1
|
Mylonas KS, Karangelis D, Androutsopoulou V, Chalikias G, Tziakas D, Mikroulis D, Iliopoulos DC, Nikiteas N, Schizas D. Stem cell genes in atheromatosis: The role of
Klotho
,
HIF1α
,
OCT4
, and
BMP4. IUBMB Life 2022; 74:1003-1011. [DOI: 10.1002/iub.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Konstantinos S. Mylonas
- Department of Cardiac Surgery Onassis Cardiac Surgery Center Athens Greece
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimos Karangelis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Vasiliki Androutsopoulou
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - George Chalikias
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Tziakas
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
- Fourth Department of Cardiac Surgery HYGEIA Hospital Athens Greece
| | - Nikolaos Nikiteas
- Second Propaedeutic Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
2
|
Dong L, Zhang Z, Liu X, Wang Q, Hong Y, Li X, Liu J. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy. J Mol Med (Berl) 2021; 99:225-240. [PMID: 33188599 DOI: 10.1007/s00109-020-01995-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR), currently considered as a neurovascular disease, has become the major cause of blindness. More and more scholars believe that DR is no longer just a kind of microvascular disease, but accompanied by retinal neurodegenerative changes. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs is a classic treatment for DR; however, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. The aim of this study was to explore the pathogenesis of DR and identified new treatments that can provide dual-target intervention for angiogenesis and fibrosis. METHODS We explored changes in gene expression in high glucose-induced vascular endothelial cells using RNA sequencing (RNA-seq) technology. We identified bone morphogenetic protein 4 (BMP4) and SMAD family member 9 (SMAD9) among 449 differentially expressed genes from RNA-seq data and confirmed the expression of these two genes in the blood of diabetes patients by RT-PCR and in streptozotocin-induced rat retinas by RT-PCR, immunofluorescence, and western blot. Moreover, considering that DR is a multifactorial and multicellular disease, we used hydrogen peroxide (H2O2), advanced glycation end products (AGEs), CoCl2, 4-hydroxynonenal (4-HNE), and hypoxia to induce three human retinal cell types (Müller, retinal pigment epithelium, and human retinal capillary endothelial cells) to simulate the pathogenesis of DR, and MTT experiment, scratch experiment, Transwell experiment, and lumen formation experiment were used to test whether the model was successfully established. Then, we verified the overexpression of these two genes in the cell models by RT-PCR, immunofluorescence, and western blot. We further tested the effects of BMP4 on retinal cells. We use BMP4 to stimulate retinal cells and observe the effect of BMP4 on retinal cells by MTT experiment, scratch experiment, and RT-PCR. RESULTS The results demonstrated that BMP4 and SMAD9 were highly expressed in both in vivo and in vitro models, while BMP4 could significantly upregulate the expression of SMAD9 and promote the expression of VEGF and fibrosis factors. CONCLUSIONS This study is the first to analyze the mechanism by which high glucose levels affect retinal vascular endothelial cells through RNA transcriptome sequencing and indicates that BMP4 may be a potential target for the dual-target treatment (anti-VEGF and anti-fibrosis) of DR. KEY MESSAGES • High-glucose effect on vascular endothelial cell was analyzed by RNA-seq. • KEGG analysis revealed enrichment of TGF-beta signaling pathway. • SMAD9 and BMP4 expression was upregulated in all samples. • Dual-target therapy of PDR by antagonizing BMP4.
Collapse
Affiliation(s)
- Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China.
| | - Zhe Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China.
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, 251 Fukang Road, Nankai, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
3
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
A Novel Mechanism of Sildenafil Improving the Excessive Proliferation and H2S Production in Pulmonary Arterial Smooth Muscle Cells. J Cardiovasc Pharmacol 2020; 74:355-363. [PMID: 31356554 DOI: 10.1097/fjc.0000000000000714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dysregulation of pulmonary arterial vasoactive mediators or excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) might result in contraction or remodeling of pulmonary blood vessels, leading to related lung diseases. Recent studies suggest that hydrogen sulfide (H2S), a gaseous vasodilator generated in the blood vessels by the enzymes cystathionine γ-lyase (CSE) and cystathionine-β-synthase (CBS), could induce the vasodilation, thus improving contraction or remodeling-induced lung diseases. In this study, we hypothesized that PASMCs could produce H2S and relax the pulmonary artery, and its mechanism is related to CSE, CBS, and TRPV4 channels by affecting both the excessive proliferation and pulmonary vasoconstriction in PASMCs. We found that the sildenafil treatment could remarkably promote H2S production and control the proliferation in PASMCs; meanwhile, the protein levels of CSE and CBS and the intracellular concentration of calcium could also be increased by sildenafil. Moreover, the effects of sildenafil could be reversed by a CBS inhibitor or a CSE inhibitor, indicating that sildenafil could affect CSE and CBS to modulate the production of H2S and the proliferation in rat PASMCs. Together, we demonstrated a new mechanism for sildenafil to modulate the synthesis of H2S and cell proliferation in PASMCs by affecting CSE and CBS. TRPV4-dependent Ca events and BMP4 may also be involved.
Collapse
|
5
|
Ahmed M, Miller E. Macrophage migration inhibitory factor (MIF) in the development and progression of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2018; 2018:14. [PMID: 30083544 PMCID: PMC6062764 DOI: 10.21542/gcsp.2018.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been described as a pro-inflammatory cytokine and regulator of neuro-endocrine function. It plays an important upstream role in the inflammatory cascade by promoting the release of other inflammatory cytokines such as TNF-alpha and IL-6, ultimately triggering a chronic inflammatory immune response. As lungs can synthesize and release MIF, many studies have investigated the potential role of MIF as a biomarker in assessment of patients with pulmonary arterial hypertension (PAH) and using anti-MIFs as a new therapeutic modality for PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Neonatal-Perinatal Medicine, Pediatrics Department Cohen Children’s Hospital at New York, Northwell Health System
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Edmund Miller
- The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
- School of Medicine, Hofstra University, Hempstead, New York, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| |
Collapse
|
7
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|