1
|
Konietzke P, Weinheimer O, Triphan SMF, Nauck S, Wuennemann F, Konietzke M, Jobst BJ, Jörres RA, Vogelmeier CF, Heussel CP, Kauczor HU, Biederer J, Wielpütz MO. GOLD-Grade Specific Disease Characterization and Phenotyping of COPD Using Quantitative Computed Tomography in the Nationwide COSYCONET Multicenter Trial in Germany. Respiration 2024:1-17. [PMID: 39173593 DOI: 10.1159/000540781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION The aim of this study was to apply quantitative computed tomography (QCT) for GOLD-grade specific disease characterization and phenotyping of air-trapping, emphysema, and airway abnormalities in patients with chronic obstructive pulmonary disease (COPD) from a nationwide cohort study. METHODS As part of the COSYCONET multicenter study, standardized CT in ex- and inspiration, lung function assessment (FEV1/FVC), and clinical scores (BODE index) were prospectively acquired in 525 patients (192 women, 327 men, aged 65.7 ± 8.5 years) at risk for COPD and at GOLD1-4. QCT parameters such as total lung volume (TLV), emphysema index (EI), parametric response mapping (PRM) for emphysema (PRMEmph) and functional small airway disease (PRMfSAD), total airway volume (TAV), wall percentage (WP), and total diameter (TD) were computed using automated software. RESULTS TLV, EI, PRMfSAD, and PRMEmph increased incrementally with each GOLD grade (p < 0.001). Aggregated WP5-10 of subsegmental airways was higher from GOLD1 to GOLD3 and lower again at GOLD4 (p < 0.001), whereas TD5-10 was significantly dilated only in GOLD4 (p < 0.001). Fifty-eight patients were phenotyped as "non-airway non-emphysema type," 202 as "airway type," 96 as "emphysema type," and 169 as "mixed type." FEV1/FVC was best in "non-airway non-emphysema type" compared to other phenotypes, while "mixed type" had worst FEV1/FVC (p < 0.001). BODE index was 0.56 ± 0.72 in the "non-airway non-emphysema type" and highest with 2.55 ± 1.77 in "mixed type" (p < 0.001). CONCLUSION QCT demonstrates increasing hyperinflation and emphysema depending on the GOLD grade, while airway wall thickening increases until GOLD3 and airway dilatation occur in GOLD4. QCT identifies four disease phenotypes with implications for lung function and prognosis.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig Maximilians University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research (DZL), University Medical Center Giessen and Marburg, Giessen, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thorax Clinic at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Olsen HJB, Mortensen J. Comparison of lung volumes measured with computed tomography and whole-body plethysmography - a systematic review. Eur Clin Respir J 2024; 11:2381898. [PMID: 39081799 PMCID: PMC11288198 DOI: 10.1080/20018525.2024.2381898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Whole-body plethysmography is the preferred method for measuring the static lung volumes: total lung capacity (TLC), functional residual capacity (FRC) and residual volume (RV), as it also incorporates trapped gas - a common finding in chronic obstructive pulmonary disease (COPD). Quantitative computed tomography (CT) is a promising alternative to plethysmography, which can be challenging to perform for patients with severely impaired lung function. The present systematic review explores the agreement between lung volumes measured by plethysmography and CT, as well as the attempts being made to optimize alignment between these two methods. Methods A literature search was performed on the PubMed database using the block search strategy. Articles were included if they provided both CT based and plethysmography based TLC. Risk of bias was evaluated using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) checklist. Results 22 articles were included. On average, CT-derived TLC (CT-TLC) was 709 mL lower compared to plethysmography TLC (p-TLC) with a 12.1% deviation from the reference standard, p-TLC. This discrepancy (ΔTLC) appeared slightly larger in obstructive patients (obstructive: 781 mL, non-obstructive: 609 mL), whereas percent deviation was slightly smaller (obstructive: 11.4%, non-obstructive: 13.5%). CT-based RV analyses primarily based on COPD patients measured 603 mL higher than plethysmography (p-RV) with 17.8% deviation from p-RV. Studies utilizing spirometry-gating for CT acquisition reported good agreement between modalities (ΔTLC: 70-280 mL), and one study demonstrated noticeable improvements compared to conventional breath-hold instructions in an otherwise identical study setting. Conclusion CT quantifications routinely underestimate TLC and overestimate RV in comparison to plethysmography. Spirometry gating reduces the level of disagreement and can be of assistance when patients are already undergoing CT. However, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Høgni Janus Bjarnason Olsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, The National Hospital, Torshavn, Faroe Islands
| |
Collapse
|
3
|
Motahari A, Barr RG, Han MK, Anderson WH, Barjaktarevic I, Bleecker ER, Comellas AP, Cooper CB, Couper DJ, Hansel NN, Kanner RE, Kazerooni EA, Lynch DA, Martinez FJ, Newell JD, Schroeder JD, Smith BM, Woodruff PG, Hoffman EA. Repeatability of Pulmonary Quantitative Computed Tomography Measurements in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:657-665. [PMID: 37490608 PMCID: PMC10515564 DOI: 10.1164/rccm.202209-1698pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University College of Medicine, New York, New York
| | | | - Wayne H. Anderson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, California
| | | | - Alejandro P. Comellas
- Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christopher B. Cooper
- Department of Medicine and
- Department of Physiology, University of California Los Angeles, Los Angeles, California
| | - David J. Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nadia N. Hansel
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | | | - Ella A. Kazerooni
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | | | - John D. Newell
- Department of Radiology and
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | - Benjamin M. Smith
- Department of Medicine and
- Department of Epidemiology, Columbia University College of Medicine, New York, New York
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and
| | - Prescott G. Woodruff
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric A. Hoffman
- Department of Radiology and
- Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| |
Collapse
|
4
|
Konietzke P, Brunner C, Konietzke M, Wagner WL, Weinheimer O, Heußel CP, Herth FJF, Trudzinski F, Kauczor HU, Wielpütz MO. GOLD stage-specific phenotyping of emphysema and airway disease using quantitative computed tomography. Front Med (Lausanne) 2023; 10:1184784. [PMID: 37534319 PMCID: PMC10393128 DOI: 10.3389/fmed.2023.1184784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD) abnormal lung function is related to emphysema and airway obstruction, but their relative contribution in each GOLD-stage is not fully understood. In this study, we used quantitative computed tomography (QCT) parameters for phenotyping of emphysema and airway abnormalities, and to investigate the relative contribution of QCT emphysema and airway parameters to airflow limitation specifically in each GOLD stage. Methods Non-contrast computed tomography (CT) of 492 patients with COPD former GOLD 0 COPD and COPD stages GOLD 1-4 were evaluated using fully automated software for quantitative CT. Total lung volume (TLV), emphysema index (EI), mean lung density (MLD), and airway wall thickness (WT), total diameter (TD), lumen area (LA), and wall percentage (WP) were calculated for the entire lung, as well as for all lung lobes separately. Results from the 3rd-8th airway generation were aggregated (WT3-8, TD3-8, LA3-8, WP3-8). All subjects underwent whole-body plethysmography (FEV1%pred, VC, RV, TLC). Results EI was higher with increasing GOLD stages with 1.0 ± 1.8% in GOLD 0, 4.5 ± 9.9% in GOLD 1, 19.4 ± 15.8% in GOLD 2, 32.7 ± 13.4% in GOLD 3 and 41.4 ± 10.0% in GOLD 4 subjects (p < 0.001). WP3-8 showed no essential differences between GOLD 0 and GOLD 1, tended to be higher in GOLD 2 with 52.4 ± 7.2%, and was lower in GOLD 4 with 50.6 ± 5.9% (p = 0.010 - p = 0.960). In the upper lobes WP3-8 showed no significant differences between the GOLD stages (p = 0.824), while in the lower lobes the lowest WP3-8 was found in GOLD 0/1 with 49.9 ± 6.5%, while higher values were detected in GOLD 2 with 51.9 ± 6.4% and in GOLD 3/4 with 51.0 ± 6.0% (p < 0.05). In a multilinear regression analysis, the dependent variable FEV1%pred can be predicted by a combination of both the independent variables EI (p < 0.001) and WP3-8 (p < 0.001). Conclusion QCT parameters showed a significant increase of emphysema from GOLD 0-4 COPD. Airway changes showed a different spatial pattern with higher values of relative wall thickness in the lower lobes until GOLD 2 and subsequent lower values in GOLD3/4, whereas there were no significant differences in the upper lobes. Both, EI and WP5-8 are independently correlated with lung function decline.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Brunner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Willi Linus Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix J. F. Herth
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Franziska Trudzinski
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Dimic-Janjic S, Hoda MA, Milenkovic B, Kotur-Stevuljevic J, Stjepanovic M, Gompelmann D, Jankovic J, Miljkovic M, Milin-Lazovic J, Djurdjevic N, Maric D, Milivojevic I, Popevic S. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur J Med Res 2023; 28:127. [PMID: 36935521 PMCID: PMC10026402 DOI: 10.1186/s40001-023-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Inflammation, oxidative stress and an imbalance between proteases and protease inhibitors are recognized pathophysiological features of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate serum levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with COPD and to assess their relationship with lung function, symptom severity scores and recent acute exacerbations. METHODS In this observational cohort study, serum levels of MMP-9 and TIMP-1 and the MMP-9/TIMP-1 ratio in the peripheral blood of COPD patients with stable disease and healthy controls were determined, and their association with lung function (postbronchodilator spirometry, body plethysmography, single breath diffusion capacity for carbon monoxide), symptom severity scores (mMRC and CAT) and exacerbation history were assessed. RESULTS COPD patients (n = 98) had significantly higher levels of serum MMP-9 and TIMP-1 and a higher MMP-9/TIMP-1 ratio than healthy controls (n = 47) (p ≤ 0.001). The areas under the receiver operating characteristic curve for MMP-9, TIMP-1 and the MMP-9/TIMP-1 ratio for COPD diagnosis were 0.974, 0.961 and 0.910, respectively (all p < 0.05). MMP-9 and the MMP-9/TIMP-1 ratio were both negatively correlated with FVC, FEV1, FEV1/FVC, VC, and IC (all p < 0.05). For MMP-9, a positive correlation was found with RV/TLC% (p = 0.005), and a positive correlation was found for the MMP-9/TIMP-1 ratio with RV% and RV/TLC% (p = 0.013 and 0.002, respectively). Patients with COPD GOLD 3 and 4 presented greater MMP-9 levels and a greater MMP-9/TIMP-1 ratio compared to GOLD 1 and 2 patients (p ≤ 0.001). No correlation between diffusion capacity for carbon monoxide and number of acute exacerbations in the previous year was found. CONCLUSIONS COPD patients have elevated serum levels of MMP-9 and TIMP-1 and MMP-9/TIMP-1 ratio. COPD patients have an imbalance between MMP-9 and TIMP-1 in favor of a pro-proteolytic environment, which overall indicates the importance of the MMP-9/TIMP-1 ratio as a potential biomarker for COPD diagnosis and severity.
Collapse
Affiliation(s)
- Sanja Dimic-Janjic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia.
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Branislava Milenkovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jelena Jankovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Milica Miljkovic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Faculty of Medicine, Institute for Medical Statistics and Informatics, University of Belgrade, Belgrade, Serbia
| | - Natasa Djurdjevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Dragana Maric
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Ivan Milivojevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Spasoje Popevic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| |
Collapse
|
6
|
Chen KY, Kuo HY, Lee KY, Feng PH, Wu SM, Chuang HC, Chen TT, Sun WL, Tseng CH, Liu WT, Cheng WH, Majumdar A, Stettler M, Tsai CY, Ho SC. Associations of the distance-saturation product and low-attenuation area percentage in pulmonary computed tomography with acute exacerbation in patients with chronic obstructive pulmonary disease. Front Med (Lausanne) 2023; 9:1047420. [PMID: 36687440 PMCID: PMC9846059 DOI: 10.3389/fmed.2022.1047420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has high global health concerns, and previous research proposed various indicators to predict mortality, such as the distance-saturation product (DSP), derived from the 6-min walk test (6MWT), and the low-attenuation area percentage (LAA%) in pulmonary computed tomographic images. However, the feasibility of using these indicators to evaluate the stability of COPD still remains to be investigated. Associations of the DSP and LAA% with other COPD-related clinical parameters are also unknown. This study, thus, aimed to explore these associations. Methods This retrospective study enrolled 111 patients with COPD from northern Taiwan. Individuals' data we collected included results of a pulmonary function test (PFT), 6MWT, life quality survey [i.e., the modified Medical Research Council (mMRC) scale and COPD assessment test (CAT)], history of acute exacerbation of COPD (AECOPD), and LAA%. Next, the DSP was derived by the distance walked and the lowest oxygen saturation recorded during the 6MWT. In addition, the DSP and clinical phenotype grouping based on clinically significant outcomes by previous study approaches were employed for further investigation (i.e., DSP of 290 m%, LAA% of 20%, and AECOPD frequency of ≥1). Mean comparisons and linear and logistic regression models were utilized to explore associations among the assessed variables. Results The low-DSP group (<290 m%) had significantly higher values for the mMRC, CAT, AECOPD frequency, and LAA% at different lung volume scales (total, right, and left), whereas it had lower values of the PFT and 6MWT parameters compared to the high-DSP group. Significant associations (with high odds ratios) were observed of the mMRC, CAT, AECOPD frequency, and PFT with low- and high-DSP groupings. Next, the risk of having AECOPD was associated with the mMRC, CAT, DSP, and LAA% (for the total, right, and left lungs). Conclusion A lower value of the DSP was related to a greater worsening of symptoms, more-frequent exacerbations, poorer pulmonary function, and more-severe emphysema (higher LAA%). These readily determined parameters, including the DSP and LAA%, can serve as indicators for assessing the COPD clinical course and may can serve as a guide to corresponding treatments.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Yun Kuo
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Te Liu
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Research Center of Artificial Intelligence in Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Wun-Hao Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Arnab Majumdar
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Marc Stettler
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Cheng-Yu Tsai
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom,Cheng-Yu Tsai,
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,School of Respiratory Therapy, College of Medicine, Taipei Medical University, New Taipei City, Taiwan,*Correspondence: Shu-Chuan Ho,
| |
Collapse
|
7
|
Beijers RJ, Franssen FM, Groenen MT, Spruit MA, Schols AM. Physical and mental health profile of patients with the early-onset severe COPD phenotype: A cross-sectional analysis. Clin Nutr 2022; 41:653-660. [DOI: 10.1016/j.clnu.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/12/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
|
8
|
Casas-Recasens S, Mendoza N, López-Giraldo A, Garcia T, Cosio BG, Pascual-Guardia S, Acosta-Castro A, Borras-Santos A, Gea J, Garrabou G, Agusti A, Faner R. Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Front Med (Lausanne) 2021; 8:761767. [PMID: 34901077 PMCID: PMC8652089 DOI: 10.3389/fmed.2021.761767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accelerated ageing is implicated in the pathogenesis of respiratory diseases as chronic obstructive pulmonary disease (COPD), but recent evidence indicates that the COPD can have roots early in life. Here we hypothesise that the accelerated ageing markers might have a role in the pathobiology of young COPD. The objective of this study was to compare two hallmarks of ageing, telomere length (TL), and mitochondrial DNA copy number (mtDNA-CN, as a surrogate marker of mitochondrial dysfunction) in young (≤ 50 years) and old (>50 years) smokers, with and without COPD. Both, TL and mtDNA-CN were measured in whole blood DNA by quantitative PCR [qPCR] in: (1) young ever smokers with (n = 81) or without (n = 166) COPD; and (2) old ever smokers with (n = 159) or without (n = 29) COPD. A multivariable linear regression was used to assess the association of TL and mtDNA-CN with lung function. We observed that in the entire study population, TL and mtDNA-CN decreased with age, and the former but not the latter related to FEV1/FVC (%), FEV1 (% ref.), and DLCO (% ref.). The short telomeres were found both in the young and old patients with severe COPD (FEV1 <50% ref.). In addition, we found that TL and mtDNA-CN were significantly correlated, but their relationship was positive in younger while negative in the older patients with COPD, suggesting a mitochondrial dysfunction. We conclude that TL, but not mtDNA-CN, is associated with the lung function impairment. Both young and old patients with severe COPD have evidence of accelerated ageing (shorter TL) but differ in the direction of the correlation between TL and mtDNA-CN in relation to age.
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Nuria Mendoza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Tamara Garcia
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Borja G Cosio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Pneumology, University Hospital Son Espases, Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Sergi Pascual-Guardia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ady Acosta-Castro
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pulmonary Service and Research Institute, Doce de Octubre University Hospital, Madrid, Spain
| | - Alicia Borras-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ISGlobal, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gloria Garrabou
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Muscle Research and Mitochondrial Function Laboratory, Internal Medicine Service, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Goldin JG. The Emerging Role of Quantification of Imaging for Assessing the Severity and Disease Activity of Emphysema, Airway Disease, and Interstitial Lung Disease. Respiration 2021; 100:277-290. [PMID: 33621969 DOI: 10.1159/000513642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
There has been an explosion of use for quantitative image analysis in the setting of lung disease due to advances in acquisition protocols and postprocessing technology, including machine and deep learning. Despite the plethora of published papers, it is important to understand which approach has clinical validation and can be used in clinical practice. This paper provides an introduction to quantitative image analysis techniques being used in the investigation of lung disease and focusses on the techniques that have a reasonable clinical validation for being used in clinical trials and patient care.
Collapse
Affiliation(s)
- Jonathan Gerald Goldin
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA,
| |
Collapse
|
10
|
Crossley D, Stockley J, Bolton CE, Hopkinson NS, Mahadeva R, Steiner M, Wilkinson T, Hurst JR, Gooptu B, Stockley RA. Relationship of CT densitometry to lung physiological parameters and health status in alpha-1 antitrypsin deficiency: initial report of a centralised database of the NIHR rare diseases translational research collaborative. BMJ Open 2020; 10:e036045. [PMID: 32606060 PMCID: PMC7328802 DOI: 10.1136/bmjopen-2019-036045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To establish a database network for the study of alpha-1 antitrypsin deficiency (AATD) and compare the results to CT lung density as the most direct measure of emphysema. DESIGN A central electronic database was established to permit the upload of anonymised patient data from remote sites. Prospectively collected CT data were recorded onto disc, anonymised, analysed at the coordinating centre and compared with the clinical features of the disease. SETTING Tertiary referral centres with expertise in the management of AATD focused on academic Biomedical Research Units and Wellcome Clinical Research Facilities. PARTICIPANTS Data were collected from 187 patients over 1 year from eight UK academic sites. This included patient demographics, postbronchodilator physiology, health status and CT. Analysis was undertaken at the coordinating centre in Birmingham. RESULTS Patient recruitment in the 12 months reached 94% of target (set at 200) covering the whole spectrum of the disease from those with normal lung function to very severe chronic obstructive lung disease. CT scan suitable for analysis was available from 147 (79%) of the patients. CT density, analysed as the threshold for the lowest 15% of lung voxels, showed statistically significant relationships with the objective physiological parameters of lung function as determined by spirometric Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity staging (p<0.001) and carbon monoxide gas transfer (p<0.01). Density also correlated with subjective measures of quality of life (p=0.02). CONCLUSIONS Establishment of the network for data collection and its transfer was highly successful facilitating future collaboration for the study of this rare disease and its management. CT densitometry correlated well with the objective clinical features of the disease supporting its role as the specific marker of the associated emphysema and its severity. Correlations with subjective measures of health, however, were generally weak indicating other factors play a role.
Collapse
Affiliation(s)
- Diana Crossley
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - James Stockley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - Charlotte E Bolton
- Department of Respiratory Medicine, NIHR Nottingham BRC respiratory theme, School of Medicine, The University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Imperial College, Royal Brompton Hospital Campus, London, UK
| | - Ravi Mahadeva
- Department of Medicine, Cambridge NIHR BRC, University of Cambridge, Leicester, UK
| | - Michael Steiner
- NIHR Leicester Biomedical Research Centre - Respiratory, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Tom Wilkinson
- Respiratory BRU, University of Southampton, Southampton, UK
| | | | - Bibek Gooptu
- NIHR Leicester Biomedical Research Centre - Respiratory, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, UK
- King's College London, Guy's Hospital Site, Great Maze Pond, London
| | - Robert A Stockley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
| |
Collapse
|
11
|
Decline in Carbon Monoxide Transfer Coefficient in Chronic Obstructive Pulmonary Disease. J Clin Med 2020; 9:jcm9051512. [PMID: 32443426 PMCID: PMC7290811 DOI: 10.3390/jcm9051512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Although a reduced carbon monoxide transfer coefficient (Kco) is an important feature in chronic obstructive pulmonary disease (COPD), how it changes over time and its relationship with other clinical outcomes remain unclear. This study evaluated longitudinal changes in Kco and their relationship with other clinical outcomes. Methods: We evaluated patients with COPD from the Korean Obstructive Lung Disease cohort, followed up for up to ten years. Random coefficient models were used to assess the annual change in Kco over time. Participants were categorized into tertiles according to Kco decline rate. Baseline characteristics and outcomes, including changes in FEV1 and emphysema index, incidence of exacerbations, and mortality, were compared between categories. Results: A decline in Kco was observed in 92.9% of the 211 enrolled participants with COPD. Those with the most rapid decline (tertile 1) had a lower FEV1/FVC% (tertile 1: 43.8% ± 9.7%, tertile 2: 46.4% ± 10.5%, tertile 3: 49.2% ± 10.4%, p = 0.008) and a higher emphysema index at baseline (27.7 ± 14.8, 22.4 ± 16.1, 18.1 ± 14.5, respectively, p = 0.001). Tertile 3 showed a lower decline rate in FEV1 (16.3 vs. 27.1 mL/yr, p = 0.017) and a lower incidence of exacerbations (incidence rate ratio = 0.66, 95% CI = 0.44–0.99) than tertile 1. There were no differences in the change in emphysema index and mortality between categories. Conclusion: Most patients with COPD experienced Kco decline over time, which was greater in patients with more severe airflow limitation and emphysema. Decline in Kco was associated with an accelerated decline in FEV1 and more frequent exacerbations; hence, this should be considered as an important outcome measure in further studies.
Collapse
|
12
|
Madan A, Turner AM. Identifying the at risk smokers: who goes on to get COPD? Eur Respir J 2019; 54:54/4/1901613. [PMID: 31672906 DOI: 10.1183/13993003.01613-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Arina Madan
- University Hospitals Birmingham, Heartlands Hospital, Birmingham, UK
| | - Alice M Turner
- University Hospitals Birmingham, Heartlands Hospital, Birmingham, UK .,Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images. Sci Rep 2019; 9:11509. [PMID: 31395937 PMCID: PMC6687824 DOI: 10.1038/s41598-019-48023-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Contemporary medical imaging is becoming increasingly more quantitative. The emerging field of radiomics is a leading example. By translating unstructured data (i.e., images) into structured data (i.e., imaging features), radiomics can potentially characterize clinically useful imaging phenotypes. In this paper, an exploratory radiomics approach is used to investigate the potential association between quantitative imaging features and pulmonary function in CT images. Thirty-nine radiomic features were extracted from the lungs of 64 patients as potential imaging biomarkers for pulmonary function. Collectively, these features capture the morphology of the lungs, as well as intensity variations, fine-texture, and coarse-texture of the pulmonary tissue. The extracted lung radiomics data was compared to conventional pulmonary function tests. In general, patients with larger lungs of homogeneous, low attenuating pulmonary tissue (as measured via radiomics) were found to be associated with poor spirometry performance and a lower diffusing capacity for carbon monoxide. Unsupervised dynamic data clustering revealed subsets of patients with similar lung radiomic patterns that were found to be associated with similar forced expiratory volume in one second (FEV1) measurements. This implies that patients with similar radiomic feature vectors also presented with comparable spirometry performance, and were separable by varying degrees of pulmonary function as measured by imaging.
Collapse
|
14
|
Cruz T, López-Giraldo A, Noell G, Casas-Recasens S, Garcia T, Molins L, Juan M, Fernandez MA, Agustí A, Faner R. Multi-level immune response network in mild-moderate Chronic Obstructive Pulmonary Disease (COPD). Respir Res 2019; 20:152. [PMID: 31299954 PMCID: PMC6626346 DOI: 10.1186/s12931-019-1105-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is associated with an abnormal pulmonary and systemic immune response to tobacco smoking. Yet, how do immune cells relate within and between these two biological compartments, how the pulmonary infiltrate influences the lung transcriptome, and what is the role of active smoking vs. presence of disease is unclear. Methods To investigate these questions, we simultaneously collected lung tissue and blood from 65 individuals stratified by smoking habit and presence of the disease. The immune cell composition of both tissues was assessed by flow cytometry, whole lung transcriptome was determined with Affymetrix arrays, and we used Weighted Gene Co-expression Network Analysis (WGCNA) to integrate results. Results Main results showed that: (1) current smoking and the presence of COPD were both independently associated with a reduction in the proportion of lung T cells and an increase of macrophages, specifically those expressing CD80 + CD163+; (2) changes in the proportion of infiltrating macrophages, smoking status or the level of airflow limitation were associated to different WGCNA modules, which were enriched in iron ion transport, extracellular matrix and cilium organization gene ontologies; and, (3) circulating white blood cells counts were correlated with lung macrophages and T cells. Conclusions Mild-moderated COPD lung immune infiltrate is associated with the active smoking status and presence of disease; is associated with changes in whole lung tissue transcriptome and marginally reflected in blood. Electronic supplementary material The online version of this article (10.1186/s12931-019-1105-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Cruz
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sandra Casas-Recasens
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tamara Garcia
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laureano Molins
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Service, Centre Diagnostic Biomèdic, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marco A Fernandez
- Flow Cytometry Facility, Institut de Recerca Germans Trias I Pujol, Barcelona, Spain
| | - Alvar Agustí
- CIBER Enfermedades Respiratorias, Barcelona, Spain.,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, Barcelona, Spain. .,Institut de Recerca Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,CIBERES, IDIBAPS-CELLEX. Facultat de Medicina P2A, c/Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
15
|
Petousi N, Talbot NP, Pavord I, Robbins PA. Measuring lung function in airways diseases: current and emerging techniques. Thorax 2019; 74:797-805. [PMID: 31036773 DOI: 10.1136/thoraxjnl-2018-212441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Chronic airways diseases, including asthma, COPD and cystic fibrosis, cause significant morbidity and mortality and are associated with high healthcare expenditure, in the UK and worldwide. For patients with these conditions, improvements in clinical outcomes are likely to depend on the application of precision medicine, that is, the matching of the right treatment to the right patient at the right time. In this context, the identification and targeting of 'treatable traits' is an important priority in airways disease, both to ensure the appropriate use of existing treatments and to facilitate the development of new disease-modifying therapy. This requires not only better understanding of airway pathophysiology but also an enhanced ability to make physiological measurements of disease activity and lung function and, if we are to impact on the natural history of these diseases, reliable measures in early disease. In this article, we outline some of the key challenges faced by the respiratory community in the management of airways diseases, including early diagnosis, disease stratification and monitoring of therapeutic response. In this context, we review the advantages and limitations of routine physiological measurements of respiratory function including spirometry, body plethysmography and diffusing capacity and discuss less widely used methods such as forced oscillometry, inert gas washout and the multiple inert gas elimination technique. Finally, we highlight emerging technologies including imaging methods such as quantitative CT and hyperpolarised gas MRI as well as quantification of lung inhomogeneity using precise in-airway gas analysis and mathematical modelling. These emerging techniques have the potential to enhance existing measures in the assessment of airways diseases, may be particularly valuable in early disease, and should facilitate the efforts to deliver precision respiratory medicine.
Collapse
Affiliation(s)
- Nayia Petousi
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK .,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Nick P Talbot
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ian Pavord
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Crossley D, Renton M, Khan M, Low EV, Turner AM. CT densitometry in emphysema: a systematic review of its clinical utility. Int J Chron Obstruct Pulmon Dis 2018; 13:547-563. [PMID: 29445272 PMCID: PMC5808715 DOI: 10.2147/copd.s143066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of the study was to assess the relationship between computed tomography (CT) densitometry and routine clinical markers in patients with chronic obstructive pulmonary disease (COPD) and alpha-1 anti-trypsin deficiency (AATD). METHODS Multiple databases were searched using a combination of pertinent terms and those articles relating quantitatively measured CT densitometry to clinical outcomes. Studies that used visual scoring only were excluded, as were those measured in expiration only. A thorough review of abstracts and full manuscripts was conducted by 2 reviewers; data extraction and assessment of bias was conducted by 1 reviewer and the 4 reviewers independently assessed for quality. Pooled correlation coefficients were calculated, and heterogeneity was explored. RESULTS A total of 112 studies were identified, 82 being suitable for meta-analysis. The most commonly used density threshold was -950 HU, and a significant association between CT density and all included clinical parameters was demonstrated. There was marked heterogeneity between studies secondary to large variety of disease severity within commonly included cohorts and differences in CT acquisition parameters. CONCLUSION CT density shows a good relationship to clinically relevant parameters; however, study heterogeneity and lack of longitudinal data mean that it is difficult to compare studies or derive a minimal clinically important difference. We recommend that international consensus is reached to standardize CT conduct and analysis in future COPD and AATD studies.
Collapse
Affiliation(s)
- Diana Crossley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Correspondence: Diana Crossley, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK, Tel +44 121 371 3885, Fax +44 121 371 3203, Email
| | - Mary Renton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Muhammad Khan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Emma V Low
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- Institute of Applied Health Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, Tal-Singer R, Miller B, Rodriguez-Roisin R, Spira A, Kalko SG, Agustí A. Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am J Respir Crit Care Med 2017; 193:1242-53. [PMID: 26735770 DOI: 10.1164/rccm.201507-1311oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by a combination of airways disease (bronchiolitis) and parenchymal destruction (emphysema), whose relative proportion varies from patient to patient. OBJECTIVES To explore and contrast the molecular pathogenesis of emphysema and bronchiolitis in COPD. METHODS We used network analysis of lung transcriptomics (Affymetrix arrays) in 70 former smokers with COPD to compare differential expression and gene coexpression in bronchiolitis and emphysema. MEASUREMENTS AND MAIN RESULTS We observed that in emphysema (but not in bronchiolitis) (1) up-regulated genes were enriched in ontologies related to B-cell homing and activation; (2) the immune coexpression network had a central core of B cell-related genes; (3) B-cell recruitment and immunoglobulin transcription genes (CXCL13, CCL19, and POU2AF1) correlated with emphysema severity; (4) there were lymphoid follicles (CD20(+)IgM(+)) with active B cells (phosphorylated nuclear factor-κB p65(+)), proliferation markers (Ki-67(+)), and class-switched B cells (IgG(+)); and (5) both TNFRSF17 mRNA and B cell-activating factor protein were up-regulated. These findings were by and large reproduced in a group of patients with incipient emphysema and when patients with emphysema were matched for the severity of airflow limitation of those with bronchiolitis. CONCLUSIONS Our study identifies enrichment in B cell-related genes in patients with COPD with emphysema that is absent in bronchiolitis. These observations contribute to a better understanding of COPD pathobiology and may open new therapeutic opportunities for patients with COPD.
Collapse
Affiliation(s)
- Rosa Faner
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Tamara Cruz
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Casserras
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alejandra López-Giraldo
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Guillaume Noell
- 2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ignacio Coca
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | | | | | - Roberto Rodriguez-Roisin
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| | - Avrum Spira
- 6 Boston University School of Medicine, Boston, Massachusetts
| | - Susana G Kalko
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alvar Agustí
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| |
Collapse
|
18
|
Beijers RJ, van de Bool C, van den Borst B, Franssen FM, Wouters EF, Schols AM. Normal Weight but Low Muscle Mass and Abdominally Obese: Implications for the Cardiometabolic Risk Profile in Chronic Obstructive Pulmonary Disease. J Am Med Dir Assoc 2017; 18:533-538. [DOI: 10.1016/j.jamda.2016.12.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
19
|
The measurement of lung volumes using body plethysmography and helium dilution methods in COPD patients: a correlation and diagnosis analysis. Sci Rep 2016; 6:37550. [PMID: 27876834 PMCID: PMC5120321 DOI: 10.1038/srep37550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/01/2016] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway disease characterized by persistent airflow limitation. Moreover, lung hyperinflation evaluated by lung volumes is also the key pathophysiologic process during COPD progression. Nevertheless, there is still no preferred method to evaluate lung volumes. For this study, we recruited 170 patients with stable COPD to assess lung volumes stratified by airflow limitation severity. Lung volumes including residual volume (RV) and total lung capacity (TLC) were determined by both body plethysmography and helium dilution methods. The discrepancies between these two methods were recorded as ΔRV%pred, ΔTLC%pred, and ΔRV/TLC. We found that ΔRV%pred, ΔTLC%pred, and ΔRV/TLC increased significantly with the severity of COPD. The differences of lung capacity between these two methods were negatively correlated with FEV1%pred, and diffusing capacity for carbon monoxide (DLCO%pred). Moreover, the receiver operating characteristic (ROC) for ΔTLC%pred to distinguish severe COPD from non-severe COPD had an area under curve (AUC) of 0.886. The differences of lung volume parameters measured by body plethysmography and helium dilution methods were associated with airflow limitation and can effectively differentiate COPD severity, which may be a supportive method to assess the lung function of stable COPD patients.
Collapse
|
20
|
Santus P, Radovanovic D, Balzano G, Pecchiari M, Raccanelli R, Sarno N, Di Marco F, Jones PW, Carone M. Improvements in Lung Diffusion Capacity following Pulmonary Rehabilitation in COPD with and without Ventilation Inhomogeneity. Respiration 2016; 92:295-307. [PMID: 27598467 DOI: 10.1159/000448847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lung diffusing capacity (DLCO) and lung volume distribution predict exercise performance and are altered in COPD patients. If pulmonary rehabilitation (PR) can modify DLCO parameters is unknown. OBJECTIVES To investigate changes in DLCO and ventilation inhomogeneity following a PR program and their relation with functional outcomes in patients with COPD. METHODS This was a prospective, observational, multicentric study. Patients were evaluated before and after a standardized 3-week PR program. Functional assessment included body plethysmography, DLCO, transfer factor (KCO) and alveolar volume (VA), gas exchange, the 6-min walking test (6MWT) and exercise-related dyspnea. Patients were categorized according to the severity of airflow limitation and presence of ventilation inhomogeneity, identified by a VA/TLC <0.8. RESULTS Two hundred and fifty patients completed the study. Baseline forced expiratory volume in 1 s (FEV1) % predicted (mean ± SD) was 50.5 ± 20.1 (76% males); 137 patients had a severe disease. General study population showed improvements in 6MWT (38 ± 55 m; p < 0.01), DLCO (0.12 ± 0.63 mmol × min-1 kPa-1; p < 0.01), lung function and dyspnea. Comparable improvements in DLCO were observed regardless of the severity of disease and the presence of ventilation inhomogeneity. While patients with VA/TLC <0.8 improved the DLCO increasing their VA (177 ± 69 ml; p < 0.01), patients with VA/TLC >0.8 improved their KCO (8.1 ± 2.8%; p = 0.019). The latter had also better baseline lung function and higher improvements in 6MWT (14.6 ± 6.7 vs. 9.0 ± 1.8%; p = 0.015). Lower DLCO at baseline was associated with lower improvements in 6MWT, the greatest difference being between subjects with very severe and mild DLCO impairment (2.7 ± 7.4 vs. 14 ± 2%; p = 0.049). CONCLUSIONS In COPD patients undergoing a PR program, different pathophysiological mechanisms may drive improvements in DLCO, while ventilation inhomogeneity may limit improvements in exercise tolerance.
Collapse
Affiliation(s)
- Pierachille Santus
- Department of Health Science, University of Milan, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, IRCCS - Scientific Institute of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. AIDS 2016; 30:1327-39. [PMID: 26990629 DOI: 10.1097/qad.0000000000001092] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease is a common comorbidity in HIV, with prevalence and severity of disease incompletely explained by risk factors such as smoking and age. Unique HIV-associated factors, including microbial translocation, monocyte activation, and endothelial dysfunction, have been described in other comorbidities, but have not been investigated in relation to pulmonary abnormalities in HIV. This study assessed the relationship of these pathologic processes to pulmonary function in HIV-infected and uninfected individuals and determined if relationships were unique to HIV. DESIGN Longitudinal observational study. METHODS Total 274 participants completed pulmonary function testing. Markers of inflammation (IL-6, IL-8, and TNFα), microbial translocation (lipopolysaccharide, sCD14), monocyte activation (sCD163, sCD14, and IL-2 receptor), and endothelial dysfunction (endothelin-1) were measured at baseline. Cross-sectional and longitudinal analyses were performed, adjusting for pertinent covariates. RESULTS In HIV-infected individuals, higher IL-6 and endothelin-1 associated with worse forced expiratory volume in one second (FEV1) percentage-predicted, and higher sCD163 associated with worse FEV1/forced vital capacity. IL-6, TNFα, lipopolysaccharide, sCD163, IL-2 receptor, and endothelin-1 associated with diffusing impairment. sCD163 and endothelin-1 interacted with HIV status in relationship to pulmonary function. In HIV-infected individuals only, baseline endothelin-1 was associated with lower FEV1, and sCD163 and endothelin-1 were associated with lower diffusing capacity during follow-up. CONCLUSION Circulating markers of HIV-associated humoral abnormalities are associated with airflow obstruction and diffusing impairment and baseline measures of monocyte activation and endothelial dysfunction associate with lower pulmonary function over time in HIV-infected persons. These findings suggest mechanisms of the disproportionate burden of chronic obstructive pulmonary disease in HIV-infected persons.
Collapse
|
22
|
Soumagne T, Laveneziana P, Veil-Picard M, Guillien A, Claudé F, Puyraveau M, Annesi-Maesano I, Roche N, Dalphin JC, Degano B. Asymptomatic subjects with airway obstruction have significant impairment at exercise. Thorax 2016; 71:804-11. [DOI: 10.1136/thoraxjnl-2015-207953] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/28/2016] [Indexed: 11/04/2022]
|