Appl Physiol (1985) 2017; 123:1657-1670. [PMID: 28775065 DOI: 10.1152/japplphysiol.00186.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.
Collapse
Affiliation(s)
- Silvia Ulrich
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| | - Simon R Schneider
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| | - Konrad E Bloch
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
17
|
Abstract
Exercise and competitive sports should be associated with a wide range of health benefits with the potential to inspire a positive community health legacy. However, the reputation of sports is being threatened by an ever-expanding armamentarium of agents with real or perceived benefits in performance enhancement. In addition to the injustice of unfair advantage for dishonest athletes, significant potential health risks are associated with performance-enhancing drugs. Performance-enhancing drugs may have an effect on the cardiovascular system by means of directly altering the myocardium, vasculature, and metabolism. However, less frequently considered is the potential for indirect effects caused through enabling athletes to push beyond normal physiological limits with the potential consequence of exercise-induced arrhythmias. This review will summarize the known health effects of PEDs but will also focus on the potentially greater health threat posed by the covert search for performance-enhancing agents that have yet to be recognized by the World Anti-Doping Agency. History has taught us that athletes are subjected to unmonitored trials with experimental drugs that have little or no established efficacy or safety data. One approach to decrease drug abuse in sports would be to accept that there is a delay from when athletes start experimenting with novel agents to the time when authorities become aware of these drugs. This provides a window of opportunity for athletes to exploit with relative immunity. It could be argued that all off-label use of any agent should be deemed illegal.
Collapse
|
18
|
Pulmonary capillary reserve and exercise capacity at high altitude in healthy humans. Eur J Appl Physiol 2015; 116:427-37. [PMID: 26614507 PMCID: PMC4717181 DOI: 10.1007/s00421-015-3299-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022]
Abstract
Purpose We determined whether well-acclimatized humans have a reserve to recruit pulmonary capillaries in response to exercise at high altitude. Methods At sea level, lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (DmCO), and pulmonary capillary blood volume (Vc) were measured at rest before maximal oxygen consumption (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2\hbox{max} }$$\end{document}V˙O2max) was determined in seven adults. Then, DLCO, DmCO and Vc were measured pre- and post-exhaustive incremental exercise at 5150 m after ~40 days of acclimatization. Results Immediately after exercise at high altitude, there was an increase in group mean DmCO (14 ± 10 %, P = 0.040) with no pre- to post-exercise change in group mean DLCO (46.9 ± 5.8 vs. 50.6 ± 9.6 ml/min/mmHg, P = 0.213) or Vc (151 ± 28 vs. 158 ± 37 ml, P = 0.693). There was, however, a ~20 % increase in DLCO from pre- to post-exercise at high altitude (51.2 ± 0.2 vs. 61.1 ± 0.2 ml/min/mmHg) with a concomitant increase in DmCO (123 ± 2 vs. 156 ± 4 ml/min/mmHg) and Vc (157 ± 3 vs. 180 ± 8 ml) in 2 of the 7 participants. There was a significant positive relationship between the decrease in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{2\hbox{max} }$$\end{document}V˙O2max from sea level to high altitude and the change in DLCO and lung diffusing capacity for nitric oxide (DLNO) from rest to end-exercise at high altitude. Conclusion These data suggest that recruitment of the pulmonary capillaries in response to exercise at high altitude is limited in most well-acclimatized humans but that any such a reserve may be associated with better exercise capacity.
Collapse
|
19
|
Wauters A, Vicenzi M, De Becker B, Riga JP, Esmaeilzadeh F, Faoro V, Vachiéry JL, van de Borne P, Argacha JF. At high cardiac output, diesel exhaust exposure increases pulmonary vascular resistance and decreases distensibility of pulmonary resistive vessels. Am J Physiol Heart Circ Physiol 2015; 309:H2137-44. [PMID: 26497960 DOI: 10.1152/ajpheart.00149.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Air pollution has recently been associated with the development of acute decompensated heart failure, but the underlying biological mechanisms remain unclear. A pulmonary vasoconstrictor effect of air pollution, combined with its systemic effects, may precipitate decompensated heart failure. The aim of the present study was to investigate the effects of acute exposure to diesel exhaust (DE) on pulmonary vascular resistance (PVR) under resting and stress conditions but also to determine whether air pollution may potentiate acquired pulmonary hypertension. Eighteen healthy male volunteers were exposed to ambient air (AA) or dilute DE with a particulate matter of <2.5 μm concentration of 300 μg/m(3) for 2 h in a randomized, crossover study design. The effects of DE on PVR, on the coefficient of distensibilty of pulmonary vessels (α), and on right and left ventricular function were evaluated at rest (n = 18), during dobutamine stress echocardiography (n = 10), and during exercise stress echocardiography performed in hypoxia (n = 8). Serum endothelin-1 and fractional exhaled nitric oxide were also measured. At rest, exposure to DE did not affect PVR. During dobutamine stress, the slope of the mean pulmonary artery pressure-cardiac output relationship increased from 2.8 ± 0.5 mmHg · min · l (-1) in AA to 3.9 ± 0.5 mmHg · min · l (-1) in DE (P < 0.05) and the α coefficient decreased from 0.96 ± 0.15 to 0.64 ± 0.12%/mmHg (P < 0.01). DE did not further enhance the hypoxia-related upper shift of the mean pulmonary artery pressure-cardiac output relationship. Exposure to DE did not affect serum endothelin-1 concentration or fractional exhaled nitric oxide. In conclusion, acute exposure to DE increased pulmonary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels at high cardiac output.
Collapse
Affiliation(s)
- Aurélien Wauters
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium;
| | - Marco Vicenzi
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Benjamin De Becker
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Philippe Riga
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatemeh Esmaeilzadeh
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Jean-Luc Vachiéry
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Argacha
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Kriemler S, Radtke T, Bürgi F, Lambrecht J, Zehnder M, Brunner-La Rocca HP. Short-term cardiorespiratory adaptation to high altitude in children compared with adults. Scand J Med Sci Sports 2015; 26:147-55. [PMID: 25648726 DOI: 10.1111/sms.12422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 11/25/2022]
Abstract
As short-term cardiorespiratory adaptation to high altitude (HA) exposure has not yet been studied in children, we assessed acute mountain sickness (AMS), hypoxic ventilatory response (HVR) at rest and maximal exercise capacity (CPET) at low altitude (LA) and HA in pre-pubertal children and their fathers. Twenty father-child pairs (11 ± 1 years and 44 ± 4 years) were tested at LA (450 m) and HA (3450 m) at days 1, 2, and 3 after fast ascent (HA1/2/3). HVR was measured at rest and CPET was performed on a cycle ergometer. AMS severity was mild to moderate with no differences between generations. HVR was higher in children than adults at LA and increased at HA similarly in both groups. Peak oxygen uptake (VO2 peak) relative to body weight was similar in children and adults at LA and decreased significantly by 20% in both groups at HA; maximal heart rate did not change at HA in children while it decreased by 16% in adults (P < 0.001). Changes in HVR and VO2 peak from LA to HA were correlated among the biological child-father pairs. In conclusion, cardiorespiratory adaptation to altitude seems to be at least partly hereditary. Even though children and their fathers lose similar fractions of aerobic capacity going to high altitude, the mechanisms might be different.
Collapse
Affiliation(s)
- S Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - T Radtke
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - F Bürgi
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - J Lambrecht
- Department of Preventive Cardiology and Sports Medicine, University Clinic for Cardiology, Inselspital, University Hospital, Berne, Switzerland
| | - M Zehnder
- Department of Clinical Research, University and Inselspital Berne, Berne, Switzerland
| | - H P Brunner-La Rocca
- Medical University Center Maastricht, Cardiology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
21
|
Foster GP, Giri PC, Rogers DM, Larson SR, Anholm JD. Ischemic preconditioning improves oxygen saturation and attenuates hypoxic pulmonary vasoconstriction at high altitude. High Alt Med Biol 2014; 15:155-61. [PMID: 24949710 DOI: 10.1089/ham.2013.1137] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to hypoxic environments is associated with decreased arterial oxygen saturation and increased pulmonary artery pressures. Ischemic preconditioning of an extremity (IPC) is a procedure that stimulates vasoactive and inflammatory pathways that protect remote organ systems from ongoing or future ischemic injury. To test the effects of IPC on oxygen saturation and pulmonary artery pressures at high altitude, 12 healthy adult volunteers were evaluated in a randomized cross-over trial. IPC was administered utilizing a standardized protocol. IPC or placebo was administered daily for 5 days prior to ascent to altitude. All participants were evaluated twice at 4342 m altitude (placebo and IPC conditions separated by 4 weeks, randomized). The pulmonary artery systolic pressure (PASP) at 4342 m was significantly lower in the IPC condition than the placebo condition (36 ± 6.0 mmHg vs. 38.1 ± 7.6 mmHg, respectively, p = 0.035). Oxygen saturation at 4342 m was significantly higher with IPC compared to placebo (80.3 ± 8.7% vs. 75.3 ± 9.6%, respectively, p = 0.003). Prophylactic IPC treatment is associated with improved oxygen saturation and attenuation of the normal hypoxic increase in pulmonary artery pressures following ascent to high altitude.
Collapse
Affiliation(s)
- Gary P Foster
- 1 Cardiology and Pulmonary/Critical Care Sections, Medical Service VA Loma Linda Healthcare System , Loma Linda, California
| | | | | | | | | |
Collapse
|
22
|
Baughman RP, Culver DA, Cordova FC, Padilla M, Gibson KF, Lower EE, Engel PJ. Bosentan for sarcoidosis-associated pulmonary hypertension: a double-blind placebo controlled randomized trial. Chest 2014; 145:810-817. [PMID: 24177203 DOI: 10.1378/chest.13-1766] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Sarcoidosis-associated pulmonary hypertension (SAPH) is a common problem in patients with persistent dyspneic sarcoidosis. The objective of this study was to determine the effect of bosentan therapy on pulmonary arterial hemodynamics in patients with SAPH. METHODS This 16-week study was a double-blind, placebo-controlled trial of either bosentan or placebo in patients with SAPH confirmed by right-sided heart catheterization. Patients were enrolled from multiple academic centers specializing in sarcoidosis care. They were stable on sarcoidosis therapy and were receiving no therapy for pulmonary hypertension. The cohort was randomized two to one to receive bosentan at a maximal dose of 125 mg or placebo bid for 16 weeks. Pulmonary function studies, 6-min walk test, and right-sided heart hemodynamics, including pulmonary artery mean pressure and pulmonary vascular resistance (PVR), were performed before and after 16 weeks of therapy. RESULTS Thirty-five patients completed 16 weeks of therapy (23 treated with bosentan, 12 with placebo). For those treated with bosentan, repeat hemodynamic studies at 16 weeks demonstrated a significant mean±SD fall in PA mean pressure (-4±6.6 mm Hg, P=.0105) and PVR (-1.7±2.75 Wood units, P=.0104). For the patients treated with placebo, there was no significant change in either PA mean pressure (1±3.7 mm Hg, P>.05) or PVR (0.1±1.42 Wood units, P>.05). There was no significant change in 6-min walk distance for either group. Two patients treated with bosentan required an increase of supplemental oxygen by >2 L after 16 weeks of therapy. CONCLUSIONS This study demonstrated that bosentan significantly improved pulmonary hemodynamics in patients with SAPH. TRIAL REGISTRY ClinicalTrials.gov; No: NCT00581607; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Robert P Baughman
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH.
| | | | - Francis C Cordova
- Department of Internal Medicine, Temple University, Philadelphia, PA
| | - Maria Padilla
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin F Gibson
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Elyse E Lower
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH
| | | |
Collapse
|
23
|
Leite-Moreira AF, Lourenço AP, Balligand JL, Bauersachs J, Clerk A, De Windt LJ, Heymans S, Hilfiker-Kleiner D, Hirsch E, Iaccarino G, Kaminski KA, Knöll R, Mayr M, Tarone G, Thum T, Tocchetti CG. ESC Working Group on Myocardial Function Position Paper: how to study the right ventricle in experimental models. Eur J Heart Fail 2014; 16:509-18. [PMID: 24574252 DOI: 10.1002/ejhf.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 01/17/2014] [Indexed: 11/09/2022] Open
Abstract
The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups.
Collapse
Affiliation(s)
- Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Al. Prof. Hernani Monteiro, 4200 319, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ostojic SM, Stojanovic M, Calleja-Gonzalez J, Olcina G, Sekulic D, Hoffman JR. Performance-enhancing effects of non-selective endothelin receptor antagonist. Int J Cardiol 2014; 171:294-7. [DOI: 10.1016/j.ijcard.2013.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
25
|
Pavelescu A, Faoro V, Guenard H, de Bisschop C, Martinot JB, Mélot C, Naeije R. Pulmonary vascular reserve and exercise capacity at sea level and at high altitude. High Alt Med Biol 2013; 14:19-26. [PMID: 23537256 DOI: 10.1089/ham.2012.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
It has been suggested that increased pulmonary vascular reserve, as defined by reduced pulmonary vascular resistance (PVR) and increased pulmonary transit of agitated contrast measured by echocardiography, might be associated with increased exercise capacity. Thus, at altitude, where PVR is increased because of hypoxic vasoconstriction, a reduced pulmonary vascular reserve could contribute to reduced exercise capacity. Furthermore, a lower PVR could be associated with higher capillary blood volume and an increased lung diffusing capacity. We reviewed echocardiographic estimates of PVR and measurements of lung diffusing capacity for nitric oxide (DL(NO)) and for carbon monoxide (DL(CO)) at rest, and incremental cardiopulmonary exercise tests in 64 healthy subjects at sea level and during 4 different medical expeditions at altitudes around 5000 m. Altitude exposure was associated with a decrease in maximum oxygen uptake (VO2max), from 42±10 to 32±8 mL/min/kg and increases in PVR, ventilatory equivalents for CO2 (V(E)/VCO2), DL(NO), and DL(CO). By univariate linear regression VO2max at sea level and at altitude was associated with V(E)/VCO2 (p<0.001), mean pulmonary artery pressure (mPpa, p<0.05), stroke volume index (SVI, p<0.05), DL(NO) (p<0.02), and DL(CO) (p=0.05). By multivariable analysis, VO2max at sea level and at altitude was associated with V(E)/VCO2, mPpa, SVI, and DL(NO). The multivariable analysis also showed that the altitude-related decrease in VO2max was associated with increased PVR and V(E)/VCO2. These results suggest that pulmonary vascular reserve, defined by a combination of decreased PVR and increased DL(NO), allows for superior aerobic exercise capacity at a lower ventilatory cost, at sea level and at high altitude.
Collapse
Affiliation(s)
- Adriana Pavelescu
- Department of Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Scherrer U, Allemann Y, Rexhaj E, Rimoldi SF, Sartori C. Mechanisms and Drug Therapy of Pulmonary Hypertension at High Altitude. High Alt Med Biol 2013; 14:126-33. [DOI: 10.1089/ham.2013.1006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Urs Scherrer
- Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Yves Allemann
- Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
| | - Stefano F. Rimoldi
- Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
| | - Claudio Sartori
- Department of Internal Medicine, CHUV, Lausanne, Switzerland
| |
Collapse
|
27
|
Taylor BJ, Mojica CR, Olson TP, Woods PR, Frantz RP, Johnson BD. A possible role for systemic hypoxia in the reactive component of pulmonary hypertension in heart failure. J Card Fail 2013; 19:50-9. [PMID: 23273594 DOI: 10.1016/j.cardfail.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/12/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND The mechanisms underlying the reactive component of pulmonary hypertension (PH) in heart failure (HF) are unclear. We examined whether resting systemic oxygen levels are related to pulmonary hemodynamics in HF. METHODS AND RESULTS Thirty-nine HF patients underwent right heart catheterization. Subsequently, patients were classified as having: 1) no PH (n = 12); 2) passive PH (n = 10); or 3) reactive PH (n = 17). Blood was drawn from the radial and pulmonary arteries for the determination of PaO(2), SaO(2), PvO(2), SvO(2), and vasoactive neurohormones. PaO(2) and PvO(2) were lower in reactive PH versus no PH and passive PH patients (65.3 ± 8.6 vs 78.3 ± 11.4 mm Hg and 74.5 ± 14.0 mm Hg; 29.2 ± 4.1 vs 36.2 ± 2.8 mm Hg and 33.4 ± 2.3 mm Hg; P < .05). SaO(2) and SvO(2) were lower in reactive PH versus no PH patients (93 ± 3% vs 96 ± 3%; 51 ± 11% vs 68 ± 4%; P < .05), but not different versus passive PH patients. The transpulmonary pressure gradient (TPG) was inversely related to PaO(2), PvO(2), SaO(2), and SvO(2) in the reactive PH patients only (r ≤ -0.557; P < .05). Similarly, plasma endothelin-1 correlated with PaO(2), PvO(2), SvO(2) (r ≤ -0.495), and TPG (r = 0.662; P < .05) in reactive PH patients only. CONCLUSIONS Systemic hypoxia may play a role in the reactive component of PH in HF, potentially via a hypoxia-induced increase in endothelial release of the vasoconstrictor endothelin-1.
Collapse
Affiliation(s)
- Bryan J Taylor
- Division of Cardiovascular Diseases, College of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Liu C, Chen J, Gao Y, Deng B, Liu K. Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst Rev 2013; 2013:CD004434. [PMID: 23450552 PMCID: PMC6956416 DOI: 10.1002/14651858.cd004434.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a devastating disease, which leads to right heart failure and premature death. Recent evidence suggests that endothelin receptor antagonists may be promising drugs in the treatment of pulmonary arterial hypertension. OBJECTIVES To evaluate the efficacy of endothelin receptor antagonists in pulmonary arterial hypertension. SEARCH METHODS We searched CENTRAL (Cochrane Central Register of Controlled Trials), MEDLINE, EMBASE, and the reference section of retrieved articles. Searches are current as of January 2012. SELECTION CRITERIA We included randomised trials (RCTs) and quasi-randomised trials involving patients with pulmonary arterial hypertension. DATA COLLECTION AND ANALYSIS Five review authors independently selected studies, assessed study quality and extracted data. MAIN RESULTS We included 12 randomised controlled trials involving 1471 patients. All the trials were of relatively short duration (12 weeks to six months). After treatment, patients treated with endothelin receptor antagonists could walk on average 33.71 metres (95% confidence interval (CI) 24.90 to 42.52 metres) further than those treated with placebo in a six-minute walk test. Endothelin receptor antagonists improved more patients' World Health Organization/New York Heart Association (WHO/NYHA) functional class status than placebo (odds ratio (OR) 1.60; 95% CI 1.20 to 2.14), and reduced the odds of functional class deterioration compared with placebo (OR 0.26; 95% CI 0.16 to 0.42). There was a reduction in mortality that did not reach statistical significance on endothelin receptor antagonists (OR 0.57; 95% CI 0.26 to 1.24), and limited data suggest that endothelin receptor antagonists improve the Borg dyspnoea score and cardiopulmonary haemodynamics in symptomatic patients. Hepatic toxicity was not common, and endothelin receptor antagonists were well tolerated in this population. However, several cases of irreversible liver failure caused by sitaxsentan have been reported that led to license holder for sitaxsentan to withdraw the product from all markets worldwide. AUTHORS' CONCLUSIONS Endothelin receptor antagonists can increase exercise capacity, improve WHO/NYHA functional class, prevent WHO/NYHA functional class deterioration, reduce dyspnoea and improve cardiopulmonary haemodynamic variables in patients with pulmonary arterial hypertension with WHO/NYHA functional class II and III. However, there was only a trend towards endothelin receptor antagonists reducing mortality in patients with pulmonary arterial hypertension. Efficacy data are strongest in those with idiopathic pulmonary hypertension. The irreversible liver failure caused by sitaxsentan and its withdrawal from global markets emphasise the importance of hepatic monitoring in patients treated with endothelin receptor antagonists.
Collapse
Affiliation(s)
- Chao Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China. .
| | | | | | | | | |
Collapse
|
29
|
Groepenhoff H, Overbeek MJ, Mulè M, van der Plas M, Argiento P, Villafuerte FC, Beloka S, Faoro V, Macarlupu JL, Guenard H, de Bisschop C, Martinot JB, Vanderpool R, Penaloza D, Naeije R. Exercise Pathophysiology in Patients With Chronic Mountain Sickness. Chest 2012; 142:877-884. [DOI: 10.1378/chest.11-2845] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
30
|
Kojonazarov B, Isakova J, Imanov B, Sovkhozova N, Sooronbaev T, Ishizaki T, Aldashev AA. Bosentan Reduces Pulmonary Artery Pressure in High Altitude Residents. High Alt Med Biol 2012; 13:217-23. [DOI: 10.1089/ham.2011.1107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Baktybek Kojonazarov
- Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
- University of Giessen Lung Center, Giessen, Germany
| | - Jainagul Isakova
- Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Bakytbek Imanov
- National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | | | | | | | | |
Collapse
|
31
|
Pham I, Wuerzner G, Richalet JP, Peyrard S, Azizi M. Bosentan effects in hypoxic pulmonary vasoconstriction: Preliminary study in subjects with or without high altitude pulmonary edema-history. Pulm Circ 2012; 2:28-33. [PMID: 22558517 PMCID: PMC3342745 DOI: 10.4103/2045-8932.94824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-induced pulmonary vasoconstriction in patients with a medical history of high-altitude pulmonary edema (HAPE) may involve activation of the endothelin-1 (ET-1) pathway. We, therefore, compared the effect of the ETA/ETB receptor antagonist, bosentan, on pulmonary artery systolic pressure (PASP) in healthy subjects with (HS: HAPE subjects, n=5) or without a HAPE-history (CS: Control subjects, n=10). A double-blind, placebo-controlled, randomized, crossover design was performed in order to study the effects on PASP of a single oral dose of bosentan (250 mg) after 90 min exposure to normobaric hypoxia (FiO2 =0.12). In normoxia, PASP, evaluated by echocardiography, was 23.4±2.7 mmHg in CS and 28±5.8 mmHg in HS (NS). During the placebo period, hypoxia induced a significant decrease in SaO2, PaO2 and PCO2 and increase in pH in both CS and HS. Pulmonary arterial systolic pressure was also significantly increased (+8.5±5.0 mmHg in CS; +13.4±3.1 mmHg in HS) and reached significantly higher levels in HS than in CS (P=0.02). Bosentan significantly but similarly blunted the hypoxia-induced increase in PASP in both CS (Bosentan: 27.0±3.3 mmHg; placebo: 32.1±3.5 mmHg; P<0.01) and HS (Bosentan: 35.0±2.9 mmHg; placebo: 41.4±7.6 mmHg; P<0.05), (CS 5.2±5.3 vs. HS -6.4±5.2 mmHg, NS). Bosentan did not have a major effect on the hypoxia-induced changes in blood gas, or on cardiac output (CO) and systemic blood pressure (SBP), which were not modified by hypoxia. Plasma ET-1 in hypoxia during the bosentan period was 2.8 times higher than during for both CS and HS. A single oral dose of bosentan similarly blunted the hypoxia-induced increase in PASP both in healthy and HAPE-susceptible subjects, without altering CO or SBP.
Collapse
Affiliation(s)
- Isabelle Pham
- Paris 13, University, laboratory: "Cellular and functional responses to hypoxia", Bobigny, France
| | | | | | | | | |
Collapse
|
32
|
Radiloff DR, Zhao Y, Boico A, Wu C, Shan S, Palmer G, Hamilton K, Irwin D, Hanna G, Piantadosi CA, Schroeder T. The combination of theophylline and endothelin receptor antagonism improves exercise performance of rats under simulated high altitude. J Appl Physiol (1985) 2012; 113:1243-52. [PMID: 22898548 DOI: 10.1152/japplphysiol.01622.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Decreased physical performance is a well-known consequence of rapid ascent to high altitude. Hypoxic pulmonary vasoconstriction (HPV) potentially limits cardiac output and systemic blood flow, thus preventing successful adaptation to rapid ascent. We hypothesized that pharmacological enhancement of the heart rate with theophylline, combined with reversal of HPV via endothelin blockade, could increase exercise performance at high altitude. Female Sprague-Dawley rats were treated with combinations of 1) theophylline, 2) the endothelin receptor antagonists sitaxsentan/ambrisentan, and/or 3) phosphodiesterase-5 inhibitor sildenafil and exposed to either a simulated high altitude (4,267 m) or 12% oxygen. Exercise capacity, peripheral blood flow, hemodynamics, and pulmonary leak were examined. Combination treatment with theophylline and endothelin blockade, but not with the respective single compounds, significantly prolonged run-to-fatigue time under simulated high altitude. No such efficacy was found when theophylline was combined with sildenafil. Neither theophylline nor sitaxsentan or their combination influenced breathing rates and hemoglobin oxygen saturation. Whereas under hypoxia, theophylline significantly increased muscular blood flow, and sitaxsentan increased tissue oxygenation, the combination improved both parameters but in a reduced manner. Under hypoxia, the combination treatment but not the single compounds significantly enhanced pulmonary arterial pressure compared with controls (13.1 ± 6.3 vs. 11.9 ± 5.2 mmHg), whereas mean arterial pressure remained unaffected. Pulmonary wet-to-dry weight ratios were unaffected by combination treatment. We conclude that concomitant dosing with a cardiac stimulant and endothelin antagonist can partially reverse loss of physical performance capacity under hypobaric hypoxia, independent from improving blood oxygen saturation.
Collapse
Affiliation(s)
- Daniel R Radiloff
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boos C, Hodkinson P, Mellor A, Green N, Woods D. The Effects of Acute Hypobaric Hypoxia on Arterial Stiffness and Endothelial Function and its Relationship to Changes in Pulmonary Artery Pressure and Left Ventricular Diastolic Function. High Alt Med Biol 2012; 13:105-11. [DOI: 10.1089/ham.2012.1009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C.J. Boos
- Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, Dorset, United Kingdom and Bournemouth University, United Kingdom
| | - P. Hodkinson
- RAF Centre of Aviation Medicine, RAF Henlow, Beds, United Kingdom
| | - A. Mellor
- James Cook University Hospital, Middlesborough, United Kingdom
| | - N.P. Green
- RAF Centre of Aviation Medicine, RAF Henlow, Beds, United Kingdom
| | - D.R. Woods
- Department of Medicine, Royal Victoria Infirmary and Northumbria NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- University of Newcastle, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Affiliation(s)
- James D Anholm
- Pulmonary/Critical Care, VA Loma Linda Healthcare System, Loma Linda, CA 9235, USA.
| | | |
Collapse
|
35
|
Hedelin P, Kylhammar D, Rådegran G. Dual endothelin receptor blockade with tezosentan markedly attenuates hypoxia-induced pulmonary vasoconstriction in a porcine model. Acta Physiol (Oxf) 2012; 204:419-34. [PMID: 21726419 DOI: 10.1111/j.1748-1716.2011.02339.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Our aim was to test the hypothesis that dual endothelin receptor blockade with tezosentan attenuates hypoxia-induced pulmonary vasoconstriction. METHODS Fourteen anaesthetized, ventilated pigs, with a mean ± SEM weight of 30.5 ± 0.6 kg, were studied, in normoxia (FiO(2) 0.21) and with tezosentan (5 mg kg(-1)) infusion during (n = 7) or before (n = 7) hypoxia (FiO(2) 0.10). RESULTS Compared to normoxia, hypoxia increased (P < 0.05) pulmonary vascular resistance (PVR) by 3.4 ± 0.7 WU, mean pulmonary artery pressure by 13.7 ± 1.3 mmHg, mean right atrial pressure by 1.9 ± 0.4 mmHg and decreased (P < 0.02) systemic vascular resistance (SVR) by 5.2 ± 2.1 WU. Pulmonary capillary wedge pressure (PCWP), mean aortic blood pressure, heart rate, cardiac output, stroke volume and blood-O(2)-consumption were unaltered (P = ns). Tezosentan infused during hypoxia, normalized PVR, decreased (P < 0.05) maximally mean pulmonary artery pressure by 7.5 ± 0.8 mmHg, SVR by 5.8 ± 0.7 WU, mean aortic blood pressure by 10.8 ± 3.0 mmHg and increased (P < 0.04) stroke volume by 8.5 ± 1.8 mL. Mean right atrial pressure, PCWP, heart rate, cardiac output and blood-O(2) -consumption were unaltered (P = ns). Tezosentan infused before hypoxia additionally attenuated approx. 70% of the initial mean pulmonary artery pressure increase and abolished the PVR increase, without additionally affecting the other parameters. CONCLUSION Dual endothelin receptor blockade during hypoxia attenuates the 'sustained' acute pulmonary vasoconstrictor response by reducing the mean pulmonary artery pressure increase by approx. 62% and by normalizing PVR. Pre-treatment with tezosentan before hypoxia, additionally attenuates the initial hypoxia-induced mean pulmonary artery pressure rise by approx. 70% and abolishes the PVR increase, during stable circulatory conditions, without affecting oxygenation.
Collapse
Affiliation(s)
- P Hedelin
- The Öresund Cardiovascular Research Collaboration, The Clinic for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden
| | | | | |
Collapse
|
36
|
Abstract
The pulmonary circulation is a high-flow and low-pressure circuit, with an average resistance of 1 mmHg/min/L in young adults, increasing to 2.5 mmHg/min/L over four to six decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20 to 25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40 to 50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease.
Collapse
Affiliation(s)
- R NAEIJE
- Department of Physiology, Erasme Campus of the Free University of Brussels, CP 604, 808, Lennik road, B-1070 Brussels, BELGIUM, Tel +32 2 5553322, Fax +32 2 5554124
| | - N CHESLER
- University of Wisconsin at Madison, 2146 Engineering Centers Building, 1550 Engineering drive, Madison, Wisconsin 53706-1609, USA, Tel +1 608 265 8920, Fax +1 608 265 9239
| |
Collapse
|
37
|
Naeije R. Pro: Hypoxic Pulmonary Vasoconstriction Is a Limiting Factor of Exercise at High Altitude. High Alt Med Biol 2011; 12:309-12. [DOI: 10.1089/ham.2011.1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert Naeije
- Erasme Academic Hospital, Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Belgium
| |
Collapse
|
38
|
Anholm JD, Foster GP. Con: Hypoxic Pulmonary Vasoconstriction Is not a Limiting Factor of Exercise at High Altitude. High Alt Med Biol 2011; 12:313-7. [DOI: 10.1089/ham.2011.1059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James D. Anholm
- Pulmonary/Critical Care, VA Loma Linda Healthcare System, Loma Linda, California
| | - Gary P. Foster
- Cardiology Sections, VA Loma Linda Healthcare System, Loma Linda, California
| |
Collapse
|
39
|
Sildenafil and bosentan improve arterial oxygenation during acute hypoxic exercise: a controlled laboratory trial. Wilderness Environ Med 2011; 22:211-21. [PMID: 21723164 DOI: 10.1016/j.wem.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/18/2011] [Accepted: 03/16/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Sildenafil and, recently, bosentan have been reported to increase arterial saturation and exercise capacity at altitude. The mechanisms behind this are still poorly defined but may be related to attenuation of hypoxic pulmonary vasoconstriction (HPV) and improved gas exchange. This study was designed to examine and compare the effect of sildenafil and bosentan on pulmonary gas exchange during acute hypoxic exercise in a controlled laboratory setting. METHODS Sixteen athletic university students (8 males, 8 females) were examined during exercise in a hypoxic chamber (11% oxygen) before and after the administration of either sildenafil (n=10) or bosentan (n=6). Respiratory and metabolic measurements were taken at rest and during increasing exercise intensity (up to 90% of their individual maximal oxygen uptake [VO(2)max]) in concert with arterial blood gas sampling. RESULTS Both drugs resulted in small, but significant increases in arterial PO(2) (2-3 Torr) and O(2) saturation (3-4%) at rest and during hypoxic exercise, in both men and women. No significant changes in arterial PCO(2) or ventilation were seen at rest or during exercise in hypoxia; however, heart rate (both at rest and during exercise) was increased with both sildenafil and bosentan in both men and women. CONCLUSIONS These data demonstrate that sildenafil and bosentan equally improve arterial oxygenation in acute hypoxia in both men and women, which could account for improved physical performance at altitude.
Collapse
|
40
|
Siebenmann C, Bloch KE, Lundby C, Nussbamer-Ochsner Y, Schoeb M, Maggiorini M. Dexamethasone Improves Maximal Exercise Capacity of Individuals Susceptible to High Altitude Pulmonary Edema at 4559 m. High Alt Med Biol 2011; 12:169-77. [DOI: 10.1089/ham.2010.1075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christoph Siebenmann
- Institute of Human Movement Sciences and Sport, ETH, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Konrad E. Bloch
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
- Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Michèle Schoeb
- Intensive Care Unit DIM, University Hospital of Zurich, Zurich, Switzerland
| | - Marco Maggiorini
- Intensive Care Unit DIM, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Van De Bruaene A, La Gerche A, Prior DL, Voigt JU, Delcroix M, Budts W. Pulmonary Vascular Resistance as Assessed by Bicycle Stress Echocardiography in Patients With Atrial Septal Defect Type Secundum. Circ Cardiovasc Imaging 2011; 4:237-45. [DOI: 10.1161/circimaging.110.962571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexander Van De Bruaene
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Andre La Gerche
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - David L. Prior
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Jens-Uwe Voigt
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Marion Delcroix
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Werner Budts
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| |
Collapse
|
42
|
What Limits Cardiac Performance during Exercise in Normal Subjects and in Healthy Fontan Patients? Int J Pediatr 2010; 2010. [PMID: 20871839 PMCID: PMC2943078 DOI: 10.1155/2010/791291] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022] Open
Abstract
Exercise is an important determinant of health but is significantly reduced in the patient with a univentricular circulation. Normal exercise physiology mandates an increase in pulmonary artery pressures which places an increased work demand on the right ventricle (RV). In a biventricular circulation with pathological increases in pulmonary vascular resistance and/or reductions in RV function, exercise-induced augmentation of cardiac output is limited. Left ventricular preload reserve is dependent upon flow through the pulmonary circulation and this requires adequate RV performance. In the Fontan patient, the reasons for exercise intolerance are complex. In those patients with myocardial dysfunction or other pathologies of the circulatory components, it is likely that these abnormalities serve as a limitation to cardiac performance during exercise. However, in the healthy Fontan patient, it may be the absence of a sub-pulmonary pump which limits normal increases in pulmonary pressures, trans-pulmonary flow requirements and cardiac output. If so, performance will be exquisitely dependent on pulmonary vascular resistance. This provides a potential explanation as to why pulmonary vasodilators may improve exercise tolerance. As has recently been demonstrated, these agents may offer an important new treatment strategy which directly addresses the physiological limitations in the Fontan patient.
Collapse
|
43
|
Abstract
Altitude exposure is associated with major changes in cardiovascular function. The initial cardiovascular response to altitude is characterized by an increase in cardiac output with tachycardia, no change in stroke volume, whereas blood pressure may temporarily be slightly increased. After a few days of acclimatization, cardiac output returns to normal, but heart rate remains increased, so that stroke volume is decreased. Pulmonary artery pressure increases without change in pulmonary artery wedge pressure. This pattern is essentially unchanged with prolonged or lifelong altitude sojourns. Ventricular function is maintained, with initially increased, then preserved or slightly depressed indices of systolic function, and an altered diastolic filling pattern. Filling pressures of the heart remain unchanged. Exercise in acute as well as in chronic high-altitude exposure is associated with a brisk increase in pulmonary artery pressure. The relationships between workload, cardiac output, and oxygen uptake are preserved in all circumstances, but there is a decrease in maximal oxygen consumption, which is accompanied by a decrease in maximal cardiac output. The decrease in maximal cardiac output is minimal in acute hypoxia but becomes more pronounced with acclimatization. This is not explained by hypovolemia, acid-bases status, increased viscosity on polycythemia, autonomic nervous system changes, or depressed systolic function. Maximal oxygen uptake at high altitudes has been modeled to be determined by the matching of convective and diffusional oxygen transport systems at a lower maximal cardiac output. However, there has been recent suggestion that 10% to 25% of the loss in aerobic exercise capacity at high altitudes can be restored by specific pulmonary vasodilating interventions. Whether this is explained by an improved maximum flow output by an unloaded right ventricle remains to be confirmed. Altitude exposure carries no identified risk of myocardial ischemia in healthy subjects but has to be considered as a potential stress in patients with previous cardiovascular conditions.
Collapse
|
44
|
Pham I, Wuerzner G, Richalet JP, Peyrard S, Azizi M. Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. Eur J Clin Invest 2010; 40:195-202. [PMID: 20415698 DOI: 10.1111/j.1365-2362.2010.02254.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activation of the endothelin-1 (ET-1) pathway may be involved in hypoxia-induced pulmonary vasoconstriction, increase in pulmonary pressure and high altitude pulmonary oedema. Thus, we investigated the effect of the ETA/ETB receptor antagonist, bosentan, on pulmonary artery systolic pressure (PASP) in healthy subjects (n = 10). DESIGN We used a double-blind, placebo-controlled, randomized, cross-over design to study the effects of a single oral dose of bosentan (250 mg) on PASP after 90-min-exposure to normobaric hypoxia (FiO(2) = 0.12). We measured PASP and cardiac output by echocardiography, systolic arterial blood pressure, arterial O(2) saturation (SaO(2)), and blood gases at rest and during a sub-maximal exercise. RESULTS PASP in normoxia at rest was 23.5 +/- 2.7 and during exercise 39.8 +/- 11.6 mmHg (P < 0.0001). During the placebo period, hypoxia induced a significant decrease in SaO(2), PaO(2) and PCO(2) and increase in pH. PASP at rest increased significantly: 32.1 +/- 3.5 mmHg (P < 0.001 vs. normoxia). Bosentan significantly blunted the hypoxia-induced increase in PASP: bosentan: 27.0 +/- 3.3 mmHg, P = 0.002 vs. placebo at rest, but not during exercise: bosentan 39.8 +/- 11.6 vs. placebo 43.0 +/- 8.5 mmHg, ns. Bosentan had no effect on the hypoxia-induced changes in blood gases, or on cardiac output and systolic arterial blood pressure, which were not modified by hypoxia. CONCLUSION A single oral dose of bosentan blunted an acute hypoxia-induced increase in PASP in healthy subjects, without altering cardiac output or systemic blood pressure.
Collapse
Affiliation(s)
- I Pham
- Université Paris 13-UFR SMBH, EA 2363, Bobigny, France.
| | | | | | | | | |
Collapse
|
45
|
Sightings,edited by John W. Severinghaus. High Alt Med Biol 2009. [DOI: 10.1089/ham.2009.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|