1
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
2
|
Gosemann JH, Friedmacher F, Hofmann A, Zimmer J, Kuebler JF, Rittinghausen S, Suttkus A, Lacher M, Alvarez L, Corcionivoschi N, Puri P. Prenatal treatment with rosiglitazone attenuates vascular remodeling and pulmonary monocyte influx in experimental congenital diaphragmatic hernia. PLoS One 2018; 13:e0206975. [PMID: 30418988 PMCID: PMC6231640 DOI: 10.1371/journal.pone.0206975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/23/2018] [Indexed: 01/29/2023] Open
Abstract
Introduction Extensive vascular remodeling causing pulmonary hypertension (PH) represents a major cause of mortality in patients with congenital diaphragmatic hernia (CDH). The chemokine monocyte chemoattractant protein-1 (MCP-1) is a biomarker for the severity of PH and its activation is accompanied by pulmonary influx of monocytes and extensive vascular remodeling. MCP-1 activation can be reversed by application of rosiglitazone (thiazolidinedione). We performed this study to evaluate the role of MCP-1 for the pathogenesis of PH in experimental CDH. We hypothesized that vascular remodeling and MCP-1 activation is accompanied by pulmonary influx of fetal monocytes and can be attenuated by prenatal treatment with rosiglitazone. Methods In a first set of experiments pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D21 and divided into CDH and control. Quantitative real-time polymerase chain reaction, Western blot (WB), and immunohistochemistry (IHC) were used to evaluate MCP-1 expression, activation, and localization. Quantification and localization of pulmonary monocytes/macrophages were carried out by IHC. In a second set of experiments nitrofen-exposed dams were randomly assigned to prenatal treatment with rosiglitazone or placebo on D18+D19. Fetal lungs were harvested on D21, divided into control, CDH+rosiglitazone, and CDH+placebo and evaluated by WB as well as IHC. Results Increased thickness of pulmonary arteries of CDH fetuses was accompanied by increased systemic and perivascular MCP-1 protein expression and significantly higher amounts of pulmonary monocytes/macrophages compared to controls (p<0.01). These effects were reversed by prenatal treatment with rosiglitazone (p<0.01 vs. CDH+P; control). Conclusion Prenatal treatment with rosiglitazone has the potential to attenuate activation of pulmonary MCP-1, pulmonary monocyte influx, and vascular remodeling in experimental CDH. These results provide a basis for future research on prenatal immunomodulation as a novel treatment strategy to decrease secondary effects of PH in CDH.
Collapse
MESH Headings
- Animals
- Chemokine CCL2/blood
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Female
- Gene Expression
- Hernias, Diaphragmatic, Congenital/drug therapy
- Hernias, Diaphragmatic, Congenital/etiology
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/pathology
- Immunohistochemistry
- Lung/metabolism
- Lung/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Monocytes/drug effects
- Monocytes/metabolism
- Phenyl Ethers/adverse effects
- Pregnancy
- Prenatal Care
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rosiglitazone/pharmacology
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Jan-Hendrik Gosemann
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Florian Friedmacher
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- The Royal London Hospital, London, United Kingdom
| | - Alejandro Hofmann
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Julia Zimmer
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim F. Kuebler
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Anne Suttkus
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Luis Alvarez
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolae Corcionivoschi
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Galán A, Mayer I, Rafaj RB, Bendelja K, Sušić V, Cerón JJ, Mrljak V. MCP-1, KC-like and IL-8 as critical mediators of pathogenesis caused by Babesia canis. PLoS One 2018; 13:e0190474. [PMID: 29304171 PMCID: PMC5756041 DOI: 10.1371/journal.pone.0190474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
Canine babesiosis caused by the intraerythrocytic protozoan parasite Babesia canis is a tick-borne disease characterized by a host response that involves both cellular and humoral immunity. This study focuses on the secretion of cytokines Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Keratinocyte Chemotactic-like (KC-like), Interleukins (IL)-2, IL-7, IL-8, IL-10, IL-15, IL-18 and Monocyte Chemotactic Protein-1 (MCP-1) in babesiosis caused by Babesia canis upon treatment with Imizol®. We assessed time dependent changes in cytokine levels and tested whether these changes correlate with pathogenesis of the disease. Sixteen healthy dogs and 31 dogs infected with Babesia canis, of which 18 showed complications, were treated with Imizol®. One dog died during the study (3.2%). Longitudinal study was perfomed by monitoring dogs at the first day of presentation (day 1) and 6 days later (day 7). Our results show that higher MCP-1 levels on day 1 are positively associated with the occurrence of complications, (complicated vs. uncomplicated; p = 0.00016). A similar pattern was observed for KC-like on day 1 (p = 0.0326) and day 7 (p = 0.044). Moreover, babesiosis caused by B. canis produced a steady increase in IL-8 levels with a moderate to strong negative correlation with erythrocyte counts and hematocrit in uncomplicated diseased dogs only (Spearman's rank correlation coefficient rs = -0.582 and rs = -0.598 respectively). Like for MCP-1, KC-like levels also differed in complicated and uncomplicated diseased dogs on day 1 (p = 0.03236) and day 7 (p = 0.044). Furthermore, KC-like levels were strongly correlated with IL-8 levels (rs = 0.663-0.7) and non-segmented neutrophil counts (rs = 0.572-0.732) in both diseased groups. Analysis of ROC suggests the use of serum levels of MCP-1 and IL-7 as predictors of the occurrence of complications with an AUC of 0.906 and 0.896 respectively and linear combinations of MCP-1, KC-Like, IL-7 and GM-CSF with values up to AUC = 0.983. Cytokine cluster analysis presented in this study can contribute to a better understanding of the pathogenesis of babesiosis and serve as a prognostic tool for the early detection of cases with highest likelihood of developing complications. Overall, our studies show that infection by B. canis elicits a cytokine pattern that is distinct from that observed with B. rossi, and that some of the inflammatory mediators can be useful to predict complications. Our results also suggest targets for the development of novel therapeutic strategies in babesiosis caused by B. canis.
Collapse
Affiliation(s)
- Asier Galán
- ERA Chair project ''VetMedZg'', Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Mayer
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Velimir Sušić
- Department of Animal Husbandry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Vladimir Mrljak
- ERA Chair project ''VetMedZg'', Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res 2015; 2015:549691. [PMID: 26713087 PMCID: PMC4680113 DOI: 10.1155/2015/549691] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022] Open
Abstract
The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.
Collapse
|
5
|
Gosemann JH, Doi T, Kutasy B, Friedmacher F, Dingemann J, Puri P. Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 2012; 47:847-51. [PMID: 22595559 DOI: 10.1016/j.jpedsurg.2012.01.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. METHODS Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. RESULTS Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. CONCLUSION Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model.
Collapse
Affiliation(s)
- Jan-Hendrik Gosemann
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
6
|
Activation of peroxisome proliferator-activated receptor-gamma by glitazones reduces the expression and release of monocyte chemoattractant protein-1 in human mesothelial cells. Mediators Inflamm 2012; 2012:217696. [PMID: 22496599 PMCID: PMC3306974 DOI: 10.1155/2012/217696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/30/2011] [Indexed: 11/21/2022] Open
Abstract
Human peritoneal mesothelial cells (MC) play an important role in inflammatory processes of the peritoneal cavity by producing various cytokines and chemokines, such as monocyte chemoattractant protein-1 (MCP-1). The present study was designed to assess the effect of the peroxisome proliferator-activated receptor-gamma- (PPARγ-) activator rosiglitazone on the mesothelial MCP-1 expression and release. Primary cultures of MC were obtained from omental tissue. MCP-1 antigen concentrations were measured in the cell supernatant by ELISA and MCP-1 mRNA levels by real-time polymerase chain reaction. The presence of PPARγ on MC was assayed in a Western Blot analysis. MC constitutively express PPARγ. Activation of this receptor via rosiglitazone (0,1–10 μmol/L) resulted in significantly reduced amounts of mesothelial MCP-1 release as well as MCP-1 mRNA. The use of the PPARγ inhibitor GW-9662 could completely prevent the rosiglitazone effects. Rosiglitazone was also effective in reducing TNFα-induced enhanced secretion of MCP-1. Our findings indicate that glitazones are effective in reducing constitutive and TNFα-stimulated mesothelial MCP-1 mRNA expression and release.
Collapse
|
7
|
Götz AA, Vidal-Puig A, Rödel HG, de Angelis MH, Stoeger T. Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice. Part Fibre Toxicol 2011; 8:28. [PMID: 21933390 PMCID: PMC3197489 DOI: 10.1186/1743-8977-8-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. METHODS To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. RESULTS Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ. CONCLUSIONS Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARγ defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARγ to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.
Collapse
Affiliation(s)
- Alexander A Götz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg/Munich, D-85764, Germany
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Level 4, Institute of Metabolic Science, Box 289, NIHR Cambridge Biomedical Research Centre Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Heiko G Rödel
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, F-93430, Villetaneuse, France
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg/Munich, D-85764, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg/Munich, D-85764, Germany
| |
Collapse
|
8
|
Ding GX, Zhang AH, Huang SM, Pan XQ, Chen RH. SP600125, an inhibitor of c-Jun NH2-terminal kinase, blocks expression of angiotensin II-induced monocyte chemoattractant protein-1 in human mesangial cells. World J Pediatr 2010; 6:169-76. [PMID: 20490773 DOI: 10.1007/s12519-010-0033-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/25/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND We investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, in the expression of angiotensin II (Ang II)-induced monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor-1 (TGF-1), and in the production of fibronectin (FN), by human mesangial cells (HMCs). METHODS JNK activation in cultured human mesangial cells was determined by Western blotting with an antibody against the phosphorylated Ser63 residue of c-Jun. Binding of the activator protein (AP-1) to the MCP-1 AP-1 motif was detected via the electrophoretic mobility shift assay (EMSA). The transient luciferase reporter was used to examine MCP-1 promoter activity; an RNase protection assay and ELISA were used respectively to detect the expression of MCP-1 mRNA and production of MCP-1, TGF-beta and FN. RESULTS Anthra (1,9-cd) pyrazol-6(2H)-one (SP600125), a pharmacological inhibitor of JNK, almost completely abolished Ang II-induced Ser63 phosphorylation of c-Jun at concentrations of 5-20 micromol/L: JNK activity was reduced by 75% with 10 micromol/L SP600125, and by 90% with 20 micromol/L. Ang II increased AP-1 binding to the MCP-1 AP-1 motif in a time-dependent manner, as detected by EMSA, while SP600125 effectively blocked this increased AP-1 binding in a concentration-dependent manner. Treatment with 100 nmol/L Ang II led to a steady increase in MCP-1 mRNA expression, and to an enhanced production of MCP-1, TGF-beta and FN. These effects were blocked by SP60025 in a dose-dependent manner. SP600125 also reduced MCP-1 mRNA stability: the halflife of MCP-1 mRNA was approximately 5 hours in cells treated with Ang II only, but was reduced to 2 hours when treated with a combination of Ang II and SP600125. CONCLUSIONS These results show that the JNK/AP-1 pathway is involved in the expression of MCP-1 and TGF-beta, and in extracellular matrix production. JNK is an important therapeutic target for glomerulonephritis and glomerulosclerosis.
Collapse
Affiliation(s)
- Gui-Xia Ding
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
9
|
Murao K, Imachi H, Yu X, Muraoka T, Hosami N, Dobashi H, Ishida T. The transcriptional factor PREB mediates MCP-1 transcription induced by cytokines in human vascular endothelial cells. Atherosclerosis 2009; 207:45-50. [DOI: 10.1016/j.atherosclerosis.2009.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
|
10
|
Ahmed RAM, Murao K, Imachi H, Yoshida K, Dobashi H, Hosomi N, Ishida T. c-Jun N-terminal kinases inhibitor suppresses the TNF-alpha induced MCP-1 expression in human umbilical vein endothelial cells. Endocrine 2009; 35:184-8. [PMID: 19107603 DOI: 10.1007/s12020-008-9136-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/27/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a 76-amino-acid chemokine that is considered to be an important chemotactic factor for monocytes. MCP-1 is expressed in the macrophage-rich areas of atherosclerotic lesions. A recent report indicated that MCP-1 expression in human umbilical vein endothelial cells (HUVECs) is induced by the stimulation of tumor necrosis factor (TNF)-alpha via the c-Jun N-terminal kinases (JNK) pathway. In this study, we examined the effects of JNK inhibitor (JNKI-1), on MCP-1 expression. The results of this study indicated that the expression of MCP-1 mRNA and protein were stimulated in the presence of TNF-alpha. TNF-alpha stimulated the phosphrylation of JNK, however, JNKI-1 inhibited the TNF-alpha stimulated MCP-1 secretion and gene expression. As expected, JNKI-1 blocked the stimulatory effect of TNF-alpha on the MCP-1 promoter activity. In conclusion, JNKI-1 partially inhibits the TNF-alpha-induced MCP-1 expression in HUVECs, and therefore JNKI-1 may be of therapeutic value in the treatment of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Rania Abdel Muneem Ahmed
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Murao K, Yu X, Cao WM, Imachi H, Chen K, Muraoka T, Kitanaka N, Li J, Ahmed RAM, Matsumoto K, Nishiuchi T, Tokuda M, Ishida T. D-Psicose inhibits the expression of MCP-1 induced by high-glucose stimulation in HUVECs. Life Sci 2007; 81:592-9. [PMID: 17655880 DOI: 10.1016/j.lfs.2007.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/06/2007] [Accepted: 06/24/2007] [Indexed: 02/02/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a 76-amino-acid chemokine thought to be the major chemotactic factor for monocytes. MCP-1 is found in macrophage-rich areas of atherosclerotic lesions. Recent report indicates that MCP-1 is induced by glucose-stimulation, raising the important link between diabetes mellitus and atherosclerosis. One of the rare sugars, d-psicose (d-ribo-2-hexulose) is present in small quantities in commercial carbohydrate complexes, however the physiological functions of d-psicose have not been evaluated. In this study, we examined the effects of d-psicose on MCP-1 expression in human umbilical vein endothelial cells (HUVECs). Results showed that MCP-1 mRNA and protein were stimulated following exposure to 22.4 mM glucose. Transcriptional activity of MCP-1 promoter paralleled endogenous expression of the gene and this activity was dependent on the dose of d-glucose. d-Psicose inhibited these effects. Next we used inhibitors of selected signal transduction pathways to show that high-glucose (HG) stimulated MCP-1 promoter activity was sensitive to p38-Mitogen-Activated Protein Kinase (p38-MAPK) pathway inhibitor. As expected, a dominant-negative p38-MAPK abolished the stimulatory effect of HG on the promoter activity. To incubate the cells with HG and d-psicose reduced the activation of p38-MAPK. Together, these results indicate that the d-psicose suppression of HG induced MCP-1 expression is mediated in part by inhibition of the p38-MAPK pathway and raise the possibility that d-psicose may be of therapeutic value in the treatment of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Koji Murao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Becker J, Delayre-Orthez C, Frossard N, Pons F. Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundam Clin Pharmacol 2007; 20:429-47. [PMID: 16968414 DOI: 10.1111/j.1472-8206.2006.00425.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung inflammatory diseases, such as acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis, represent a major health problem worldwide. Although glucocorticoids are the most potent anti-inflammatory drug in asthma, they exhibit major side effects and have poor activity in lung inflammatory disorders such as ALI or COPD. Therefore, there is growing need for the development of alternative or new therapies to treat inflammation in the lung. Peroxisome proliferator-activated receptors (PPARs), including the three isotypes PPARalpha, PPARbeta (or PPARdelta) and PPARgamma, are transcription factors belonging to the nuclear hormone receptor superfamily. PPARs, and in particular PPARalpha and PPARgamma, are well known for their critical role in the regulation of energy homeostasis by controlling expression of a variety of genes involved in lipid and carbohydrate metabolism. Synthetic ligands of the two receptor isotypes, the fibrates and the thiazolidinediones, are clinically used to treat dyslipidaemia and type 2 diabetes, respectively. Recently however, PPARalpha and PPARgamma have been shown to exert a potent anti-inflammatory activity, mainly through their ability to downregulate pro-inflammatory gene expression and inflammatory cell functions. The present article reviews the current knowledge of the role of PPARalpha and PPARgamma in controlling inflammation, and presents different findings suggesting that PPARalpha and PPARgamma activators may be helpful in the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Julien Becker
- EA 3771 Inflammation et environnement dans l'asthme, Faculté de Pharmacie, Université Louis Pasteur-Strasbourg I, Illkirch, France
| | | | | | | |
Collapse
|
13
|
Abstract
Accumulating evidence in both humans and animal models clearly indicates that a group of very-long-chain polyunsaturated fatty acids, the n-3 fatty acids (or omega-3), have distinct and important bioactive properties compared with other groups of fatty acids. n-3 Fatty acids are known to reduce many risk factors associated with several diseases, such as cardiovascular diseases, diabetes, and cancer. The mechanisms whereby n-3 fatty acids affect gene expression are complex and involve multiple processes. As examples, n-3 fatty acids regulate 2 groups of transcription factors, such as sterol-regulatory-element binding proteins and peroxisome proliferator-activated receptors, that are critical for modulating the expression of genes controlling both systemic and tissue-specific lipid homeostasis. Modulation of specific genes by n-3 fatty acids and cross-talk between these genes are responsible for many effects of n-3 fatty acids.
Collapse
Affiliation(s)
- Richard J Deckelbaum
- Institute of Human Nutrition, the Department of Pediatrics, College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
14
|
Denning GM, Stoll LL. Peroxisome proliferator-activated receptors: potential therapeutic targets in lung disease? Pediatr Pulmonol 2006; 41:23-34. [PMID: 16267824 DOI: 10.1002/ppul.20338] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that play central roles in lipid and glucose homeostasis, cellular differentiation, and the immune/inflammatory response. Growing evidence indicates that changes in expression and activation of PPARs likely modulate conditions as diverse as diabetes, atherosclerosis, cancer, asthma, Parkinson's disease, and Alzheimer's disease. Activation of these receptors by natural or pharmacologic ligands leads to both gene-dependent and gene-independent effects that alter the expression of a wide array of proteins. In the lung, PPARs are expressed by alveolar macrophages, as well as by epithelial, endothelial, and smooth muscle cells. Studies both in vitro and in vivo suggest that PPAR ligands may have anti-inflammatory effects in asthma, pulmonary sarcoidosis, and pulmonary alveolar proteinosis, as well as antiproliferative and antiangiogenic effects in epithelial lung cancers. Further studies to understand the contribution of these receptors to health and disease will be important for determining whether they represent a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Gerene M Denning
- Department of Emergency Medicine, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
15
|
Huang THW, Razmovski-Naumovski V, Kota BP, Lin DSH, Roufogalis BD. The pathophysiological function of peroxisome proliferator-activated receptor-gamma in lung-related diseases. Respir Res 2005; 6:102. [PMID: 16153299 PMCID: PMC1242255 DOI: 10.1186/1465-9921-6-102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 09/09/2005] [Indexed: 02/03/2023] Open
Abstract
Research into respiratory diseases has reached a critical stage and the introduction of novel therapies is essential in combating these debilitating conditions. With the discovery of the peroxisome proliferator-activated receptor and its involvement in inflammatory responses of cardiovascular disease and diabetes, attention has turned to lung diseases and whether knowledge of this receptor can be applied to therapy of the human airways. In this article, we explore the prospect of peroxisome proliferator-activated receptor-γ as a marker and treatment focal point of lung diseases such as asthma, chronic obstructive pulmonary disorder, lung cancer and cystic fibrosis. It is anticipated that peroxisome proliferator-activated receptor-γ ligands will provide not only useful mechanistic pathway information but also a possible new wave of therapies for sufferers of chronic respiratory diseases.
Collapse
Affiliation(s)
- Tom Hsun-Wei Huang
- Faculty of Pharmacy, A15, University of Sydney, New South Wales, 2006, Australia
| | | | - Bhavani Prasad Kota
- Faculty of Pharmacy, A15, University of Sydney, New South Wales, 2006, Australia
| | - Diana Shu-Hsuan Lin
- Faculty of Pharmacy, A15, University of Sydney, New South Wales, 2006, Australia
| | - Basil D Roufogalis
- Faculty of Pharmacy, A15, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
16
|
Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 2005; 90:2282-9. [PMID: 15671098 DOI: 10.1210/jc.2004-1696] [Citation(s) in RCA: 382] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED Human adipose tissue (AT) produces several adipokines including monocyte chemoattractant protein (MCP)-1, involved in the pathogenesis of atherosclerosis. OBJECTIVE Human AT cultures, isolated adipocytes, and stromal-vascular cells were used to investigate the relationship among AT-resident macrophages, MCP-1, and adiposity and the regulation of MCP-1. RESULTS mRNA levels of specific macrophage markers (CD68 and CD14) are correlated with adiposity in sc AT and visceral AT (P < 0.05). MCP-1 production is higher in stromal-vascular cells vs. adipocytes (P < 0.01) and correlates with macrophage markers in both AT compartments (P < 0.05). MCP-1 release is higher in obese subjects (P < 0.05) and in VAT (P < 0.01), but after adjusting for AT-resident macrophages, the differences disappear. MCP-1 is stimulated by IL-1beta, TNF-alpha, IL-8, IL-4, and IL-6 + IL-6-soluble receptor and is decreased by dexamethasone, IL-10, metformin, and thiazolidinediones. DISCUSSION MCP-1 is correlated with specific macrophage markers, adiposity, and AT localization, but the relationship seems to be related to the number of AT-resident macrophages. Despite this, MCP-1 may be involved in obesity-related health complications, and the decrease of MCP-1 by metformin and thiazolidinediones suggests that these antidiabetic compounds have antiinflammatory properties improving the low-grade inflammatory state observed in obesity.
Collapse
Affiliation(s)
- Jens M Bruun
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus Sygehus, Tage Hansensgade 2, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
17
|
Chen YM, Chiang WC, Lin SL, Wu KD, Tsai TJ, Hsieh BS. Dual regulation of tumor necrosis factor-alpha-induced CCL2/monocyte chemoattractant protein-1 expression in vascular smooth muscle cells by nuclear factor-kappaB and activator protein-1: modulation by type III phosphodiesterase inhibition. J Pharmacol Exp Ther 2004; 309:978-86. [PMID: 14978197 DOI: 10.1124/jpet.103.062620] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monocyte/macrophage infiltration to the subendothelial space of arterial wall is a critical initial step in atherogenesis, in which CC chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1) is thought to play a key role. This study investigated the effectiveness of phosphodiesterase inhibitors, including the nonselective pentoxifylline (PTX) and the selective type III (cilostamide) and type IV (denbufylline) inhibitors, on cytokine-induced CCL2/MCP-1 production in cultured rat vascular smooth muscle cells (VSMCs), and the signal transduction mechanisms whereby they act. Our results showed that tumor necrosis factor (TNF)-alpha induced a marked increase in CCL2/MCP-1 production in dose- and time-dependent manners. 2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059), 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126) [both inhibitors of p42/44 mitogen-activated protein kinase (MAPK) kinase], and anthra[1hyphen]9-cd]pyrazol-6(2H)-one (SP600125) [an inhibitor of c-Jun NH(2)-terminal kinases (JNKs)] attenuated TNF-alpha-induced CCL2/MCP-1 production, without affecting I-kappaBalpha degradation or p65/nuclear factor-kappaB (NF-kappaB) nuclear translocation. PD98059 abolished TNF-alpha-activated p42/44 MAPK phosphorylation and c-Fos up-regulation, whereas SP600125 inhibited TNF-alpha-activated JNK and c-Jun phosphorylation. The NF-kappaB inhibitor carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132) attenuated TNF-alpha-induced CCL2/MCP-1 production in the presence of increased phospho-JNK and phospho-c-Jun levels. When SP600125 was added simultaneously, MG132 completely inhibited TNF-alpha-induced CCL2/MCP-1 production. Finally, the pretreatment of VSMCs with PTX or cilostamide, but not denbufylline, reduced TNF-alpha-induced CCL2/MCP-1 production, which was preceded by attenuation of p65/NF-kappaB nuclear translocation, p42/44 MAPK, and JNK-c-Jun phosphorylation, and c-Fos up-regulation. These data indicate that TNF-alpha-stimulated CCL2/MCP-1 production in rat VSMCs is dually regulated by activator protein-1 (AP-1) and NF-kappaB pathways, and inhibition of type III phosphodiesterase contributes substantially to the suppressive effect of PTX on CCL2/MCP-1 production via down-regulation of AP-1 and NF-kappaB signals.
Collapse
Affiliation(s)
- Yung-Ming Chen
- Department of Medicine, National Taiwan University Hospital, 7, Chung-Shan South Rd., Taipei, 10016, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cytokines and chemokines are redundant secreted proteins with growth, differentiation, and activation functions that regulate and determine the nature of immune responses and control immune cell trafficking and the cellular arrangement of immune organs. Which cytokines are produced in response to an immune insult determines initially whether an immune response develops and subsequently whether that response is cytotoxic, humoral, cell-mediated, or allergic. A cascade of responses can be seen in response to cytokines, and often several cytokines are required to synergize to express optimal function. An additional confounding variable in dissecting cytokine function is that each cytokine may have a completely different function, depending on the cellular source, target, and, most important, specific phase of the immune response during which it is presented. Numerous cytokines have both proinflammatory and anti-inflammatory potential; which activity is observed depends on the immune cells present and their state of responsiveness to the cytokine. For this chapter, cytokines are grouped according to those that are mononuclear phagocytic-derived or T-lymphocytic-derived; that mediate cytotoxic (antiviral and anticancer), humoral, cell-mediated, or allergic immunity; and that are immunosuppressive. The biology of chemokines are then reviewed, grouped by family.
Collapse
Affiliation(s)
- Larry C Borish
- Beirne Carter Center for Immunology, Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, VA 22908-1355, USA
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The inflammatory response is essential in the response to pathogens. TNF-alpha, IL-1 and IL-6 are key mediators of the response. They initiate metabolic changes to provide nutrients for the immune system, from host tissues. These changes include hyperlipidemia and increased gluconeogenesis. Insulin resistance and disordering of lipid metabolism occur in obesity, diabetes mellitus, atherosclerosis. This review examines recent research that links inflammation to insulin insensitivity. RECENT FINDINGS Population studies show a strong association between indices of inflammation, and abnormal lipid and carbohydrate metabolism, obesity and atherosclerosis. TNF-alpha is produced, by cells of the immune system and by adipocytes. It may provide the link between inflammation and insulin sensitivity. TNF-alpha results in insulin insensitivity, indirectly by stimulating stress hormone production and directly by sustained induction of SOCS-3 which decreases insulin-induced insulin receptor substrate 1 (IRS1) tyrosine phosphorylation and its association with the p85, regulatory subunit of phosphatidylinositol-3 kinase; and by negative regulation of PPAR gamma. Adipose tissue produces both TNF-alpha and leptin. Production of the latter relates positively to adipose tissue mass and through its actions on immune function exerts a pro-inflammatory influence. SUMMARY Recent studies on diseases which involve insulin insensitivity (e.g. obesity, type 2 diabetes and atherosclerosis) also show increased cytokine production and markers of inflammation. Evidence at present favours chronic inflammation as a trigger for chronic insulin insensitivity, rather than the reverse situation.
Collapse
Affiliation(s)
- Robert F Grimble
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton SO16 7PX, UK.
| |
Collapse
|
20
|
Lin CS, Lin G, Wang Z, Maddah SA, Lue TF. Upregulation of monocyte chemoattractant protein 1 and effects of transforming growth factor-beta 1 in Peyronie's disease. Biochem Biophys Res Commun 2002; 295:1014-9. [PMID: 12127997 DOI: 10.1016/s0006-291x(02)00765-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peyronie's disease (PD) is characterized by fibrosis in the tunica albuginea (TA) of the penis, which becomes bent as a result. We have previously shown that transforming growth factor-beta 1 (TGF-beta1) is upregulated in the TA of patients with PD and can initiate PD-like lesions in rat models. In this study we isolated three types of fibroblasts: P cells from the lesions of PD patients, C cells from the normal-appearing areas of the TA of the same patients, and N cells from the TA of patients without PD. We examined these cells for the expression of two fibrogenic cytokines, connective tissue growth factor (CTGF), and Monocyte Chemoattractant Protein 1 (MCP-1). We found that CTGF was expressed at similar levels in P, C, and N cells, whereas MCP-1 was significantly more expressed in P cells than in C cells and more in C cells than in N cells. Higher MCP-1 expression was also found in the lesions than in normal TA. Treatment with TGF-beta1-induced higher expression of MCP-1 but not CTGF in all three types of cells, with C cells being the most responsive. Based on these observations, we propose that MCP-1 could be a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Ching Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-1695, USA.
| | | | | | | | | |
Collapse
|
21
|
Inoue KI, Kawahito Y, Sano H. Peroxisome proliferator-activated receptor-gamma expression in lung. Chest 2002; 122:386-7. [PMID: 12114396 DOI: 10.1378/chest.122.1.386-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|