1
|
Li Y, Mao X, Shi P, Wan Z, Yang D, Ma T, Wang B, Wang J, Wang J, Zhu R. Microbiome-host interactions in the pathogenesis of acute exacerbation of chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2024; 14:1386201. [PMID: 39091676 PMCID: PMC11291260 DOI: 10.3389/fcimb.2024.1386201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Objective To explore the underlying mechanisms the airway microbiome contributes to Acute Exacerbation of Chronic Obstructive Pulmonary Disease(AECOPD). Methods We enrolled 31 AECOPD patients and 26 stable COPD patients, their sputum samples were collected for metagenomic and RNA sequencing, and then subjected to bioinformatic analyses. The expression of host genes was validated by Quantitative Real-time PCR(qPCR) using the same batch of specimens. Results Our results indicated a higher expression of Rothia mucilaginosa(p=0.015) in the AECOPD group and Haemophilus influenzae(p=0.005) in the COPD group. The Different expressed genes(DEGs) detected were significantly enriched in "type I interferon signaling pathway"(p<0.001, q=0.001) in gene function annotation, and "Cytosolic DNA-sensing pathway"(p=0.002, q=0.024), "Toll-like receptor signaling pathway"(p=0.006, q=0.045), and "TNF signaling pathway"(p=0.006, q=0.045) in KEGG enrichment analysis. qPCR amplification experiment verified that the expression of OASL and IL6 increased significantly in the AECOPD group. Conclusion Pulmonary bacteria dysbiosis may regulate the pathogenesis of AECOPD through innate immune system pathways like type I interferon signaling pathway and Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Yao Li
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| | - Xiaoyan Mao
- Department of Intensive Care Unit, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Pengfei Shi
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| | - Zongren Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ting Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Baolan Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jipeng Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jingjing Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhu
- Department of Respiratory and Critical Care Medicine, Huaian Clinical College of Xuzhou Medical University, Huaian, China
| |
Collapse
|
2
|
Tirelli C, Mira S, Belmonte LA, De Filippi F, De Grassi M, Italia M, Maggioni S, Guido G, Mondoni M, Canonica GW, Centanni S. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024; 13:475. [PMID: 38534319 DOI: 10.3390/cells13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Luca Alessandro Belmonte
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Federica De Filippi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Mauro De Grassi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Marta Italia
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Maggioni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gabriele Guido
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
3
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Papakonstantinou E, Christopoulou ME, Karakioulaki M, Grize L, Tamm M, Stolz D. Ηeparan sulphate in infectious and non-infectious exacerbations of COPD. Respirology 2023. [PMID: 37311657 DOI: 10.1111/resp.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with worsening health outcomes and effective treatment of each episode is essential. In this study, we aimed to investigate if plasma levels of heparan sulphate (HS) are associated with the aetiology of AECOPD. METHODS COPD patients (N = 1189), GOLD grade II-IV, from a discovery cohort (N = 638) and from a validation cohort (N = 551), were included in the study. HS and heparanase (HSPE-1) were measured longitudinally in plasma at stable state, at AECOPD and at 4 weeks follow-up. RESULTS Plasma HS was higher in patients with COPD as compared with non-COPD controls and was significantly increased at AECOPD as compared to stable state (p < 0.001) in the discovery and in the validation cohorts. Four distinct exacerbation groups were classified based on aetiology (no-infection/bacterial-infection/viral-infection/bacterial and viral coinfection) in the validation cohort. The fold-increase of HS from stable state to AECOPD was associated with the aetiology of exacerbation and was higher in cases with bacterial and viral coinfections. HSPE-1 was also significantly increased at AECOPD, however, there was no association of HSPE-1 levels with the aetiology of these events. The probability of having an infection at AECOPD was raised as HS levels increased from stable state to AECOPD. This probability was higher for bacterial infections than viral infections. CONCLUSION The results of our study indicate that circulating levels of HS are increased at AECOPD and this increase may be associated with the aetiology of these events.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Meropi Karakioulaki
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Leticia Grize
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Stolz D, Matera MG, Rogliani P, van den Berge M, Papakonstantinou E, Gosens R, Singh D, Hanania N, Cazzola M, Maitland-van der Zee AH, Fregonese L, Mathioudakis AG, Vestbo J, Rukhadze M, Page CP. Current and future developments in the pharmacology of asthma and COPD: ERS seminar, Naples 2022. Breathe (Sheff) 2023; 19:220267. [PMID: 37377851 PMCID: PMC10292790 DOI: 10.1183/20734735.0267-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmacological management of airway obstructive diseases is a fast-evolving field. Several advances in unravelling disease mechanisms as well as intracellular and molecular pathways of drug action have been accomplished. While the clinical translation and implementation of in vitro results to the bedside remains challenging, advances in comprehending the mechanisms of respiratory medication are expected to assist clinicians and scientists in identifying meaningful read-outs and designing clinical studies. This European Respiratory Society Research Seminar, held in Naples, Italy, 5-6 May 2022, focused on current and future developments of the drugs used to treat asthma and COPD; on mechanisms of drug action, steroid resistance, comorbidities and drug interactions; on prognostic and therapeutic biomarkers; on developing novel drug targets based on tissue remodelling and regeneration; and on pharmacogenomics and emerging biosimilars. Related European Medicines Agency regulations are also discussed, as well as the seminar's position on the above aspects.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, and Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, and Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Maia Rukhadze
- Center of Allergy and Immunology, Teaching University Geomedi LLC, Tbilisi, Georgia
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
6
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|
7
|
Tzankov A, Bhattacharyya S, Kotlo K, Tobacman JK. Increase in Chondroitin Sulfate and Decline in Arylsulfatase B May Contribute to Pathophysiology of COVID-19 Respiratory Failure. Pathobiology 2021; 89:81-91. [PMID: 34788765 DOI: 10.1159/000519542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Pathology, University Hospital Basel, Institute of Medical Genetics and Pathology, University of Basel, Basel, Switzerland
| | - Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
8
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
9
|
Zhang DW, Wei YY, Ji S, Fei GH. Correlation between sestrin2 expression and airway remodeling in COPD. BMC Pulm Med 2020; 20:297. [PMID: 33198738 PMCID: PMC7667887 DOI: 10.1186/s12890-020-01329-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Airway remodeling is a major pathological characteristic of chronic obstructive pulmonary disease (COPD), and has been shown to be associated with oxidative stress. Sestrin2 has recently drawn attention as an important antioxidant protein. However, the underlying correlation between sestrin2 and airway remodeling in COPD has yet to be clarified. METHODS A total of 124 subjects were enrolled in this study, including 62 control subjects and 62 COPD patients. The pathological changes in airway tissues were assessed by different staining methods. The expression of sestrin2 and matrix metalloproteinase 9 (MMP9) in airway tissues was monitored by immunohistochemistry. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the serum concentrations of sestrin2 and MMP9. The airway parameters on computed tomography (CT) from all participants were measured for evaluating airway remodeling. The relationship between serum sestrin2 and MMP9 concentration and airway parameters in chest CT was also analyzed. RESULTS In patients with COPD, staining of airway structures showed distinct pathological changes of remodeling, including cilia cluttered, subepithelial fibrosis, and reticular basement membrane (Rbm) fragmentation. Compared with control subjects, the expression of sestrin2 and MMP9 was significantly increased in both human airway tissues and serum. Typical imaging characteristics of airway remodeling and increased airway parameters were also found by chest CT. Additionally, serum sestrin2 concentration was positively correlated with serum MMP9 concentration and airway parameters in chest CT. CONCLUSION Increased expression of sestrin2 is related to airway remodeling in COPD. We demonstrated for the first time that sestrin2 may be a novel biomarker for airway remodeling in patients with COPD.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People's Republic of China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People's Republic of China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People's Republic of China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China.
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People's Republic of China.
| |
Collapse
|
10
|
Swenson KE, Berger MM, Sareban M, Macholz F, Schmidt P, Schiefer LM, Mairbäurl H, Swenson ER. Rapid Ascent to 4559 m Is Associated with Increased Plasma Components of the Vascular Endothelial Glycocalyx and May Be Associated with Acute Mountain Sickness. High Alt Med Biol 2020; 21:176-183. [DOI: 10.1089/ham.2019.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Kai Erik Swenson
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California, USA
| | - Marc Moritz Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Essen, Germany
| | - Mahdi Sareban
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Franziska Macholz
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Schmidt
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Lisa Maria Schiefer
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heimo Mairbäurl
- Division of Sports Medicine, Department of Internal Medicine VII, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
| | - Erik Richard Swenson
- Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Glycosaminoglycans in biological samples – Towards identification of novel biomarkers. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Hao W, Li M, Zhang Y, Zhang C, Wang P. Comparative Study of Cytokine Levels in Different Respiratory Samples in Mild-to-Moderate AECOPD Patients. Lung 2019; 197:565-572. [PMID: 31451927 DOI: 10.1007/s00408-019-00263-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Matrix metalloproteinase-12 (MMP-12) and Tissue inhibitor of metalloproteinase-4 (TIMP-4) play important roles in the pathophysiology of chronic obstructive pulmonary disease (COPD). Subjects of many previous studies were patients with severe and very severe COPD. However, there are comparatively few studies on patients with mild-to-moderate COPD. Our aim was to measure MMP-12 and TIMP-4 levels and to compare its levels in various materials in patients with mild-to-moderate acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We also compared which of the two materials of these biomarkers was better correlated with disease severity and DODE index. METHODS A total of 39 patients with AECOPD and 25 control subjects were enrolled in our study. MMP-12 and TIMP-4 in different respiratory samples were detected by ELISA. RESULTS Expression levels of MMP-12 in bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) and TIMP-4 in BALF were significantly higher in AECOPD patients than that in healthy subjects (P < 0.001). However, there was no significant difference in TIMP-4 level in EBC of AECOPD patients compared to healthy subjects (P = 0.0527). The levels of MMP-12 in BALF and EBC and TIMP-4 in BAFL of AECOPD patients were significantly correlated with FEV1% predicted (P < 0.001). However, in AECOPD patients, there was no significant correlation between TIMP-4 levels in EBC and BODE index (r = 0.4175, P = 0.0559). CONCLUSION During mild-to-moderate AECOPD, the levels of MMP-12 and TIMP-4 in BALF were better correlated with FEV1% predicted and BODE index than that in EBC, indicating that they may be new target interventions for pharmacology to prevent and/or treat AECOPD.
Collapse
Affiliation(s)
- Wendong Hao
- Department of Respiratory Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099, Shaanxi, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yunqing Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099, Shaanxi, People's Republic of China
| | - Cailian Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099, Shaanxi, People's Republic of China
| | - Ping Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Hao W, Li M, Zhang Y, Zhang C, Xue Y. Expressions of MMP-12, TIMP-4, and Neutrophil Elastase in PBMCs and Exhaled Breath Condensate in Patients with COPD and Their Relationships with Disease Severity and Acute Exacerbations. J Immunol Res 2019; 2019:7142438. [PMID: 31143784 PMCID: PMC6501161 DOI: 10.1155/2019/7142438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare matrix metalloproteinase-12 (MMP-12), neutrophil elastase (NE), and tissue inhibitor of metalloproteinase-4 (TIMP-4) in peripheral blood of patients with chronic obstructive pulmonary disease (COPD) and controls. At the same time, MMP-12, NE, and TIMP-4 in exhaled breath condensate (EBC) were also evaluated. METHODS Peripheral blood and EBC samples from COPD patients and healthy controls were collected. In serum and EBC, MMP-12, NE, and TIMP-4 proteins were detected by enzyme-linked immunoassays. The mRNA expression levels of MMP-12, NE, and TIMP-4 in peripheral blood mononuclear cells (PBMCs) were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The concentration of TIMP-4 protein in EBC was lower in patients with COPD (P < 0.001). MMP-12 (P = 0.046), NE (P = 0.027), and TIMP-4 (P = 0.005) proteins in serum of patients with COPD showed higher levels of concentration. The mRNA of MMP-12 (P = 0.0067), NE (P = 0.0058), and TIMP-4 (P = 0.0006) in PBMCs of COPD patients showed higher expression levels. Compared with stable patients, mRNA expression level of NE (P = 0.033) in PBMCs of patients with acute exacerbation of COPD was increased. There were differences in the ratio of MMP-12/TIMP-4 in PBMC (P = 0.0055), serum (P = 0.0427), and EBC (P = 0.0035) samples between COPD patients and healthy controls. The mRNA expression of MMP-12 (r = -0.3958, P = 0.0186) and NE (r = -0.3694, P = 0.0290) in COPD patients was negatively correlated with pulmonary function. However, the mRNA expression of TIMP-4 (r = 0.2871, P = 0.0945) in PBMCs was not correlated with the FEV1 of the pulmonary function. Serum MMP-12 level was positively correlated with the MMP-12 level in EBC (P = 0.0387). The level of TIMP-4 in serum was not correlated with the level in the EBC sample (P = 0.4332). CONCLUSION The expression levels of MMP-12, NE, and TIMP-4 in PBMCs and serum were elevated in COPD patients. In PBMCs of COPD patients, the mRNA expression level of NE may predict acute exacerbation, and MMP-12 mRNA expression level may be used to reflect the severity of airflow limitation. However, to better assess their diagnostic or prognostic value, larger studies are necessary.
Collapse
Affiliation(s)
- Wendong Hao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | - Yunqing Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| | - Cailian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| | - Yani Xue
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| |
Collapse
|
14
|
Hao W, Li M, Zhang C, Zhang Y, Wang P. Inflammatory mediators in exhaled breath condensate and peripheral blood of healthy donors and stable COPD patients. Immunopharmacol Immunotoxicol 2019; 41:224-230. [PMID: 31046512 DOI: 10.1080/08923973.2019.1609496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
Abstract
Objective: The aim of this work was to compare matrix metalloproteinase-9 and -12, tissue inhibitor of metalloproteinase-1 and -4, and neutrophil elastase in exhaled breath condensate (EBC) and peripheral blood of patients with COPD. Methods: Peripheral blood and EBC samples from COPD patients and healthy donors were collected. In serum and EBC, MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 proteins were detected by ELISA. The mRNA expression levels of MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 in peripheral blood mononuclear cells (PBMCs) were analyzed by qRT-PCR. Results: The protein levels of MMP-9 (p=.034) and MMP-12 (p=.041) in the EBC of COPD smokers were higher than those of COPD never-smokers. The concentrations of TIMP-1 (p=.072) and TIMP-4 (p=.084) in the EBC of COPD smokers were higher than those of COPD never-smokers; however, the difference was not statistically significant. MMP-9 (r=-0.78, p<.0001) and TIMP-1 (r=-0.71, p<.0001) levels in EBC were significantly negatively correlated with pulmonary function FEV1%pred. The protein levels of MMP-12 (r=-0.37, p=.034) and TIMP-4 (r=-0.34, p=.041) were also negatively correlated with FEV1%pred. The expression of MMP-9, MMP-12, NE, TIMP-1, and TIMP-4 in PBMCs and serum of COPD smokers were significantly higher than those of control never-smokers (p<.05). Conclusions: Exhaled MMP-9, MMP-12, TIMP-1, and TIMP-4 levels increased in stable COPD patients and were negatively correlated with FEV1%pred, which suggests the usefulness of their measurement in EBC for the monitoring of airway inflammation. However, to better assess their diagnostic or prognostic value, larger studies are necessary.
Collapse
Affiliation(s)
- Wendong Hao
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
- b Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Manxiang Li
- b Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cailian Zhang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| | - Yunqing Zhang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| | - Ping Wang
- a Department of Respiratory Medicine , The Affiliated Hospital of Yan'an University , Yan'an , People's Republic of China
| |
Collapse
|
15
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
16
|
Lorè NI, Veraldi N, Riva C, Sipione B, Spagnuolo L, De Fino I, Melessike M, Calzi E, Bragonzi A, Naggi A, Cigana C. Synthesized Heparan Sulfate Competitors Attenuate Pseudomonas aeruginosa Lung Infection. Int J Mol Sci 2018; 19:ijms19010207. [PMID: 29315274 PMCID: PMC5796156 DOI: 10.3390/ijms19010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Several chronic respiratory diseases are characterized by recurrent and/or persistent infections, chronic inflammatory responses and tissue remodeling, including increased levels of glycosaminoglycans which are known structural components of the airways. Among glycosaminoglycans, heparan sulfate (HS) has been suggested to contribute to excessive inflammatory responses. Here, we aim at (i) investigating whether long-term infection by Pseudomonas aeruginosa, one of the most worrisome threat in chronic respiratory diseases, may impact HS levels, and (ii) exploring HS competitors as potential anti-inflammatory drugs during P. aeruginosa pneumonia. P. aeruginosa clinical strains and ad-hoc synthesized HS competitors were used in vitro and in murine models of lung infection. During long-term chronic P. aeruginosa colonization, infected mice showed higher heparin/HS levels, evaluated by high performance liquid chromatography-mass spectrometry after selective enzymatic digestion, compared to uninfected mice. Among HS competitors, an N-acetyl heparin and a glycol-split heparin dampened leukocyte recruitment and cytokine/chemokine production induced by acute and chronic P. aeruginosa pneumonia in mice. Furthermore, treatment with HS competitors reduced bacterial burden during chronic murine lung infection. In vitro, P. aeruginosa biofilm formation decreased upon treatment with HS competitors. Overall, these findings support further evaluation of HS competitors as a novel therapy to counteract inflammation and infection during P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
- Vita-Salute San Raffaele University, Milano 20132, Italy.
| | - Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Elisa Calzi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| |
Collapse
|
17
|
Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin Immunol 2017; 141:718-729.e7. [PMID: 28729000 PMCID: PMC5792246 DOI: 10.1016/j.jaci.2017.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/10/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Homeostatic turnover of the extracellular matrix conditions the structure and function of the healthy lung. In lung transplantation, long-term management remains limited by chronic lung allograft dysfunction, an umbrella term used for a heterogeneous entity ultimately associated with pathological airway and/or parenchyma remodeling. OBJECTIVE This study assessed whether the local cross-talk between the pulmonary microbiota and host cells is a key determinant in the control of lower airway remodeling posttransplantation. METHODS Microbiota DNA and host total RNA were isolated from 189 bronchoalveolar lavages obtained from 116 patients post lung transplantation. Expression of a set of 11 genes encoding either matrix components or factors involved in matrix synthesis or degradation (anabolic and catabolic remodeling, respectively) was quantified by real-time quantitative PCR. Microbiota composition was characterized using 16S ribosomal RNA gene sequencing and culture. RESULTS We identified 4 host gene expression profiles, among which catabolic remodeling, associated with high expression of metallopeptidase-7, -9, and -12, diverged from anabolic remodeling linked to maximal thrombospondin and platelet-derived growth factor D expression. While catabolic remodeling aligned with a microbiota dominated by proinflammatory bacteria (eg, Staphylococcus, Pseudomonas, and Corynebacterium), anabolic remodeling was linked to typical members of the healthy steady state (eg, Prevotella, Streptococcus, and Veillonella). Mechanistic assays provided direct evidence that these bacteria can impact host macrophage-fibroblast activation and matrix deposition. CONCLUSIONS Host-microbes interplay potentially determines remodeling activities in the transplanted lung, highlighting new therapeutic opportunities to ultimately improve long-term lung transplant outcome.
Collapse
|
18
|
Stolz D, Leeming DJ, Kristensen JHE, Karsdal MA, Boersma W, Louis R, Milenkovic B, Kostikas K, Blasi F, Aerts J, Sand JM, Wouters EF, Rohde G, Prat C, Torres A, Welte T, Roth M, Papakonstantinou E, Tamm M. Systemic Biomarkers of Collagen and Elastin Turnover Are Associated With Clinically Relevant Outcomes in COPD. Chest 2017; 151:47-59. [DOI: 10.1016/j.chest.2016.08.1440] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/16/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
|
19
|
Murray LA, Grainge C, Wark PA, Knight DA. Use of biologics to treat acute exacerbations and manage disease in asthma, COPD and IPF. Pharmacol Ther 2016; 169:1-12. [PMID: 27889330 DOI: 10.1016/j.pharmthera.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A common feature of chronic respiratory disease is the progressive decline in lung function. The decline can be indolent, or it can be accelerated by acute exacerbations, whereby the patient experiences a pronounced worsening of disease symptoms. Moreover, acute exacerbations may also be a marker of insufficient disease management. The underlying cause of an acute exacerbation can be due to insults such as pathogens or environmental pollutants, or the cause can be unknown. For each acute exacerbation, the patient may require medical intervention such as rescue medication, or in more severe cases, hospitalization and ventilation and have an increased risk of death. Biologics, such as monoclonal antibodies, are being developed for chronic respiratory diseases including asthma, COPD and IPF. This therapeutic approach is particularly well suited for chronic use based on the route and frequency of delivery and importantly, the potential for disease modification. In recent clinical trials, the frequency of acute exacerbation has often been included as an endpoint, to help determine whether the investigational agent is impacting disease. Therefore the significance of acute exacerbations in driving disease, and their potential as a marker of disease activity and progression, has recently received much attention. There is also now a need to standardize the definition of an acute exacerbation in specific disease settings, particularly as this endpoint is increasingly used in clinical trials to also assess therapeutic efficacy. Moreover, specifically targeting exacerbations may offer a new therapeutic approach for several chronic respiratory diseases.
Collapse
Affiliation(s)
| | - Chris Grainge
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
20
|
Foronjy RF, Salathe MA, Dabo AJ, Baumlin N, Cummins N, Eden E, Geraghty P. TLR9 expression is required for the development of cigarette smoke-induced emphysema in mice. Am J Physiol Lung Cell Mol Physiol 2016; 311:L154-66. [PMID: 27288485 PMCID: PMC4967186 DOI: 10.1152/ajplung.00073.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/04/2016] [Indexed: 11/22/2022] Open
Abstract
The expression of Toll-like receptor (TLR)-9, a pathogen recognition receptor that recognizes unmethylated CpG sequences in microbial DNA molecules, is linked to the pathogenesis of several lung diseases. TLR9 expression and signaling was investigated in animal and cell models of chronic obstructive pulmonary disease (COPD). We observed enhanced TLR9 expression in mouse lungs following exposure to cigarette smoke. Tlr9(-/-) mice were resistant to cigarette smoke-induced loss of lung function as determined by mean linear intercept, total lung capacity, lung compliance, and tissue elastance analysis. Tlr9 expression also regulated smoke-mediated immune cell recruitment to the lung; apoptosis; expression of granulocyte-colony stimulating factor (G-CSF), the CXCL5 protein, and matrix metalloproteinase-2 (MMP-2); and protein tyrosine phosphatase 1B (PTP1B) activity in the lung. PTP1B, a phosphatase with anti-inflammatory abilities, was identified as binding to TLR9. In vivo delivery of a TLR9 agonist enhanced TLR9 binding to PTP1B, which inactivated PTP1B. Ptp1b(-/-) mice had elevated lung concentrations of G-CSF, CXCL5, and MMP-2, and tissue expression of type-1 interferon following TLR9 agonist administration, compared with wild-type mice. TLR9 responses were further determined in fully differentiated normal human bronchial epithelial (NHBE) cells isolated from nonsmoker, smoker, and COPD donors, and then cultured at air liquid interface. NHBE cells from smokers and patients with COPD expressed more TLR9 and secreted greater levels of G-CSF, IL-6, CXCL5, IL-1β, and MMP-2 upon TLR9 ligand stimulation compared with cells from nonsmoker donors. Although TLR9 combats infection, our results indicate that TLR9 induction can affect lung function by inactivating PTP1B and upregulating expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Matthias A Salathe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and
| | - Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and
| | - Neville Cummins
- Division of Pulmonary and Critical Care Medicine, Mount Sinai Roosevelt, Mount Sinai Health System, New York, New York
| | - Edward Eden
- Division of Pulmonary and Critical Care Medicine, Mount Sinai Roosevelt, Mount Sinai Health System, New York, New York
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York;
| |
Collapse
|