1
|
Uliński R, Kwiecień I, Domagała-Kulawik J. Lung Cancer in the Course of COPD-Emerging Problems Today. Cancers (Basel) 2022; 14:cancers14153819. [PMID: 35954482 PMCID: PMC9367492 DOI: 10.3390/cancers14153819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tobacco smoking remains the main cause of tobacco-dependent diseases like lung cancer, chronic obstructive pulmonary disease (COPD), in addition to cardiovascular diseases and other cancers. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. A patient with COPD has a four- to six-fold greater risk of developing lung cancer independent of smoking exposure, when compared to matched smokers with normal lung function. The 10 year risk is about 8.8% in the COPD group and only 2% in patients with normal lung function. COPD is not a uniform disorder: there are different phenotypes. One of them is manifested by the prevalence of emphysema and this is complicated by malignant processes most often. Here, we present and discuss the clinical problems of COPD in patients with lung cancer and against lung cancer in the course of COPD. There are common pathological pathways in both diseases. These are inflammation with participation of macrophages and neutrophils and proteases. It is known that anticancer immune regulation is distorted towards immunosuppression, while in COPD the elements of autoimmunity are described. Cytotoxic T cells, lymphocytes B and regulatory T cells with the important role of check point molecules are involved in both processes. A growing number of lung cancer patients are treated with immune check point inhibitors (ICIs), and it was found that COPD patients may have benefits from this treatment. Altogether, the data point to the necessity for deeper analysis and intensive research studies to limit the burden of these serious diseases by prevention and by elaboration of specific therapeutic options.
Collapse
Affiliation(s)
- Robert Uliński
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
2
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
3
|
Bhat TA, Kalathil SG, Bogner PN, Lehmann PV, Thatcher TH, Sime PJ, Thanavala Y. AT-RvD1 Mitigates Secondhand Smoke-Exacerbated Pulmonary Inflammation and Restores Secondhand Smoke-Suppressed Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:1348-1360. [PMID: 33558371 DOI: 10.4049/jimmunol.2001228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
4
|
Fernandes L, Rane S, Mandrekar S, Mesquita AM. Eosinophilic Airway Inflammation in Patients with Stable Biomass Smoke- versus Tobacco Smoke-Associated Chronic Obstructive Pulmonary Disease. J Health Pollut 2019; 9:191209. [PMID: 31893170 PMCID: PMC6905135 DOI: 10.5696/2156-9614-9.24.191209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/30/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory disease with predominant involvement of neutrophils, macrophages and CD8+ lymphocytes. Eosinophilic airway inflammations are reported in stable state and during acute exacerbations of tobacco smoke-associated COPD (TS-COPD). Women exposed to biomass fuel smoke are known to have eosinophils in sputum. However, little is known about the sputum cellular inflammatory profile in biomass fuel smoke-associated COPD (BMS-COPD). We therefore aimed to compare the sputum cellular inflammatory profile in tobacco smoke- and biomass smoke-associated COPD. METHODS The study was conducted in a tertiary care hospital in Goa, India. A total of 113 patients with stable COPD reporting to the outpatient pulmonary clinic were recruited. All participants were ≥ 40 years of age. Sputum induction studies were performed by the method of Pizzichini et al. after baseline subject characterization. Significant eosinophilia was defined as induced sputum eosinophils ≥ 3%. RESULTS There were 85 TS-COPD and 28 BMS-COPD patients. The mean age [standard deviation (SD)] was 64.7 (7.8) and 63.0 years (8.3), p = 0.32 in TS and BMS-COPD, respectively. Eighteen subjects (21.1%) were female smokers. The smoking pack-year median [interquartile range (IQR)] was 36 (20, 58) and hour-years of biomass smoke exposure mean (SD) was 192.4 (61). The TS-COPD and BMS-COPD cases showed a post-bronchodilator forced expiratory volume in one second (FEV1%) mean (SD) of 57.9 (17.1), and 62.6 (19.4), p= 0.22, respectively. Both groups had similar symptoms and severity of disease. Induced sputum total cell count per gram of sputum × 106 mean (SD) was 3.05 (1.53) for TS-COPD, and 2.55(1.37) for BMS-COPD p=0.12. The neutrophils % mean (SD) was 86.4 (16.5) and 87.9 (10.2), p = 0.64; eosinophils % median (IQR) was 2.5 (1, 10) and 8 (2, 12.8), p = 0.07; lymphocytes % median (IQR) was 0 (0, 0.75) and 0 (0, 1) p = 0.13; macrophages % median (IQR) was 2.5 (0.75, 5.7) and 1 (0, 4.7) p = 0.13; and significant eosinophilia (eosinophils ≥3%) was 42 (49.4%) and 20 (71%), p=0.04, for TS-COPD and BMS-COPD, respectively. CONCLUSIONS For similar severity of disease and clinical symptoms, significant eosinophilic inflammation was observed in stable BMS-COPD, while both groups had similar neutrophilic inflammation. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL The study was approved by the Institutional Ethics Committee of the Goa Medical College, Goa, India. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Lalita Fernandes
- Department of Pulmonary Medicine, Goa Medical College, Goa, India
| | - Shraddha Rane
- Department of Pulmonary Medicine, Goa Medical College, Goa, India
| | | | | |
Collapse
|
5
|
Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep 2017; 7:7143. [PMID: 28769058 PMCID: PMC5540919 DOI: 10.1038/s41598-017-07101-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lung macrophage subpopulations have been identified based on size. We investigated characteristics of small and large macrophages in the alveolar spaces and lung interstitium of COPD patients and controls. Alveolar and interstitial cells were isolated from lung resection tissue from 88 patients. Macrophage subpopulation cell-surface expression of immunological markers and phagocytic ability were assessed by flow cytometry. Inflammatory related gene expression was measured. Alveolar and interstitial macrophages had subpopulations of small and large macrophages based on size and granularity. Alveolar macrophages had similar numbers of small and large cells; interstitial macrophages were mainly small. Small macrophages expressed significantly higher cell surface HLA-DR, CD14, CD38 and CD36 and lower CD206 compared to large macrophages. Large alveolar macrophages showed lower marker expression in COPD current compared to ex-smokers. Small interstitial macrophages had the highest pro-inflammatory gene expression levels, while large alveolar macrophages had the lowest. Small alveolar macrophages had the highest phagocytic ability. Small alveolar macrophage CD206 expression was lower in COPD patients compared to smokers. COPD lung macrophages include distinct subpopulations; Small interstitial and small alveolar macrophages with more pro-inflammatory and phagocytic function respectively, and large alveolar macrophages with low pro-inflammatory and phagocytic ability.
Collapse
|
6
|
Pan Z, Yu H, Liao JL. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling. PLoS One 2016; 11:e0163192. [PMID: 27669518 PMCID: PMC5036797 DOI: 10.1371/journal.pone.0163192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future.
Collapse
Affiliation(s)
- Zhichao Pan
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Haishan Yu
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| | - Jie-Lou Liao
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, People’s Republic of China
| |
Collapse
|
7
|
Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol 2015; 51:604-14. [PMID: 24960334 DOI: 10.1165/rcmb.2014-0095tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions.
Collapse
Affiliation(s)
- Julie G Ledford
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care, and
| | | | | | | |
Collapse
|
8
|
Kaku Y, Imaoka H, Morimatsu Y, Komohara Y, Ohnishi K, Oda H, Takenaka S, Matsuoka M, Kawayama T, Takeya M, Hoshino T. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS One 2014; 9:e87400. [PMID: 24498098 PMCID: PMC3907529 DOI: 10.1371/journal.pone.0087400] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/22/2013] [Indexed: 12/14/2022] Open
Abstract
We have previously reported that the lungs of patients with very severe chronic obstructive pulmonary disease (COPD) contain significantly higher numbers of alveolar macrophages than those of non-smokers or smokers. M1 and M2 macrophages represent pro- and anti-inflammatory populations, respectively. However, the roles of M1 and M2 alveolar macrophages in COPD remain unclear. Immunohistochemical techniques were used to examine CD163, CD204 and CD206, as M2 markers, expressed on alveolar macrophages in the lungs of patients with mild to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (mild) n = 11, II (moderate) n = 9, III (severe) n = 2, and IV (very severe) n = 16). Fifteen smokers and 10 non-smokers were also examined for comparison. There were significantly higher numbers of alveolar macrophages in COPD patients than in smokers and non-smokers. The numbers and percentages of CD163(+), CD204(+) or CD206(+) alveolar macrophages in patients with COPD at GOLD stages III and IV were significantly higher than in those at GOLD stages I and II, and those in smokers and non-smokers. In patients with COPD, there was a significant negative correlation between the number of CD163(+), CD204(+) or CD206(+) alveolar macrophages and the predicted forced expiratory volume in one second. Overexpression of CD163, CD204 and CD206 on lung alveolar macrophages may be involved in the pathogenesis of COPD.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Female
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lung/pathology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Male
- Mannose Receptor
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Middle Aged
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Severity of Illness Index
- Smoking/genetics
- Smoking/metabolism
- Smoking/pathology
Collapse
Affiliation(s)
- Yoichiro Kaku
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Haruki Imaoka
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshitaka Morimatsu
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hanako Oda
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shinichi Takenaka
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Masanobu Matsuoka
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
9
|
Eves ND, Davidson WJ. Evidence-based risk assessment and recommendations for physical activity clearance: respiratory disease. Appl Physiol Nutr Metab 2013; 36 Suppl 1:S80-100. [PMID: 21800949 DOI: 10.1139/h11-057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 2 most common respiratory diseases are chronic obstructive pulmonary disease (COPD) and asthma. Growing evidence supports the benefits of exercise for all patients with these diseases. Due to the etiology of COPD and the pathophysiology of asthma, there may be some additional risks of exercise for these patients, and hence accurate risk assessment and clearance is needed before patients start exercising. The purpose of this review was to evaluate the available literature regarding the risks of exercise for patients with respiratory disease and provide evidence-based recommendations to guide the screening process. A systematic review of 4 databases was performed. The literature was searched to identify adverse events specific to exercise. For COPD, 102 randomized controlled trials that involved an exercise intervention were included (n = 6938). No study directly assessed the risk of exercise, and only 15 commented on exercise-related adverse events. For asthma, 30 studies of mixed methodologies were included (n = 1278). One study directly assessed the risk of exercise, and 15 commented on exercise-related adverse events. No exercise-related fatalities were reported. The majority of adverse events in COPD patients were musculoskeletal or cardiovascular in nature. In asthma patients, exercise-induced bronchoconstriction and (or) asthma symptoms were the primary adverse events. There is no direct evidence regarding the risk of exercise for patients with COPD or asthma. However, based on the available literature, it would appear that with adequate screening and optimal medical therapy, the risk of exercise for these respiratory patients is low.
Collapse
Affiliation(s)
- Neil D Eves
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
10
|
Guzmán L, Depix MS, Salinas AM, Roldán R, Aguayo F, Silva A, Vinet R. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. Diagn Pathol 2012; 7:87. [PMID: 22818553 PMCID: PMC3424112 DOI: 10.1186/1746-1596-7-87] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a disorder associated to cigarette smoke and lung cancer (LC). Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs) are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23), LC (n = 26), as well as in healthy subjects (CTR) (n = 33), using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP). The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR) (p < 0.0001), respectively. Methylation status of CDKN2A and MGMT was significantly higher in COPD and LC patients compared with CTR group (p < 0.0001). Frequency of CDH1 methylation only showed a statistically significant difference between LC patients and CTR group (p < 0.05). Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD) in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160
Collapse
Affiliation(s)
- Leda Guzmán
- Departamento de Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kanceljak-Macan B, Trošić I, Varnai VM, Pavičić I, Macan J. Induced sputum evaluation in restorers and conservators of cultural heritage. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2012; 67:229-238. [PMID: 23074980 DOI: 10.1080/19338244.2011.619217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The objective of this study was to examine induced sputum (IS) cells profile from restorers/conservators of cultural heritage (restorers) with no lower airway symptoms and normal ventilatory lung function. The study involved 22 restorers and 48 control workers. Medical interview, physical examination, spirometry, skin prick testing to inhalatory allergens, and IS collection were performed. Compared with control workers, restorers demonstrated higher percentage of neutrophils (34% vs 15.5%; p = .004). This pattern was found only in male workers. They had almost 9 times greater chance to have increased proportion of sputum neutrophils than male controls (odds ratio [OR] 8.98, 95% confidence interval [CI] 1.98-40.7). The mobilization of eosinophils or macrophages into the airways was not established regardless of workers sex. Additional gender difference in sputum cells distribution was found for occupationally unexposed subjects, with higher proportion of sputum neutrophils in women.
Collapse
|
12
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
13
|
Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, Feller-Kopman D, Wise R, Biswal S. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 2011; 3:78ra32. [PMID: 21490276 DOI: 10.1126/scitranslmed.3002042] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid-related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-type mice but not in Nrf2-deficient mice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection.
Collapse
Affiliation(s)
- Christopher J Harvey
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gonçalves RB, Coletta RD, Silvério KG, Benevides L, Casati MZ, da Silva JS, Nociti FH. Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 2011; 60:409-24. [PMID: 21298317 DOI: 10.1007/s00011-011-0308-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 11/25/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammation is a critical component of normal tissue repair, as well as being fundamental to the body's defense against infection. Environmental factors, such as smoking, have been reported to modify the host response and hence modify inflammation progression, severity and outcome. Therefore, a comprehensive understanding of the molecular mechanisms by which smoking affects inflammation is vital for preventive and therapeutic strategies on a clinical level. AIM The purpose of the present article is to review the potential biological mechanisms by which smoking affects inflammation, emphasizing recent developments. RESULTS Smoking is reported to effect a number of biological mediators of inflammation through its effect on immune-inflammatory cells, leading to an immunosuppressant state. Recent evidence strongly suggests that the molecular mechanisms behind the modulation of inflammation by smoking mainly involve the nuclear factor-kappa B (NF-kB) family, through the activation of both an inhibitor of IkB kinase (IKK)-dependent and -independent pathway. In addition to NF-kB activation, a number of transcriptional factors including GATA, PAX5 and Smad 3/4, have also been implicated. CONCLUSION Multiple mechanisms may be responsible for the association of smoking and inflammation, and the identification of potential therapeutic targets should guide future research.
Collapse
Affiliation(s)
- R B Gonçalves
- Department of Periodontology and Research Group in Oral Ecology, Faculty of Dentistry, Laval University, Quebec City, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Domagała-Kulawik J, Hoser G, Dąbrowska M, Safianowska A, Chazan R. CD4+/CD25+ cells in systemic inflammation in COPD. Scand J Immunol 2011; 73:59-65. [PMID: 21129004 DOI: 10.1111/j.1365-3083.2010.02474.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The autoimmune reaction is recently suspected to play a role in the pathogenesis of chronic obstructive lung disease (COPD). As COPD is a systemic disease, the elements of an autoimmune response in circulatory system is of interest. It has been shown that regulatory T cells are important in the control of autoimmunity. There are some data on a role of adiponectin in the regulation of immune reactions. The objective of this study was to assess the elements of autoimmune reaction in the peripheral blood (PB) of patients with COPD. Twenty-eight patients with mild/moderate COPD and 20 healthy volunteers were investigated. Flow cytometry method with mixtures of monoclonal antibodies anti: CD14/CD45, CD3/CD19, CD4/CD25/CTLA4 and CD8/CD25 were used. Concentration of adiponectin was measured using ELISA method. We observed significantly lower proportion of CD4+/CD25+ as well as CD4+/CD25+ (high) cells in COPD patients than in healthy controls (15.3 versus 17.8% and 0.79 versus 1.54%, respectively, P < 0.05). The proportion of CTLA4+ cells in CD25+ cells and the mean fluorescence of CTLA4 on CD4+ cells were higher in patients than in healthy controls (10.4 versus 4.7%, P < 0.05, 189% versus 149%, non significant, respectively). We found significantly elevated concentration of adiponectin in patients when compared to healthy subjects (15.4 versus 8.5 μl/ml, P < 0.05). We found that the adiponectin/BMI ratio correlated with the decrease of FEV(1) %. The results of this study support the possible role of CD4/CD25/CTLA4 cells and adiponectin in the systemic inflammation in COPD.
Collapse
Affiliation(s)
- J Domagała-Kulawik
- Department of Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
16
|
Bouloukaki I, Tsoumakidou M, Vardavas CI, Mitrouska I, Koutala E, Siafakas NM, Schiza SE, Tzanakis N. Maintained smoking cessation for 6 months equilibrates the percentage of sputum CD8+ lymphocyte cells with that of nonsmokers. Mediators Inflamm 2010; 2009:812102. [PMID: 20182552 PMCID: PMC2826878 DOI: 10.1155/2009/812102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/05/2009] [Accepted: 11/30/2009] [Indexed: 01/21/2023] Open
Abstract
Little is known about the longitudinal effects of smoking cessation on sputum inflammatory cells. We aimed to investigate the changes in sputum inflammatory cells and T-lymphocyte subpopulations after 6 and 12 months smoking cessation. Induced sputum was obtained from 68 healthy smokers before and after 6 months (n = 21) and 1 year (n = 14) smoking cessation and from ten healthy never-smokers. Inflammatory cells were identified by morphology and T-lymphocyte subpopulations by flow cytometry. Sputum macrophages were decreased after 12 months of smoking cessation in comparison to baseline, while neutrophils increased. Moreover, CD8+ T-cells were decreased in smokers before smoking cessation compared to never-smokers and increased in smokers after 6 months of smoking cessation in comparison to baseline; result that was maintained after 1 year of smoking cessation. These novel findings indicate that smoking cessation can equilibrate certain inflammatory cells of smokers with those of nonsmokers, within 6 months of smoking cessation.
Collapse
Affiliation(s)
- Izolde Bouloukaki
- Department of Thoracic Medicine, University General Hospital, Medical School of the University of Crete, 71110 Heraklion, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou H, Alexis NE, Almond M, Donohue J, LaForce C, Bromberg PA, Peden DB. Influence of C-159T SNP of the CD14 gene promoter on lung function in smokers. Respir Med 2009; 103:1358-65. [PMID: 19361972 DOI: 10.1016/j.rmed.2009.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 12/31/2022]
Abstract
CD14, a co-receptor for endotoxin, plays a significant role in regulating the inflammatory response to this agent. The C-159T single nucleotide polymorphism (SNP) in the CD14 gene promoter is an important regulator of CD14 expression, with TT homozygotes having increased expression of CD14. This SNP has been linked to pathogenesis of asthma and with cardiovascular diseases in smokers. We hypothesize that CD14 also plays a role in the pathophysiology of COPD in smokers who are exposed to endotoxin contained in cigarette smoke as well as endotoxin derived from Gram-negative microbes colonizing their airways. To assess the effect of the C-159T SNP of the CD14 gene promoter on lung function, we recruited 246 smokers 40 years of age or older with a range of 10-156 pack-year smoking exposures. The TT genotype was associated with lower lung function in smokers with a moderate smoking history. However, the CC genotype was associated with decreased lung function in heavy smokers (>56 pack years). The effect of CC genotype on severity of COPD is analogous with the effect of this genotype in risk for asthma. CD14 may be a factor in the pathophysiology of COPD, as it is in asthma and smoking-related cardiovascular diseases.
Collapse
Affiliation(s)
- Haibo Zhou
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cox LAT. A mathematical model of protease-antiprotease homeostasis failure in chronic obstructive pulmonary disease (COPD). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2009; 29:576-586. [PMID: 19000077 DOI: 10.1111/j.1539-6924.2008.01152.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), the fourth leading cause of death worldwide, has a puzzling etiology. Although it is a smoking-associated disease, only a minority of smokers develop it. Moreover, the disease continues to progress in COPD patients, even after smoking ceases. This article proposes a mathematical model of COPD that offers one possible explanation for both observations. Building on a conceptual model of COPD causation as resulting from protease-antiprotease imbalance in the lung, leading to ongoing proteolysis (digestion) of lung tissue by excess proteases, we formulate a system of seven ordinary differential equations (ODEs) with 18 parameters to describe the network of interacting homeostatic processes regulating the levels of key proteases (macrophage elastase (MMP-12) and neutrophil elastase (NE)) and antiproteases (alpha-1-antitrypsin and tissue inhibitor of metalloproteinase-1). We show that this system can be simplified to a single quadratic equation with only two parameters to predict the equilibrium behavior of the entire network. The model predicts two possible equilibrium behaviors: a unique stable "normal" (healthy) equilibrium or a "COPD" equilibrium with elevated levels of MMP-12 and NE (and of lung macrophages and neutrophils) and reduced levels of antiproteases. The COPD equilibrium is induced in the model only if cigarette smoking increases the average production of MMP-12 per alveolar macrophage above a certain threshold. Following smoking cessation, the predicted COPD equilibrium levels of MMP-12 and other disease markers decline, but do not return to their original (presmoking) levels. These and other predictions of the model are consistent with limited available human data.
Collapse
|
19
|
Abstract
Chronic obstructive pulmonary disease is a common condition and a major cause of mortality. COPD is characterized by irreversible airflow obstruction. The physiological abnormalities observed in COPD are due to a combination of emphysema and obliteration of the small airways in association with airway inflammation. The predominant cells involved in this inflammatory response are CD8+ lymphocytes, neutrophils, and macrophages. Although eosinophilic airway inflammation is usually considered a feature of asthma, it has been demonstrated in large and small airway tissue samples and in 20%–40% of induced sputum samples from patients with stable COPD. This airway eosinophilia is increased in exacerbations. Thus, modifying eosinophilic inflammation may be a potential therapeutic target in COPD. Eosinophilic airway inflammation is resistant to inhaled corticosteroid therapy, but does respond to systemic corticosteroid therapy, and the degree of response is related to the intensity of the eosinophilic inflammation. In COPD, targeting treatment to normalize the sputum eosinophilia reduced the number of hospital admissions. Whether controlling eosinophilic inflammation in COPD patients with an airway eosinophilia will modify disease progression and possibly alter mortality is unknown, but warrants further investigation.
Collapse
Affiliation(s)
- Shironjit Saha
- Institute for Lung Health, University Hospitals of Leicester, Leicester, UK
| | | |
Collapse
|
20
|
Babusyte A, Stravinskaite K, Jeroch J, Lötvall J, Sakalauskas R, Sitkauskiene B. Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD. Respir Res 2007; 8:81. [PMID: 18001475 PMCID: PMC2200652 DOI: 10.1186/1465-9921-8-81] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 11/14/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Smoking activates and recruits inflammatory cells and proteases to the airways. Matrix metalloproteinase (MMP)-12 may be a key mediator in smoke induced emphysema. However, the influence of smoking and its cessation on airway inflammation and MMP-12 expression during COPD is still unknown. We aimed to analyse airway inflammatory cell patterns in induced sputum (IS) and bronchoalveolar lavage (BAL) from COPD patients who are active smokers and who have ceased smoking >2 years ago. METHODS 39 COPD outpatients - smokers (n = 22) and ex-smokers (n = 17) were studied. 8 'healthy' smokers and 11 healthy never-smokers were tested as the control groups. IS and BAL samples were obtained for differential and MMP-12+-macrophages count analysis. RESULTS The number of IS neutrophils was higher in both COPD groups compared to both controls. The amount of BAL neutrophils was higher in COPD smokers compared to healthy never-smokers. The number of BAL MMP-12+-macrophages was higher in COPD smokers (1.6 +/- 0.3 x 106/ml) compared to COPD ex-smokers, 'healthy' smokers and healthy never-smokers (0.9 +/- 0.4, 0.4 +/- 0.2, 0.2 +/- 0.1 x 106/ml respectively, p < 0.05). CONCLUSION The lower amount of BAL neutrophils in COPD ex-smokers, compared to COPD smokers, suggests positive alterations in alveolar compartment after smoking cessation. Smoking and disease itself may stimulate MMP-12 expression in airway compartments (IS and BAL) from COPD patients.
Collapse
Affiliation(s)
- Agne Babusyte
- Laboratory of Pulmonology, Institute for Biomedical Research, Kaunas University of Medicine, Eiveniu 4, LT-50009, Kaunas, Lithuania
| | - Kristina Stravinskaite
- Department of Pulmonology and Immunology, Kaunas University of Medicine, Eiveniu 2, LT-50009, Kaunas, Lithuania
| | - Jolanta Jeroch
- Laboratory of Pulmonology, Institute for Biomedical Research, Kaunas University of Medicine, Eiveniu 4, LT-50009, Kaunas, Lithuania
| | - Jan Lötvall
- The Lung Pharmacology Group, Department of Respiratory Medicine and Allergology, Institute of Internal Medicine, Göteborg University, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Raimundas Sakalauskas
- Department of Pulmonology and Immunology, Kaunas University of Medicine, Eiveniu 2, LT-50009, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Laboratory of Pulmonology, Institute for Biomedical Research, Kaunas University of Medicine, Eiveniu 4, LT-50009, Kaunas, Lithuania
- Department of Pulmonology and Immunology, Kaunas University of Medicine, Eiveniu 2, LT-50009, Kaunas, Lithuania
| |
Collapse
|
21
|
Facchinetti F, Amadei F, Geppetti P, Tarantini F, Di Serio C, Dragotto A, Gigli PM, Catinella S, Civelli M, Patacchini R. Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am J Respir Cell Mol Biol 2007; 37:617-23. [PMID: 17600310 DOI: 10.1165/rcmb.2007-0130oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Smoking cigarettes is the major risk factor for chronic obstructive pulmonary disease (COPD). COPD is a condition associated with chronic pulmonary inflammation, characterized by macrophage activation, neutrophil recruitment, and cell injury. Many substances contained in cigarette smoke, including reactive oxygen species (ROS), have been proposed to be responsible for the inflammatory process of COPD. However, this issue remains unsettled. By gas chromatography/mass spectrometry (GC/MS) we show that acrolein and crotonaldehyde, two alpha,beta-unsaturated aldehydes, are contained in aqueous cigarette smoke extract (CSE) at micromolar concentrations and mimic CSE in evoking the release of the neutrophil chemoattractant IL-8 and of the pleiotropic inflammatory cytokine TNF-alpha from the human macrophagic cell line U937. In addition, acrolein (10-30 microM) released IL-8 also from cultured human alveolar macrophages and THP-1 macrophagic cells. 4-hydroxy-2-nonenal (30-100 microM), an endogenous alpha,beta-unsaturated aldehyde that is abundant in lungs of patients with COPD, stimulated the release of IL-8 from U937 cells, whereas the saturated aldehyde, acetaldehyde, was ineffective. CSE-evoked IL-8 release was remarkably (> 80%) inhibited by N-acetyl-cysteine (0.1-3 mM) or glutathione monoethyl ester (1-3 mM). Both compounds, by forming covalent adducts (Michael adducts), completely removed unsaturated aldehydes from CSE. Our data demonstrate that alpha,beta-unsaturated aldehydes are major mediators of cigarette smoke-induced macrophage activation, and suggest that they might contribute to pulmonary inflammation associated with cigarette smoke.
Collapse
|
22
|
Domagała-Kulawik J, Hoser G, Dabrowska M, Chazan R. Increased proportion of Fas positive CD8+ cells in peripheral blood of patients with COPD. Respir Med 2007; 101:1338-43. [PMID: 17118637 DOI: 10.1016/j.rmed.2006.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/26/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation in pulmonary tissue and is also associated with systemic effects. The objective of this study was determination of lymphocyte subpopulation and the expression of Fas receptor on lymphocytes derived from peripheral blood of patients with stable COPD (n=18) and a control group: asymptomatic smokers (n=12) and non-smokers (n=12). Flow cytometry method with monoclonal antibodies was used for evaluation of lymphocyte subsets: CD4+ and CD8+ and the expression of Fas (CD95) on T lymphocytes. We found an elevated proportion of CD8+ cells in the blood of COPD patients. Proportion of Fas+ T lymphocytes was significantly higher in patients with COPD when compared with asymptomatic smokers and non-smokers (mean: 84.4% vs. 71.6% vs. 61.0% for Fas+/ CD4+ and 88.1% vs. 73.8% vs. 58.3% for Fas+/CD8+ lymphocytes). The proportion of Fas positive CD8+ cells significantly correlated with the degree of airway obstruction and hypoxemia. The significant correlations of Fas positive CD4+ and Fas positive CD8+ with smoking history expressed as pack years smoked were observed. Our observation of an elevated proportion of circulating lymphocytes bearing Fas receptor may play a role in induction of these cells' apoptosis and indicate the role of Fas/ FasL pathway in the changes in proportion of lymphocyte subpopulations in patients with COPD.
Collapse
Affiliation(s)
- Joanna Domagała-Kulawik
- Department of Pneumonology and Allergology, Warsaw Medical University, ul. Banacha 1a, 02 097 Warsaw, Poland.
| | | | | | | |
Collapse
|
23
|
Vandivier RW, Voelkel NF. The challenges of chronic obstructive pulmonary diseases (COPD)--a perspective. COPD 2007; 2:177-84. [PMID: 17136979 DOI: 10.1081/copd-200050676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory disease, primarily caused by cigarette smoke, which will soon become the third leading cause of death globally. Despite the importance of the problem, our real understanding of the biological underpinnings of COPD remains incomplete. Consequently, our first-line therapies, while helpful, are not yet as effective as they need to be. In this review, we will focus on these challenges and more, including the role of impaired tissue repair and adaptive immunity in disease pathogenesis, determining who may be at risk, describing COPD phenotypes and potential biomarkers. New ideas for chronic disease management and prevention of exacerbations will also be discussed. While much remains to be accomplished, meeting these challenges will bring rewards because what we learn will have implications for the understanding and treatment of chronic inflammatory diseases beyond COPD.
Collapse
Affiliation(s)
- R William Vandivier
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, C272, Denver, Colorado 80220, USA.
| | | |
Collapse
|
24
|
Löfdahl JM, Wahlström J, Sköld CM. Different inflammatory cell pattern and macrophage phenotype in chronic obstructive pulmonary disease patients, smokers and non-smokers. Clin Exp Immunol 2006; 145:428-37. [PMID: 16907910 PMCID: PMC1809704 DOI: 10.1111/j.1365-2249.2006.03154.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Smokers exhibit airway inflammation and increased number of alveolar macrophages (AM), but not all develop chronic obstructive pulmonary disease (COPD). We hypothesized that AMs in COPD patients have an altered functional capacity mirrored in a different phenotype. Sixteen steroid-naive COPD patients [forced expiratory volume in 1 s (FEV(1)) < 70% of predicted] underwent bronchoalveolar lavage (BAL). Age- and smoking-matched non-obstructive smokers (n = 10) and healthy non-smokers (n = 9) served as controls. Nine COPD patients had a BAL cell yield sufficient for flow cytometry analysis, where expression of AM cell surface markers reflecting various functions was determined. AMs from COPD patients showed decreased expression of CD86 (co-stimulation) and CD11a (adhesion) compared to smokers' AMs (P < 0.05). Furthermore, smokers' AMs showed lower (P < 0.05) expression of CD11a compared to non-smokers. AM expression of CD11c was higher in the COPD and smokers groups compared to non-smokers (P < 0.05). The expression of CD54 (adhesion) was lower in smokers' AMs compared to non-smokers (P < 0.05), whereas CD16 was lower (P < 0.05) in COPD patients compared to non-smokers. The AM expression of CD11b, CD14, CD58, CD71, CD80 and human leucocyte antigen (HLA) Class II did not differ between the three groups. The AM phenotype is altered in COPD and further research may develop disease markers. The lower AM expression of CD86 and CD11a in COPD implies a reduced antigen-presenting function. Some alterations were found in smokers compared to non-smokers, thus indicating that changes in AM phenotype may be associated with smoking per se. The functional relevance of our findings remains to be elucidated.
Collapse
Affiliation(s)
- J M Löfdahl
- Department of Medicine, Division of Respiratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
25
|
Abstract
Airway inflammation is central to the pathogenesis of both airway remodelling and parenchymal destruction in chronic obstructive pulmonary disease (COPD). Neutrophils, macrophages, and CD8+ T lymphocytes have been implicated in a number of studies, but a detailed profile of disease-phenotype specific inflammation has yet to emerge. The heterogeneity of the disease has hindered data interpretation while extrapolation of the results of relatively non-invasive studies to the actual pathology found in the distal lung is difficult. Moreover, prominent studies have had frequently conflicting results. Further investigations are needed to marry the different clinical phenotypes of COPD to their respective inflammatory profiles in the airways and thus improve our understanding of the pathogenesis of the disease as a whole.
Collapse
Affiliation(s)
- R O'Donnell
- Respiratory Cell and Molecular Biology, Division of Infection, Inflammation and Repair, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
26
|
Chaudhuri R, Livingston E, McMahon AD, Lafferty J, Fraser I, Spears M, McSharry CP, Thomson NC. Effects of smoking cessation on lung function and airway inflammation in smokers with asthma. Am J Respir Crit Care Med 2006; 174:127-33. [PMID: 16645173 DOI: 10.1164/rccm.200510-1589oc] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Active smoking in asthma is associated with worsening of symptoms, accelerated decline in lung function, and impaired response to corticosteroids. OBJECTIVES To examine the short-term effects of smoking cessation on lung function, airway inflammation, and corticosteroid responsiveness in smokers with asthma. METHODS AND MEASUREMENTS Smokers with asthma were given the option to quit or continue smoking. Both groups underwent spirometry and induced sputum at baseline and at 1, 3, and 6 wk. Cutaneous vasoconstrictor response to topical beclometasone, airway response to oral prednisolone, and sensitivity of peripheral blood lymphocytes to corticosteroids were measured before smoking cessation and at 6 wk. MAIN RESULTS Of 32 subjects recruited, 11 opted to continue smoking (smoking control group). Of 21 subjects who opted for smoking cessation, 10 quit smoking for 6 wk (quit group). In the comparison of quitters with smokers at 6 wk, the mean (confidence interval [CI]) difference in FEV(1) was 407 ml (21, 793), p = 0.040, and the proportion of sputum neutrophils was reduced by 29 (51, 8), p = 0.039. Total cutaneous vasoconstrictor response score to topical beclometasone improved after smoking cessation with a mean (CI) difference of 3.56 (0.84, 6.28), p = 0.042, between quitters and smokers. There was no change in airway corticosteroid responses after smoking cessation. CONCLUSIONS By 6 wk after smoking cessation, subjects who quit smoking had achieved considerable improvement in lung function and a fall in sputum neutrophil count compared with subjects who continued to smoke. These findings highlight the importance of smoking cessation in asthma.
Collapse
Affiliation(s)
- Rekha Chaudhuri
- FRCP, Department of Respiratory Medicine, Division of Immunology, Infection and Inflammation, University of Glasgow and Western Infirmary, Glasgow G11 6NT, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Walsh DS, Thavichaigarn P, Pattanapanyasat K, Siritongtaworn P, Kongcharoen P, Tongtawe P, Yongvanitchit K, Jiarakul N, Dheeradhada C, Pearce FJ, Wiesmann WP, Webster HK. Characterization of circulating monocytes expressing HLA-DR or CD71 and related soluble factors for 2 weeks after severe, non-thermal injury. J Surg Res 2005; 129:221-30. [PMID: 16045935 DOI: 10.1016/j.jss.2005.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/27/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Severe injury is associated with changes in monocytes that may contribute to poor outcomes. Longitudinal characterization of monocyte response patterns after trauma may provide added insight into these immunological alterations. METHODS Venous blood obtained seven times during post-injury days 1 through 13 from 61 patients with an injury severity score >20 was assessed by flow cytometry for monocytes (CD14+) expressing HLA-DR or CD71 (transferrin receptor) and for circulating levels of interleukin (IL) 1alpha, IL-1beta, IL-6, soluble CD14 (sCD14), tumor necrosis factor-alpha (TNF-alpha), prostaglandin E(2) (PGE(2)), thromboxane B(2) (TXB(2)), and endotoxin. Urine neopterin was measured by high-pressure liquid chromatography, expressed as a neopterin-creatinine ratio. RESULTS Trauma patients had leucocytosis days 1 through 13, monocytosis days 5 through 13, reduced proportions of CD14+HLA-DR+ cells days 2 through 5, and elevated proportions of CD14+CD71+ cells days 1 through 13. Neopterin was elevated all days, peaking on day 10. sCD14 was elevated days 2 through 13, and there were sporadic elevations of IL-1alpha, IL-1beta, IL-6, TNF-alpha, PGE(2), TXB(2), and endotoxin. Sepsis syndrome patients (n = 6) had larger and more prolonged reductions in CD14+HLA-DR+ cells and higher neopterin values, in comparison with uneventful patient outcomes. CONCLUSIONS Altered proportions of monocytes expressing HLA-DR and CD71 and elevated sCD14 and urine neopterin levels, for up to 2 weeks after severe injury, underscores an extended period of profound immunological effects. Additional studies to more fully assess temporal monocyte response patterns after severe injury, including activation, may be warranted.
Collapse
Affiliation(s)
- Douglas S Walsh
- Department of Immunology and Medicine, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Laan M, Bozinovski S, Anderson GP. Cigarette Smoke Inhibits Lipopolysaccharide-Induced Production of Inflammatory Cytokines by Suppressing the Activation of Activator Protein-1 in Bronchial Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:4164-70. [PMID: 15356167 DOI: 10.4049/jimmunol.173.6.4164] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic smoking is characterized by immunosuppressive changes in the airways, leading to chronic colonization with bacteria, which in turn may contribute to the chronic obstructive pulmonary disease. The mechanisms causing this immunosuppression, however, are poorly characterized. This study evaluated whether cigarette smoke can inhibit endotoxin (LPS)-induced inflammatory cytokine production in bronchial epithelial cells and, if so, what the mechanisms are behind this effect. Pretreatment with cigarette smoke extract (CSE) concentration dependently inhibited the LPS-induced GM-CSF and IL-8 protein release, which was accompanied by decreased expression of mRNA in human bronchial epithelial cells (Beas-2B). The increase of neutrophil chemotaxis induced by conditioned medium from LPS-treated Beas-2B cells was also suppressed by CSE. In addition, the activity of LPS-induced transcription factor AP-1, but not NF-kappaB, was down-regulated by CSE. Notably, at the concentrations used, CSE had no effect on number or viability of Beas-2B cells. These data indicate that cigarette smoke possesses immunosuppressive properties by down-regulating the bacterial pathogen-induced neutrophil-mobilizing cytokine production via suppression of AP-1 activation in the airways. Hence, this study suggests a novel mechanism by which cigarette smoke may contribute to chronic colonization and chronic obstructive pulmonary disease in smokers.
Collapse
Affiliation(s)
- Martti Laan
- Lung Disease Research Group, Department of University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
29
|
Kraemer PS, Sanchez CA, Goodman GE, Jett J, Rabinovitch PS, Reid BJ. Flow cytometric enrichment for respiratory epithelial cells in sputum. ACTA ACUST UNITED AC 2004; 60:1-7. [PMID: 15229852 DOI: 10.1002/cyto.a.20041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Induced sputum, in contrast to bronchoscopic biopsies and lavages, is an easily obtained source of biological specimens. However, obtaining abnormal exfoliated cells for detailed molecular studies is limited because respiratory epithelial cells comprise only about 1% of sputum cell populations. METHODS We developed a multiparameter flow sorting strategy to purify epithelial cells from nonepithelial sputum cells, using anti-cytokeratin antibody AE1/AE3 to recognize human epithelial cells and DAPI to stain DNA. We excluded cells with a high degree of side-scatter, which were composed predominantly of squamous cells and contaminating macrophages. The remaining cytokeratin-positive respiratory epithelial cells were then sorted based on anti-cytokeratin (PE) vs DNA (DAPI) parameters. RESULTS In this proof of principle study, the AE1AE3 cytokeratin/DNA flow sorting strategy enriched rare diploid respiratory epithelial cells from an average of 1.1% of cells in unsorted induced sputum samples to average purities of 42%. Thus, AE1AE3 flow-sorting results in a 38-fold enrichment of these cells. CONCLUSIONS We report a multiparameter flow cytometric assay to detect and enrich rare respiratory epithelial cells from induced sputum samples to average purities of 42%. With further development, this methodology may be useful as part of a molecular screening approach of populations at high risk for lung cancer.
Collapse
Affiliation(s)
- Petra S Kraemer
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sin DD, McAlister FA, Man SFP, Anthonisen NR. Contemporary management of chronic obstructive pulmonary disease: scientific review. JAMA 2003; 290:2301-12. [PMID: 14600189 DOI: 10.1001/jama.290.17.2301] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The care of patients with chronic obstructive pulmonary disease (COPD) has changed radically over the past 2 decades, and novel therapies can not only improve the health status of patients with COPD but also modify its natural course. OBJECTIVE To systematically review the impact of long-acting bronchodilators, inhaled corticosteroids, nocturnal noninvasive mechanical ventilation, pulmonary rehabilitation, domiciliary oxygen therapy, and disease management programs on clinical outcomes in patients with COPD. DATA SOURCES MEDLINE and Cochrane databases were searched to identify all randomized controlled trials and systematic reviews from 1980 to May 2002 evaluating interventions in patients with COPD. We also hand searched bibliographies of relevant articles and contacted experts in the field. STUDY SELECTION AND DATA EXTRACTION We included randomized controlled trials that had follow-up of at least 3 months and contained data on at least 1 of these clinical outcomes: health-related quality of life, exacerbations associated with COPD, or death. For pulmonary rehabilitation, we included studies that had a follow-up of at least 6 weeks. Using standard meta-analytic techniques, the effects of interventions were compared with placebo or with usual care. In secondary analyses, the effects of interventions were compared against each other, where possible. DATA SYNTHESIS Long-acting beta2-agonists and anticholinergics (tiotropium) reduced exacerbation rates by approximately 20% to 25% (relative risk [RR] for long-acting beta2-agonists, 0.79; 95% CI, 0.69-0.90; RR for tiotropium, 0.74; 95% CI, 0.62-0.89) in patients with moderate to severe COPD. Inhaled corticosteroids also reduced exacerbation rates by a similar amount (RR, 0.76; 95% CI, 0.72-0.80). The beneficial effects were most pronounced in trials enrolling patients with FEV1 between 1 L and 2 L. Combining a long-acting beta2-agonist with an inhaled corticosteroid resulted in an approximate 30% (RR, 0.70; 95% CI, 0.62-0.78) reduction in exacerbations. Pulmonary rehabilitation improved the health status of patients with moderate to severe disease, but no material effect was observed on long-term survival or hospitalization rates. Domiciliary oxygen therapy improved survival by approximately 40% in patients with PaO2 lower than 60 mm Hg, but not in those without hypoxia at rest. The data on disease management programs were heterogeneous, but overall no effect was observed on survival or risk of hospitalization. Noninvasive mechanical ventilation was not associated with improved outcomes. CONCLUSIONS A significant body of evidence supports the use of long-acting bronchodilators and inhaled corticosteroids in reducing exacerbations in patients with moderate to severe COPD. Domiciliary oxygen therapy is the only intervention that has been demonstrated to prolong survival, but only in patients with resting hypoxia.
Collapse
Affiliation(s)
- Don D Sin
- Division of Pulmonary Medicine, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|