1
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
2
|
Kawai M, Zhang E, Kabwe JC, Okada A, Maruyama J, Sawada H, Maruyama K. Lung damage created by high tidal volume ventilation in rats with monocrotaline-induced pulmonary hypertension. BMC Pulm Med 2022; 22:78. [PMID: 35247989 PMCID: PMC8897872 DOI: 10.1186/s12890-022-01867-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Rats with chronic hypoxia-induced non-inflammatory pulmonary hypertension (PH) are resistant to ventilator-induced lung injury. We investigated the effect of high tidal volume ventilation in another model of PH, monocrotaline (MCT)-induced PH, which is a type of inflammatory PH.
Methods PH was induced in rats by subcutaneous injection with 60 mg/kg MCT. Normal control rats, rats at 2 weeks after MCT injection (MCT2), and rats at 3 weeks after MCT injection (MCT3) were ventilated with low tidal volume (LV, 6 mL/kg) or high tidal volume (HV, 35 mL/kg) for 2 h with room air without positive end-expiratory pressure. Arterial oxygen pressure (PaO2) and Evans blue dye (EBD) extravasation were measured. Hypertensive pulmonary vascular remodeling was assessed morphometrically by the percentage of muscularized peripheral pulmonary arteries (%Muscularization) and the media wall thickness to external diameter ratio, namely percentage medial wall thickness (%MWT). To assess inflammation, lung IκB protein and cytokine mRNA expression levels were assessed. Results Baseline mean pulmonary arterial pressure was significantly higher in MCT rats (normal, 15.4 ± 0.5 mmHg; MCT2, 23.7 ± 0.9; and MCT3, 34.5 ± 1.5). After 2-h ventilation, PaO2 was significantly lower in the HV groups compared with the LV groups in normal and MCT2 rats, but not in MCT3 rats. Impairment of oxygenation with HV was less in MCT3 rats compared with normal and MCT2 rats. Among the HV groups, MCT3 rats showed significantly lower levels of EBD extravasation than normal and MCT2 rats. HV significantly downregulated IκB protein expression in normal and MCT3 rats and increased IL-6, MCP-1, CXCL-1 (MIP-1), and IL-10 mRNA levels in MCT3 rats. %Muscularization, %MWT, and the expression of lung elastin were significantly higher in MCT3 rats than in normal and MCT2 rats. Conclusion We found that HV-associated damage might be reduced in MCT-induced PH rats compared with normal rats. The results of this and earlier studies suggest that hypertensive pulmonary vascular structural changes might be protective against the occurrence of ventilator-induced lung injury, irrespective of the etiology of PH. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01867-6.
Collapse
|
3
|
Mikhael M, Makar C, Wissa A, Le T, Eghbali M, Umar S. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front Physiol 2019; 10:1233. [PMID: 31607955 PMCID: PMC6769067 DOI: 10.3389/fphys.2019.01233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by increased pulmonary artery pressures. Long standing pulmonary arterial pressure overload leads to right ventricular (RV) hypertrophy, RV failure, and death. RV failure is a major determinant of survival in PH. Oxidative stress has been associated with the development of RV failure secondary to PH. Here we summarize the structural and functional changes in the RV in response to sustained pulmonary arterial pressure overload. Furthermore, we review the pre-clinical and clinical studies highlighting the association of oxidative stress with pulmonary vasculature and RV remodeling in chronic PH. Targeting oxidative stress promises to be an effective therapeutic strategy for the treatment of RV failure.
Collapse
Affiliation(s)
- Matthew Mikhael
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Christian Makar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Amir Wissa
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Trixie Le
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Ramani M, Bradley WE, Dell'Italia LJ, Ambalavanan N. Early exposure to hyperoxia or hypoxia adversely impacts cardiopulmonary development. Am J Respir Cell Mol Biol 2015; 52:594-602. [PMID: 25255042 DOI: 10.1165/rcmb.2013-0491oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Preterm infants are at high risk for long-term abnormalities in cardiopulmonary function. Our objectives were to determine the long-term effects of hypoxia or hyperoxia on cardiopulmonary development and function in an immature animal model. Newborn C57BL/6 mice were exposed to air, hypoxia (12% oxygen), or hyperoxia (85% oxygen) from Postnatal Day 2-14, and then returned to air for 10 weeks (n = 2 litters per condition; > 10/group). Echocardiography, blood pressure, lung function, and lung development were evaluated at 12-14 weeks of age. Lungs from hyperoxia- or hypoxia-exposed mice were larger and more compliant (compliance: air, 0.034 ± 0.001 ml/cm H2O; hypoxia, 0.049 ± 0.002 ml/cm H2O; hyperoxia, 0.053 ± 0.002 ml/cm H2O; P < 0.001 air versus others). Increased airway reactivity, reduced bronchial M2 receptor staining, and increased bronchial α-smooth muscle actin content were noted in hyperoxia-exposed mice (maximal total lung resistance with methacholine: air, 1.89 ± 0.17 cm H2O ⋅ s/ml; hypoxia, 1.52 ± 0.34 cm H2O ⋅ s/ml; hyperoxia, 4.19 ± 0.77 cm H2O ⋅ s/ml; P < 0.004 air versus hyperoxia). Hyperoxia- or hypoxia-exposed mice had larger and fewer alveoli (mean linear intercept: air, 40.2 ± 0. 0.8 μm; hypoxia, 76.4 ± 2.4 μm; hyperoxia, 95.6 ± 4.6 μm; P < 0.001 air versus others; radial alveolar count [n]: air, 11.1 ± 0.4; hypoxia, 5.7 ± 0.3; hyperoxia, 5.6 ± 0.3; P < 0.001 air versus others). Hyperoxia-exposed adult mice had left ventricular dysfunction without systemic hypertension. In conclusion, exposure of newborn mice to hyperoxia or hypoxia leads to cardiopulmonary abnormalities in adult life, similar to that described in ex-preterm infants. This animal model may help to identify underlying mechanisms and to develop therapeutic strategies for pulmonary morbidity in former preterm infants.
Collapse
|
5
|
Kruzliak P, Maruyama J, Maruyama K. Role of nitric oxide in pathophysiology and treatment of pulmonary hypertension. VITAMINS AND HORMONES 2015; 96:407-24. [PMID: 25189396 DOI: 10.1016/b978-0-12-800254-4.00016-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pulmonary hypertension is a condition characterized by vasoconstriction, vascular cell proliferation, inflammation, microthrombosis, and vessel wall remodelation. Pulmonary endothelial cells produce vasoactive substances with vasoconstrictive as well as vasodilatative effects. The imbalance of these endothelium-derived vasoactive substances induced by endothelial dysfunction is very important in the pathogenesis of PH. One of most important substances with vasodilatative effect is nitric oxide. We provide a comprehensive insight into role of NO in the pathgenesis of PH and discuss perspectives and challenges in PH therapy based on NO administration.
Collapse
Affiliation(s)
- Peter Kruzliak
- Department of Cardiovascular Diseases, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, Mie, Japan; Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, Mie, Japan; Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| |
Collapse
|
6
|
Formulation, preclinical and clinical evaluation of a new submicronic arginine respiratory fluid for treatment of chronic obstructive pulmonary disorder. Saudi Pharm J 2015; 24:49-56. [PMID: 26903768 PMCID: PMC4720009 DOI: 10.1016/j.jsps.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022] Open
Abstract
Inhalational drugs often suffer from low pulmonary deposition due to their micronized size. Aim of present study was development and evaluation of a novel submicronic L-arginine respiratory fluid formulation for treatment of cardiopulmonary complications associated with chronic obstructive pulmonary disorder (COPD). Objectives were (a) to develop and characterize submicronic L-arginine respiratory fluid formulation, (b) pre-clinical safety/toxicity study in 2-animal species, (c) in vitro and in vivo evaluation in terms of respiratory fraction, and (d) clinical study to assess safety/efficacy in healthy volunteers/COPD patients. Formulation was optimized on the basis of particle size of aerosolized medication with particle size in the range of 400–500 nm. Anderson cascade impaction (ACI) studies were performed to validate the advantage in terms of respirable fraction, which indicated a high respirable fraction (51.61 ± 3.28) for the developed formulation. In vivo pulmonary deposition pattern of optimized formulation was studied using gamma scintigraphy in human volunteers using 99mTc-arginine as radiotracer. It clearly demonstrated a significant pulmonary deposition of the submicronic formulation in various lung compartments. Efficacy of the developed formulation was further assessed in COPD patients (n = 15) by evaluating its effect on various cardiopulmonary parameters (spirometry, pulse-oxymetry, echocardiography and 6-min walk test). A marked improvement was seen in patients after inhalation of submicronic arginine in terms of their cardiopulmonary status. Results suggest that submicronic arginine respiratory fluid has the potential to be developed into an attractive therapeutic option for treating COPD associated cardiopulmonary complications.
Collapse
|
7
|
Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, Zhang E, Imanaka-Yoshida K, Shimpo H, Maruyama K, Komada Y, Mitani Y. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One 2015; 10:e0118655. [PMID: 25714834 PMCID: PMC4340876 DOI: 10.1371/journal.pone.0118655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs) and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD). Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78). Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA)+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.
Collapse
MESH Headings
- Animals
- Arterial Occlusive Diseases/genetics
- Arterial Occlusive Diseases/metabolism
- Arterial Occlusive Diseases/pathology
- Arterial Occlusive Diseases/physiopathology
- Disease Models, Animal
- Fibrosis
- Gene Expression
- Hemodynamics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mast Cells/immunology
- Mast Cells/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Rats
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, and Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tsutomu Shinohara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Taichi Kato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideto Shimpo
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
8
|
Effect of thrombomodulin on the development of monocrotaline-induced pulmonary hypertension. J Anesth 2013; 28:26-33. [PMID: 23817901 DOI: 10.1007/s00540-013-1663-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of the present study was to investigate whether thrombomodulin (TM) prevents the development of pulmonary hypertension (PH) in monocrotaline (MCT)-injected rats. METHODS Human recombinant TM (3 mg/kg/2 days) or saline were given to MCT-injected male Sprague-Dawley rats for 19 (n = 14) or 29 (n = 11) days. Control rats (n = 6) were run for 19 days. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy (RVH), percentages of muscularized peripheral arteries (%muscularization), and medial wall thickness of small muscular arteries (%MWT) were measured. To determine inflammatory and coagulation responses, broncho-alveolar lavage fluid (BALF) was analyzed in another set of rats (n = 29). Western blotting for endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) in the lung tissue was performed in separate rats (n = 13). Survival was determined in 60 rats. RESULTS MCT increased mPAP, RVH, %muscularization, and %MWT. TM treatment significantly reduced mPAP, %muscularization, and %MWT in peripheral arteries with an external diameter of 50-100 μm in 19 days after MCT injection, but the effect was lost after 29 days. MCT increased the levels of tumor necrosis factor alpha, monocyte chemoattractant protein-1, and thrombin-antithrombin complex in BALF. Expression of eNOS increased in MCT rats, while peNOS decreased. The relative amount of peNOS to total eNOS increased in MCT/TM rats compared to MCT/Vehicle rats. A Kaplan-Meier survival curve showed no difference with and without TM. CONCLUSION Although the administration of TM might slightly delay the progression of MCT-induced PH, the physiological significance for treatment is limited, since the survival rate was not improved.
Collapse
|
9
|
Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K. Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J 2010; 74:1696-703. [PMID: 20606328 DOI: 10.1253/circj.cj-10-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND An earlier study showed that all-trans-retinoic acid (ATRA) prevents the development of monocrotalin-induced pulmonary hypertension (PH). The purpose of the present study was to determine the effect of ATRA on another model of chronic hypoxia-induced PH. METHODS AND RESULTS Male Sprague-Dawley rats were given 30 mg/kg ATRA or vehicle only by gavage once daily for 14 days during hypobaric hypoxic exposure. Chronic hypoxic exposure induced PH, right ventricular hypertrophy (RVH), and hypertensive pulmonary vascular changes. Quantitative morphometry of the pulmonary arteries showed that ATRA treatment significantly reduced the percentage of muscularized arteries in peripheral pulmonary arteries only with an external diameter between 15 and 50 microm. ATRA treatment also significantly reduced the medial wall thickness in small muscular arteries only with an external diameter between 50 and 100 microm. Unfortunately, these reductions did not accompany the lowering of pulmonary artery pressure nor decrease in RVH. Chronic hypoxia-induced PH rats with ATRA had a loss in body weight. Chronic hypoxia increased the expression of endothelial nitric oxide synthase in the lung on western blotting and immunohistochemistry, in which ATRA treatment had no effect. CONCLUSIONS The administration of ATRA might not have a therapeutic role in preventing the development of chronic hypoxia-induced PH, because of body weight loss and the subtle preventable effects of vascular changes.
Collapse
Affiliation(s)
- Erquan Zhang
- Anesthesiology and Critical Care Medicine, Physiology, Pediatrics, Mie University School of Medicine, Tsu and Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang X, Jin Y, Xia L, Tao X, Bai M, Zhang J. Hsp90 mediates the balance of nitric oxide and superoxide anion in the lungs of rats with acute pulmonary thromboembolism. Int Immunopharmacol 2008; 9:43-8. [PMID: 18852069 DOI: 10.1016/j.intimp.2008.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/20/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022]
Abstract
Acute pulmonary thromboembolism (PTE) can result in serious vascular responses. The association of heat shock protein 90 (Hsp90) with endothelial nitric oxide synthase (eNOS), which generates nitric oxide (NO) and superoxide anion (O2(-)), is a critical mechanism on regulating vessel homeostasis. In this study, the role of Hsp90 association with eNOS in the balance of NO and O2(-) was examined in PTE rat model. PTE rats model was induced by intrajugular injection of autologous blood clots (0.04 g/kg), lung homogenate was collected at appointed time length to assess NO production and O2(-) production. The interaction of Hsp90 and eNOS protein in every group was detected. Treatment of PTE model rats with geldanamycin, a commonly used Hsp90 inhibitor, augmented eNOS phosphorylation at Thr-495, depressing eNOS activity. Together with the increase of NO production in lung homogenate of PTE rats at 1 h and its maximum reached at 3 d, geldanamycin treatment significantly attenuated the production of NO but augmented the production of O2(-) in the lungs of rats after PTE at indicated time length. These results suggest that geldanamycin may enhance eNOS phosphorylation at Thr-495 by inhibiting Hsp90, Hsp90 uncoupling eNOS protein results in increased eNOS-dependent O2(-) production.
Collapse
Affiliation(s)
- Xiaoju Zhang
- Key Lab of Pulmonary Diseases of Ministry of Health, Department of Respiratory Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
11
|
Laursen BE, Dam MY, Mulvany MJ, Simonsen U. Hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy is unaltered by long-term oral L-arginine administration. Vascul Pharmacol 2008; 49:71-6. [DOI: 10.1016/j.vph.2008.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/10/2008] [Accepted: 03/13/2008] [Indexed: 11/25/2022]
|
12
|
Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, Sam L, Liu Y, Husain AN, Lang RM, Ratain MJ, Lussier YA, Garcia JGN. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 2008; 33:278-91. [PMID: 18303084 PMCID: PMC3616402 DOI: 10.1152/physiolgenomics.00169.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary hypertension (PH) and cancer pathology share growth factor- and MAPK stress-mediated signaling pathways resulting in endothelial and smooth muscle cell dysfunction and angioproliferative vasculopathy. In this study, we assessed sorafenib, an antineoplastic agent and inhibitor of multiple kinases important in angiogenesis [VEGF receptor (VEGFR)-1-3, PDGF receptor (PDGFR)-beta, Raf-1 kinase] as a potential PH therapy. Two PH rat models were used: a conventional hypoxia-induced PH model and an augmented PH model combining dual VEGFR-1 and -2 inhibition (SU-5416, single 20 mg/kg injection) with hypoxia. In addition to normoxia-exposed control animals, four groups were maintained at 10% inspired O(2) fraction for 3.5 wk (hypoxia/vehicle, hypoxia/SU-5416, hypoxia/sorafenib, and hypoxia/SU-5416/sorafenib). Compared with normoxic control animals, rats exposed to hypoxia/SU-5416 developed hemodynamic and histological evidence of severe PH while rats exposed to hypoxia alone displayed only mild elevations in hemodynamic values (pulmonary vascular and right ventricular pressures). Sorafenib treatment (daily gavage, 2.5 mg/kg) prevented hemodynamic changes and demonstrated dramatic attenuation of PH-associated vascular remodeling. Compared with normoxic control rats, expression profiling (Affymetrix platform) of lung RNA obtained from hypoxia [false discovery rate (FDR) 6.5%]- and hypoxia/SU-5416 (FDR 1.6%)-challenged rats yielded 1,019 and 465 differentially regulated genes (fold change >1.4), respectively. A novel molecular signature consisting of 38 differentially expressed genes between hypoxia/SU-5416 and hypoxia/SU-5416/sorafenib (FDR 6.7%) was validated by either real-time RT-PCR or immunoblotting. Finally, immunoblotting studies confirmed the upregulation of the MAPK cascade in both PH models, which was abolished by sorafenib. In summary, sorafenib represents a novel potential treatment for severe PH with the MAPK cascade a potential canonical target.
Collapse
Affiliation(s)
- Liliana Moreno-Vinasco
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang BH, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H. Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 2007; 49:85-9. [PMID: 17312448 DOI: 10.1097/fjc.0b013e31802df112] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension is a progressive and fatal disease for which Rho-kinase may be substantially involved. In this study, we examined the acute vasodilator effects of fasudil, a Rho-kinase inhibitor, in monocrotaline (MCT)-induced pulmonary hypertension (PH) in rats. Three weeks after a single subcutaneous injection of MCT (60 mg/kg), hemodynamic variables were measured under conscious and free-moving conditions before and after oral administration of fasudil. MCT caused a significant elevation of mean pulmonary arterial pressure (mPAP). Although a low dose of fasudil (3 mg/kg) had no effect on mPAP, a middle dose (10 mg/kg) caused a significant reduction in mPAP without change in mean systemic arterial pressure (mSAP), and a high dose (30 mg/kg) significantly reduced both mPAP and mSAP. Rho-kinase activity was significantly increased by MCT injection in pulmonary arteries but not in the aorta. Fasudil (10 mg/kg) inhibited only the Rho-kinase activity in pulmonary arteries without any effect in the aorta. Plasma concentration of hydroxyfasudil, a metabolite of fasudil, was within its clinical range in humans. These results demonstrate that fasudil exerts effective and selective vasodilatation of pulmonary arteries in rats with MCT-induced PH at a given dose, suggesting its usefulness for the treatment of the fatal disorder.
Collapse
Affiliation(s)
- Bao Hua Jiang
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Yoshimura S, Nishimura Y, Nishiuma T, Yamashita T, Kobayashi K, Yokoyama M. Overexpression of nitric oxide synthase by the endothelium attenuates bleomycin-induced lung fibrosis and impairs MMP-9/TIMP-1 balance. Respirology 2006; 11:546-56. [PMID: 16916326 DOI: 10.1111/j.1440-1843.2006.00894.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is thought to effect an anti-inflammatory response, but its mechanism is still unknown. METHODS eNOS transgenic (eNOS-TG) mice and their littermate controls (C57/BL6) were used to clarify the role of NO derived from eNOS. Bleomycin hydrochloride (1 U/body/day) or PBS was injected intraperitoneally. RESULTS Subpleural fibrotic changes and hydroxyproline content in the eNOS-TG mice were significantly reduced compared with those of the wild-type (WT) mice by day 56. Administration of N(omega)-nitro-L-arginine methyl ester, a potent inhibitor of NO synthase, worsened the fibrotic response in bleomycin-treated eNOS-TG mice. Gelatinolytic activity in lung homogenates, corresponding to metalloproteinase-9 (MMP-9), was significantly increased in bleomycin-injured WT mice on day 14. In contrast, the level of tissue inhibitor of metalloproteinases-1 (TIMP-1), an endogenous MMP-9 inhibitor, was increased in the bleomycin-treated eNOS-TG mice compared with WT. Immunohistochemical analysis demonstrated that MMP-9 and TIMP-1 were strongly expressed in inflammatory cells, including subpleural fibrotic lesions. CONCLUSION These data suggested that eNOS overexpression attenuates bleomycin-induced lung injury by ameliorating the MMP-9/TIMP-1 balance.
Collapse
Affiliation(s)
- Sho Yoshimura
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S. Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 2006; 79:1357-65. [PMID: 16714036 DOI: 10.1016/j.lfs.2006.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. MEASUREMENT pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/physiology
- Blotting, Northern
- Chronic Disease
- Collagen/metabolism
- Hemodynamics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/complications
- Hypoxia/pathology
- Immunohistochemistry
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Pulmonary Alveoli/pathology
- Pulmonary Artery/pathology
- Pulmonary Circulation/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 35296, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Haj RM, Cinco JE, Mazer CD. Treatment of pulmonary hypertension with selective pulmonary vasodilators. Curr Opin Anaesthesiol 2006; 19:88-95. [PMID: 16547439 DOI: 10.1097/01.aco.0000192765.27453.5a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pulmonary vasodilators are important in the management of pulmonary hypertension. Although systemic vasodilators may be effective in lowering pulmonary artery pressure, systemic vasodilation is the main limitation to dose titration. This review summarizes the latest research and developments in pulmonary vasodilators in the management of acute and chronic pulmonary hypertension. RECENT FINDINGS Nitric oxide, the prototype of selective pulmonary vasodilators, remains an effective option in the management of pulmonary hypertension; however, cost and complexity of administration have led to consideration of other pulmonary vasodilators. Animal research suggests that nitric oxide may have an important role in the prevention of pulmonary hypertension after cardiopulmonary bypass. Experience with phosphodiesterase inhibitors, as monotherapy or as part of combination therapy, suggests that these agents improve cardiopulmonary hemodynamics and can be considered as alternatives and/or adjuncts to nitric oxide. Prostacyclins are a versatile class of pulmonary vasodilator as they have been shown to improve pulmonary hemodynamics administered intravenously or via inhalation. Endothelin receptor antagonists have been shown to be effective for long-term management of pulmonary hypertension. Several gene therapy strategies are currently undergoing evaluation. SUMMARY Selective pulmonary vasodilation can be achieved through delivery of vasodilators directly to the lungs or targeting pulmonary specific processes. Several therapeutic options are available that demonstrate selectivity for the pulmonary vasculature. These agents can facilitate optimization of cardiopulmonary hemodynamics.
Collapse
Affiliation(s)
- Reem M Haj
- Department of Pharmacy, St. Michael's Hospital, Toronto, Canada
| | | | | |
Collapse
|
17
|
Chen YF, Feng JA, Li P, Xing D, Zhang Y, Serra R, Ambalavanan N, Majid-Hassan E, Oparil S. Dominant negative mutation of the TGF-β receptor blocks hypoxia-induced pulmonary vascular remodeling. J Appl Physiol (1985) 2006; 100:564-71. [PMID: 16223981 DOI: 10.1152/japplphysiol.00595.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-β type II receptor (DnTGFβRII mouse) to test the hypothesis that TGF-β signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine- to 10-wk-old male DnTGFβRII and control nontransgenic (NTG) mice were exposed to normobaric hypoxia (10% O2) or air for 6 wk. Expression of DnTGFβRII was induced by drinking 25 mM ZnSO4 water beginning 1 wk before hypoxic exposure. Hypoxia-induced increases in right ventricular pressure, right ventricular mass, pulmonary arterial remodeling, and muscularization were greatly attenuated in DnTGFβRII mice compared with NTG controls. Furthermore, the stimulatory effects of hypoxic exposure on pulmonary arterial and alveolar collagen content, appearance of α-smooth muscle actin-positive cells in alveolar parenchyma, and expression of extracellular matrix molecule (including collagen I and III, periostin, and osteopontin) mRNA in whole lung were abrogated in DnTGFβRII mice compared with NTG controls. Hypoxic exposure had no effect on systemic arterial pressure or heart rate in either strain. These data support the hypothesis that endogenous TGF-β plays an important role in pulmonary vascular adaptation to chronic hypoxia and that disruption of TGF-β signaling attenuates hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial hypertrophy and muscularization, alveolar remodeling, and expression of extracellular matrix mRNA in whole lung.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Fibronectins/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Protein Serine-Threonine Kinases
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Circulation
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Ventricular Pressure
Collapse
Affiliation(s)
- Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Dept. of Medicine, Univ. of Alabama at Birmingham, UAB Station, Birmingham, AL 35294-0007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maruyama J, Jiang BH, Maruyama K, Takata M, Miyasaka K. Prolonged nitric oxide inhalation during recovery from chronic hypoxia does not decrease nitric oxide-dependent relaxation in pulmonary arteries. Chest 2005; 126:1919-25. [PMID: 15596693 DOI: 10.1378/chest.126.6.1919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE To investigate the effects of long-term nitric oxide (NO) inhalation on the recovery process of right ventricular hypertrophy (RVH) and functional alterations in the NO-cyclic guanosine monophosphate (cGMP) relaxation pathway in rat conduit pulmonary arteries (PAs) in established chronic hypoxic pulmonary hypertension. MATERIALS AND METHODS A total of 35 rats were exposed to chronic hypobaric hypoxia (380 mm Hg, 10% oxygen), and 39 rats were exposed to air for 10 days. Both groups were then exposed to 3 or 10 days of NO 10 ppm, NO 40 ppm, or air (control groups for each NO concentration), resulting in a total of 16 groups. Acetylcholine- and sodium nitroprusside (SNP)-induced relaxation were evaluated in precontracted PA rings. RVH was assessed by heart weight ratio of right ventricle to left ventricle plus septum. RESULTS NO inhalation had no effect on either the regression of RVH or the recovery process of impaired relaxation induced by acetylcholine or SNP in a endothelium-intact hypertensive conduit extrapulmonary artery or intrapulmonary artery (IPA). In a normal endothelium-intact conduit IPA, 40 ppm NO inhalation for 10 days partially augmented SNP-induced relaxation, but not that induced by acetylcholine. CONCLUSION Continuous NO inhalation did not affect the regression process of either established RVH or the impaired endogenous NO-cGMP relaxation cascade in a conduit PA in rats during the recovery period after chronic hypoxia.
Collapse
Affiliation(s)
- Junko Maruyama
- Department of Physiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|