1
|
Majumder S, Chattopadhyay A, Wright JM, Guan P, Buja LM, Kwartler CS, Milewicz DM. Pericentrin deficiency in smooth muscle cells augments atherosclerosis through HSF1-driven cholesterol biosynthesis and PERK activation. JCI Insight 2023; 8:e173247. [PMID: 37937642 PMCID: PMC10721278 DOI: 10.1172/jci.insight.173247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is caused by biallelic loss-of-function variants in pericentrin (PCNT), and premature coronary artery disease (CAD) is a complication of the syndrome. Histopathology of coronary arteries from patients with MOPDII who died of CAD in their 20s showed extensive atherosclerosis. Hyperlipidemic mice with smooth muscle cell-specific (SMC-specific) Pcnt deficiency (PcntSMC-/-) exhibited significantly greater atherosclerotic plaque burden compared with similarly treated littermate controls despite similar serum lipid levels. Loss of PCNT in SMCs induced activation of heat shock factor 1 (HSF1) and consequently upregulated the expression and activity of HMG-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol biosynthesis. The increased cholesterol biosynthesis in PcntSMC-/- SMCs augmented PERK signaling and phenotypic modulation compared with control SMCs. Treatment with the HMGCR inhibitor, pravastatin, blocked the augmented SMC modulation and reduced plaque burden in hyperlipidemic PcntSMC-/- mice to that of control mice. These data support the notion that Pcnt deficiency activates cellular stress to increase SMC modulation and plaque burden, and targeting this pathway with statins in patients with MOPDII has the potential to reduce CAD in these individuals. The molecular mechanism uncovered further emphasizes SMC cytosolic stress and HSF1 activation as a pathway driving atherosclerotic plaque formation independently of cholesterol levels.
Collapse
Affiliation(s)
- Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Jamie M. Wright
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - L. Maximilian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| |
Collapse
|
2
|
Kaw K, Chattopadhyay A, Guan P, Chen J, Majumder S, Duan XY, Ma S, Zhang C, Kwartler CS, Milewicz DM. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells. Eur Heart J 2023; 44:2713-2726. [PMID: 37377039 PMCID: PMC10393072 DOI: 10.1093/eurheartj/ehad373] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.
Collapse
Affiliation(s)
- Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Xue-yan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuangtao Ma
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Medicine, Michigan State University, 1355 Bogue St, B226B Life Sciences, East Lansing, MI 48824, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
3
|
Gajewska KA, Lescesen H, Ramialison M, Wagstaff KM, Jans DA. Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response. Nat Commun 2021; 12:5904. [PMID: 34625540 PMCID: PMC8501021 DOI: 10.1038/s41467-021-26125-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The importin superfamily member Importin-13 is a bidirectional nuclear transporter. To delineate its functional roles, we performed transcriptomic analysis on wild-type and Importin-13-knockout mouse embryonic stem cells, revealing enrichment of differentially expressed genes involved in stress responses and apoptosis regulation. De novo promoter motif analysis on 277 Importin-13-dependent genes responsive to oxidative stress revealed an enrichment of motifs aligned to consensus sites for the transcription factors specificity protein 1, SP1, or Kruppel like factor 4, KLF4. Analysis of embryonic stem cells subjected to oxidative stress revealed that Importin-13-knockout cells were more resistant, with knockdown of SP1 or KLF4 helping protect wild-type embryonic stem cells against stress-induced death. Importin-13 was revealed to bind to SP1 and KLF4 in a cellular context, with a key role in oxidative stress-dependent nuclear export of both transcription factors. The results are integral to understanding stress biology, highlighting the importance of Importin-13 in the stress response.
Collapse
Affiliation(s)
- K. A. Gajewska
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - H. Lescesen
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - M. Ramialison
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute and Systems Biology Institute, Monash University, Clayton, VIC Australia
| | - K. M. Wagstaff
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - D. A. Jans
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| |
Collapse
|
4
|
Ostler JB, Thunuguntla P, Hendrickson BY, Jones C. Transactivation of Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 4 Enhancer by Glucocorticoid Receptor and Stress-Induced Transcription Factors Requires Overlapping Krüppel-Like Transcription Factor 4/Sp1 Binding Sites. J Virol 2021; 95:e01776-20. [PMID: 33208447 PMCID: PMC7851558 DOI: 10.1128/jvi.01776-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) lytic cycle viral gene expression is silenced; consequently, lifelong latency in neurons is established. Certain external stimuli that trigger reactivation from latency also activate the glucocorticoid receptor (GR). The synthetic corticosteroid dexamethasone, but not a GR-specific antagonist, increases the frequency of explant-induced reactivation from latency and stimulates productive infection. Furthermore, dexamethasone increases expression of cellular transcription factors in trigeminal ganglionic neurons: for example, SLUG and three Krüppel-like transcription factor (KLF) family members, KLF4, KLF15, and promyelocytic leukemia zinc finger protein (PLZF). Consequently, we hypothesized that stress-induced transcription factors stimulate expression of ICP4, a viral transcriptional regulator required for productive infection. New studies demonstrated that GR and KLF4, PLZF, or SLUG cooperatively transactivate the ICP4 enhancer upstream of a minimal promoter in monkey kidney cells (Vero) and mouse neuroblastoma cells (Neuro-2A). Strikingly, mutagenesis of two KLF4/Sp1 binding sites reduced GR- plus KLF4-, PLZF-, or SLUG-mediated transactivation to basal levels. A consensus enhancer (E)-Box adjacent to a KLF4/Sp1 binding site was also required for GR- and SLUG-, but not KLF family member-, mediated transactivation of the ICP4 promoter. Chromatin immunoprecipitation studies (ChIP) revealed GR and stress-induced transcription factors occupy ICP4 enhancer sequences. Conversely, specific binding was generally reduced in the KLF4/Sp1 mutant. Furthermore, GR and SLUG occupancy of ICP4 enhancer sequences was reduced in the E-Box mutant. Based on these studies, we suggest stressful stimuli can trigger productive infection because GR and specific stress-induced transcription factors activate ICP4 expression.IMPORTANCE Certain stressful stimuli activate the glucocorticoid receptor (GR) and increase the incidence of herpes simplex virus 1 (HSV-1) reactivation from latency. For example, a corticosteroid antagonist impairs productive infection and virus shedding following explant of trigeminal ganglia from latently infected mice. Infected cell protein 4 (ICP4) is the only immediate early viral transcriptional regulator required for productive infection, suggesting stressful stimuli stimulate ICP4 expression. New studies revealed GR and stress-induced transcription factors identified during reactivation from latency, SLUG and three Krüppel-like transcription factor family members (KLF4, KLF15, and promyelocytic leukemia zinc finger protein), cooperatively transactivate the ICP4 enhancer. Two KLF4 consensus binding sites were crucial for cooperative transactivation of the ICP4 enhancer. A consensus enhancer-box also mediated cooperative transactivation of the ICP4 enhancer by GR and SLUG. The ability of GR and stress-induced transcription factors to transactivate ICP4 enhancer activity is predicted to trigger productive infection following stressful stimuli.
Collapse
Affiliation(s)
- Jeffery B Ostler
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Prasanth Thunuguntla
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Bailey Y Hendrickson
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Wang K, Zhou W, Cai Q, Cheng J, Cai R, Xing R. SUMOylation of KLF4 promotes IL-4 induced macrophage M2 polarization. Cell Cycle 2017; 16:374-381. [PMID: 28059602 DOI: 10.1080/15384101.2016.1269045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages, in response to different environmental cues, undergo the classical polarization (M1 macrophages) as well as the alternative polarization (M2 macrophages) that involve the functions of stimulus-specific transcription factors. Kruppel-like factor 4 (KLF4), a member of a subfamily of the zinc-finger class of DNA-binding transcription factors, plays as a critical regulator of macrophage polarization. KLF4 has been reported as a SUMOylated protein. In this study, we showed that SUMOylation of KLF4, is induced by IL-4 treatment in macrophages. IL4-induced KLF4 SUMOylation promotes RAW264.7 cells and bone marrow derived macrophages (BMDMs) to polarize into M2 subset. Thus, we identified an important post-translational modification (PTM), SUMOylation, plays a crucial role in regulating KLF4 activity during IL-4 induced macrophage M2 polarization. SUMOylation of KLF4 can be a potential therapeutic target in the resolution of inflammation.
Collapse
Affiliation(s)
- Kezhou Wang
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China.,b Department of Pathophysiology , Dalian Medical University , Dalian , China
| | - Wei Zhou
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qi Cai
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China.,c Department of Clinical Laboratory , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jinke Cheng
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Rong Cai
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Rong Xing
- b Department of Pathophysiology , Dalian Medical University , Dalian , China
| |
Collapse
|
6
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
7
|
Farrugia MK, Vanderbilt DB, Salkeni MA, Ruppert JM. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Res 2016; 76:1677-82. [PMID: 26964625 PMCID: PMC4873413 DOI: 10.1158/0008-5472.can-15-1806] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022]
Abstract
Tumor cells inherit from their normal precursors an extensive stress response machinery that is critical for survival in response to challenges including oxidative stress, wounding, and shear stress. Kruppel-like transcription factors, including KLF4 and KLF5, are rarely affected by genetic alteration during tumorigenesis, but compose key components of the stress response machinery in normal and tumor cells and interact with critical survival pathways, including RAS, p53, survivin, and the BCL2 family of cell death regulators. Within tumor cells, KLF4 and KLF5 play key roles in tumor cell fate, regulating cell proliferation, cell survival, and the tumor-initiating properties of cancer stem-like cells. These factors can be preferentially expressed in embryonic stem cells or cancer stem-like cells. Indeed, specific KLFs represent key components of a cross-regulating pluripotency network in embryonic stem cells and induce pluripotency when coexpressed in adult cells with other Yamanaka factors. Suggesting analogies between this pluripotency network and the cancer cell adaptive reprogramming that occurs in response to targeted therapy, recent studies link KLF4 and KLF5 to adaptive prosurvival signaling responses induced by HER2-targeted therapy. We review literature supporting KLFs as shared mechanisms in stress adaptation and cellular reprogramming and address the therapeutic implications. Cancer Res; 76(7); 1677-82. ©2016 AACR.
Collapse
Affiliation(s)
- Mark K Farrugia
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Daniel B Vanderbilt
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Mohamad A Salkeni
- The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia. Department of Medicine, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia. The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
8
|
Park CS, Shen Y, Lewis A, Lacorazza HD. Role of the reprogramming factor KLF4 in blood formation. J Leukoc Biol 2016; 99:673-85. [DOI: 10.1189/jlb.1ru1215-539r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
|
9
|
Cheng CY, Tu WL, Wang SH, Tang PC, Chen CF, Chen HH, Lee YP, Chen SE, Huang SY. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress. PLoS One 2015; 10:e0143418. [PMID: 26587838 PMCID: PMC4654548 DOI: 10.1371/journal.pone.0143418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.
Collapse
Affiliation(s)
- Chuen-Yu Cheng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Lin Tu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Han Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hsin Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| |
Collapse
|
10
|
Sun L, Lamont SJ, Cooksey AM, McCarthy F, Tudor CO, Vijay-Shanker K, DeRita RM, Rothschild M, Ashwell C, Persia ME, Schmidt CJ. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 2015; 20:939-50. [PMID: 26238561 PMCID: PMC4595433 DOI: 10.1007/s12192-015-0621-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
Heat stress triggers an evolutionarily conserved set of responses in cells. The transcriptome responds to hyperthermia by altering expression of genes to adapt the cell or organism to survive the heat challenge. RNA-seq technology allows rapid identification of environmentally responsive genes on a large scale. In this study, we have used RNA-seq to identify heat stress responsive genes in the chicken male white leghorn hepatocellular (LMH) cell line. The transcripts of 812 genes were responsive to heat stress (p < 0.01) with 235 genes upregulated and 577 downregulated following 2.5 h of heat stress. Among the upregulated were genes whose products function as chaperones, along with genes affecting collagen synthesis and deposition, transcription factors, chromatin remodelers, and genes modulating the WNT and TGF-beta pathways. Predominant among the downregulated genes were ones that affect DNA replication and repair along with chromosomal segregation. Many of the genes identified in this study have not been previously implicated in the heat stress response. These data extend our understanding of the transcriptome response to heat stress with many of the identified biological processes and pathways likely to function in adapting cells and organisms to hyperthermic stress. Furthermore, this study should provide important insight to future efforts attempting to improve species abilities to withstand heat stress through genome-wide association studies and breeding.
Collapse
Affiliation(s)
- Liang Sun
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Fiona McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Catalina O Tudor
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rachael M DeRita
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chris Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael E Persia
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
11
|
Kruppel-like factor 4 signals through microRNA-206 to promote tumor initiation and cell survival. Oncogenesis 2015; 4:e155. [PMID: 26053033 PMCID: PMC4753526 DOI: 10.1038/oncsis.2015.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor cell heterogeneity poses a major hurdle in the treatment of cancer. Mammary cancer stem-like cells (MaCSCs), or tumor-initiating cells, are highly tumorigenic sub-populations that have the potential to self-renew and to differentiate. These cells are clinically important, as they display therapeutic resistance and may contribute to treatment failure and recurrence, but the signaling axes relevant to the tumorigenic phenotype are poorly defined. The zinc-finger transcription factor Kruppel-like factor 4 (KLF4) is a pluripotency mediator that is enriched in MaCSCs. KLF4 promotes RAS-extracellular signal-regulated kinase pathway activity and tumor cell survival in triple-negative breast cancer (TNBC) cells. In this study, we found that both KLF4 and a downstream effector, microRNA-206 (miR-206), are selectively enriched in the MaCSC fractions of cultured human TNBC cell lines, as well as in the aldehyde dehydrogenase-high MaCSC sub-population of cells derived from xenografted human mammary carcinomas. The suppression of endogenous KLF4 or miR-206 activities abrogated cell survival and in vivo tumor initiation, despite having only subtle effects on MaCSC abundance. Using a combinatorial approach that included in silico as well as loss- and gain-of-function in vitro assays, we identified miR-206-mediated repression of the pro-apoptotic molecules programmed cell death 4 (PDCD4) and connexin 43 (CX43/GJA1). Depletion of either of these two miR-206-regulated transcripts promoted resistance to anoikis, a prominent feature of CSCs, but did not consistently alter MaCSC abundance. Consistent with increased levels of miR-206 in MaCSCs, the expression of both PDCD4 and CX43 was suppressed in these cells relative to control cells. These results identify miR-206 as an effector of KLF4-mediated prosurvival signaling in MaCSCs through repression of PDCD4 and CX43. Consequently, our study suggests that a pluripotency factor exerts prosurvival signaling in MaCSCs, and that antagonism of KLF4-miR-206 signaling may selectively target the MaCSC niche in TNBC.
Collapse
|
12
|
MicroRNAs 206 and 21 cooperate to promote RAS-extracellular signal-regulated kinase signaling by suppressing the translation of RASA1 and SPRED1. Mol Cell Biol 2014; 34:4143-64. [PMID: 25202123 DOI: 10.1128/mcb.00480-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the low prevalence of activating point mutation of RAS or RAF genes, the RAS-extracellular signal-regulated kinase (ERK) pathway is implicated in breast cancer pathogenesis. Indeed, in triple-negative breast cancer (TNBC), there is recurrent genetic alteration of pathway components. Using short hairpin RNA (shRNA) methods, we observed that the zinc finger transcription factor Krüppel-like factor 4 (KLF4) can promote RAS-ERK signaling in TNBC cells. Endogenous KLF4 bound to the promoter regions and promoted the expression of two microRNAs (miRs), miR-206 and miR-21 (i.e., miR-206/21). Antisense-mediated knockdown (anti-miR) revealed that miR-206/21 coordinately promote RAS-ERK signaling and the corresponding cell phenotypes by inhibiting translation of the pathway suppressors RASA1 and SPRED1. In TNBC cells, including cells with mutation of RAS, the suppression of either RASA1 or SPRED1 increased the levels of GTP-bound, wild-type RAS and activated ERK 1/2. Unlike the control cells, treatment of RASA1- or SPRED1-suppressed cells with anti-miR-206/21 had little or no impact on the level of activated ERK 1/2 or on cell proliferation and failed to suppress tumor initiation. These results identify RASA1 and SPRED1 mRNAs as latent RAS-ERK pathway suppressors that can be upregulated in tumor cells by anti-miR treatment. Consequently, KLF4-regulated miRs are important for the maintenance of RAS-ERK pathway activity in TNBC cells.
Collapse
|
13
|
Leikauf GD, Pope-Varsalona H, Concel VJ, Liu P, Bein K, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Di YPP, Li Q, Hu Z, Vuga LJ, Medvedovic M, Kaminski N, You M, Alexander DC, McDunn JE, Prows DR, Knoell DL, Fabisiak JP. Integrative assessment of chlorine-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2012; 47:234-44. [PMID: 22447970 DOI: 10.1165/rcmb.2012-0026oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Yang T, Liu Y, Zhang H, Wang K, Liu M, Chen G, Xiao X. Krüppel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages. FEBS Lett 2012; 586:834-40. [PMID: 22449968 DOI: 10.1016/j.febslet.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022]
Abstract
RAW264.7 macrophages and human peripheral blood mononuclear cells were treated with LPS to determine the expression of KLF4 and release of IL-1β. A full-length cDNA or short interference RNA of KLF4 was transfected into RAW264.7 macrophages; the expression and release of IL-1β were analyzed. The transcription and DNA binding activities of KLF4 to the IL-1β promoter were detected further. The results showed LPS treatment resulted in the increase of KLF4 level and IL-1β release; KLF4 overexpression decreased the expression of IL-1β, while KLF4 inhibition increased the expression of IL-1β; overexpression of KLF4 promoted the DNA binding activity of KLF4 to the IL-1β promoter and attenuated the transcription of IL-1β promoter, indicating an important role of KLF4 in regulating expression of IL-1β.
Collapse
Affiliation(s)
- Junwen Liu
- Laboratory of Shock, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters. J Virol 2011; 86:2459-73. [PMID: 22190728 DOI: 10.1128/jvi.06143-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.
Collapse
|
16
|
Molecular signature of the immune and tissue response to non-coding plasmid DNA in skeletal muscle after electrotransfer. Gene Ther 2011; 19:1177-86. [DOI: 10.1038/gt.2011.198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Sur I. Krüppel-like factors 4 and 5: unity in diversity. Curr Genomics 2011; 10:594-603. [PMID: 20514221 PMCID: PMC2817890 DOI: 10.2174/138920209789503932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/26/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 belong to a family of zinc finger-containing transcription factors that share homology with the Drosophila gene Krüppel. They regulate proliferation and differentiation of a wide variety of cells and have been linked to tumorigenesis. Their most striking role so far has turned out to be their ability to reprogram/ maintain embryonic stem cell fate. In this review, the data available in the field regarding their role in proliferation and differentiation and their coupling to carcinogenesis are summarized. The emphasis is on their context dependence and how they might be able to regulate diverse transcriptional outputs from the genome.
Collapse
Affiliation(s)
- Inderpreet Sur
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 57 Huddinge, Sweden
| |
Collapse
|
18
|
Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clément K, Jain MK. Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest 2011; 121:2736-49. [PMID: 21670502 DOI: 10.1172/jci45444] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/21/2011] [Indexed: 12/20/2022] Open
Abstract
Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied - the former are considered proinflammatory and the latter antiinflammatory - the determinants of their speciation are incompletely understood. Here we report our studies that identify Krüppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.
Collapse
Affiliation(s)
- Xudong Liao
- Case Cardiovascular Research Institute, Department of Medicine, Harrington-McLaughlin Heart and Vascular Institute,University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Boyer A, Lapointe É, Zheng X, Cowan RG, Li H, Quirk SM, DeMayo FJ, Richards JS, Boerboom D. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J 2010; 24:3010-25. [PMID: 20371632 PMCID: PMC2909279 DOI: 10.1096/fj.09-145789] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022]
Abstract
To study the role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2(tm3(cre)Bhr) strain to target deletion of Wnt4 to granulosa cells. Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty but had only 25.2% of the normal number of healthy antral follicles. Some Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RT-PCR analyses of Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1, and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. Decreased serum progesterone levels were found in immature, gonadotropin-treated Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice (P<0.05). WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 regulates additional genes involved in late follicle development via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development and may act by regulating granulosa cell functions including steroidogenesis.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Évelyne Lapointe
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Xiaofeng Zheng
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Robert G. Cowan
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Huaiguang Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Susan M. Quirk
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Derek Boerboom
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| |
Collapse
|
20
|
Estienne M, Claustre J, Clain-Gardechaux G, Paquet A, Taché Y, Fioramonti J, Plaisancié P. Maternal deprivation alters epithelial secretory cell lineages in rat duodenum: role of CRF-related peptides. Gut 2010; 59:744-51. [PMID: 20551459 PMCID: PMC3295843 DOI: 10.1136/gut.2009.190728] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chronic psychological stress is associated with development of intestinal barrier dysfunction and impairs host defence mechanisms. The intestinal epithelium, consisting of enterocytes, endocrine cells, goblet cells and Paneth cells, is an important component of this barrier. In the present study, the impact of maternal deprivation (MD) on secretory lineages of duodenal epithelium and the involvement of the peripheral corticotropin-releasing factor (CRF) pathway were investigated. METHODS Rat pups were deprived of their dam for 3 h/day (days 5-20). Non-deprived pups served as controls. On days 8, 13, 20, 24, 34, 44 and 84, duodenal tissues were collected for quantitative real-time PCR and immunohistochemistry studies. RESULTS MD induced a sustained decrease in the number of Paneth and goblet cells but hyperplasia of endocrine cells. These alterations were associated with a duodenal increase of CRF, urocortin 2 and CRF receptor subtype 2 (CRFR(2)) mRNA, whereas CRFR(1) expression was decreased. The effects of MD on intestinal epithelium were inhibited by the CRFR(1)/R(2) antagonist astressin injected daily before MD. Studies using specific receptor antagonists in rats subjected to MD revealed that CRFR(1) was involved in the hyperplasia of endocrine cells and CRFR(2) in the depletion of Paneth cells. Conversely, daily injection of CRF and of the CRFR(2) agonist urocortin 2 in control rats resulted in changes in epithelial differentiation similar to MD. CONCLUSIONS The activation of CRFR(1) and CRFR(2) induced by MD markedly altered the quantitative distribution of secretory cells of the intestinal epithelium. These alterations, in particular the depletion of Paneth and goblet cells, may create conditions leading to the development of an epithelial barrier defect.
Collapse
Affiliation(s)
- M Estienne
- INRA, UMR1054, Neurogastroenterology and Nutrition Unit, Toulouse, France,INSERM, UMR865, IFR62, Université Claude Bernard-Lyon 1, Lyon, France
| | - J Claustre
- INSERM, UMR865, IFR62, Université Claude Bernard-Lyon 1, Lyon, France
| | | | - A Paquet
- INRA, UMR1054, Neurogastroenterology and Nutrition Unit, Toulouse, France,INSERM, UMR865, IFR62, Université Claude Bernard-Lyon 1, Lyon, France
| | - Y Taché
- Digestive Diseases Research Center and Center for Neurobiological Stress, Department of Medicine and Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - J Fioramonti
- INRA, UMR1054, Neurogastroenterology and Nutrition Unit, Toulouse, France
| | - P Plaisancié
- INRA, UMR1054, Neurogastroenterology and Nutrition Unit, Toulouse, France,INSERM, UMR865, IFR62, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
21
|
Liu Y, Liu M, Liu J, Zhang H, Tu Z, Xiao X. KLF4 is a novel regulator of the constitutively expressed HSP90. Cell Stress Chaperones 2010; 15:211-7. [PMID: 19669938 PMCID: PMC2866988 DOI: 10.1007/s12192-009-0135-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/29/2009] [Accepted: 07/14/2009] [Indexed: 02/04/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a zinc finger-containing transcription factor with diverse regulatory functions in cell growth, proliferation, and differentiation. But little is known about the regulation of KLF4 on the expression of HSP90 (HSP84 and HSP86). In the current study, overexpression of KLF4 was firstly identified to promote the basal expression of HSP90 (HSP84 and HSP86) but not the inducible expression in the C2C12 cells and RAW264.7 cells. Conversely, KLF4 inhibition by antisense oligonucleotides markedly decreased the constitutive expression of HSP90 (HSP84 and HSP86). Here, we also presented data that overexpression of KLF4 resulted in enhanced promoter activities of HSP84. Consistently, KLF4 bind to the KLF4 binding sites in the promoter regions of HSP84 directly. Together, these findings support a role for KLF4 as a novel regulator of the constitutive expression of HSP90.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Meidong Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Junwen Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Huali Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Zizhi Tu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
22
|
Godmann M, Kosan C, Behr R. Krüppel-like factor 4 is widely expressed in the mouse male and female reproductive tract and responds as an immediate early gene to activation of the protein kinase A in TM4 Sertoli cells. Reproduction 2010; 139:771-82. [PMID: 20051481 DOI: 10.1530/rep-09-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor critically involved in cell proliferation, differentiation, and carcinogenesis. Recently, KLF4 has also been used for the generation of induced pluripotent stem cells. In this study, we analyzed Klf4 expression in different mouse tissues using northern blot analysis and immunohistochemistry. Focusing on the male and female reproductive tract, we showed for the first time that KLF4 is expressed in the epithelia of the murine uterus and the vagina. In the male reproductive tract, we detected KLF4 in the epithelia of the epididymis, ductus deferens, coagulating gland, and the penis. As KLF4 is strongly inducible by FSH signaling in Sertoli cells and as this transcription factor is also involved in Sertoli cell development, we employed the mouse Sertoli cell line TM4 as a model system to investigate i) the induction kinetics of Klf4 upon activation of the cAMP/protein kinase A pathway by forskolin and ii) the effects of Klf4 induction on TM4 cell cycle progression. Interestingly, Klf4 mRNA and protein were rapidly but transiently induced, reaching peak levels after 90-120 min and declining to basal levels within 4 h. Compared with the inducible cAMP early repressor, an immediate early response gene, the induction kinetics of Klf4 is much faster. In conclusion, Klf4 is an immediate early gene in TM4 cells and its expression in several epithelia of the male and female reproductive tract suggests an important role of Klf4 in mouse reproductive functions.
Collapse
Affiliation(s)
- M Godmann
- Institute of Anatomy, Developmental Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | |
Collapse
|
23
|
Expression and activation of the reprogramming transcription factors. Biochem Biophys Res Commun 2009; 390:1081-6. [DOI: 10.1016/j.bbrc.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
|
24
|
Huesca M, Lock LS, Khine AA, Viau S, Peralta R, Cukier IH, Jin H, Al-Qawasmeh RA, Lee Y, Wright J, Young A. A novel small molecule with potent anticancer activity inhibits cell growth by modulating intracellular labile zinc homeostasis. Mol Cancer Ther 2009; 8:2586-96. [PMID: 19755513 DOI: 10.1158/1535-7163.mct-08-1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ML-133 is a novel small molecule with potent antiproliferative activity, as shown in cancer cell lines and in a human colon tumor xenograft model. ML-133 reduces the concentration of intracellular labile zinc in HT-29 colon cancer cells, leading to induction of the Krüppel-like factor 4 transcription factor. Krüppel-like factor 4 displaces the positive regulator SP1 from the cyclin D1 promoter, thereby negatively regulating the expression of cyclin D1 and promoting the G(1)-S phase arrest of cell proliferation. The antiproliferative and antitumor activity of ML-133 described in the present study suggests modulation of intracellular zinc homeostasis as a potential strategy for the treatment of several cancer types, and ML-133 represents a promising new class of antitumor agents that deserves further development.
Collapse
Affiliation(s)
- Mario Huesca
- Lorus Therapeutics Inc., Toronto, Ontario M9W 4Z7 Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dijkmans T, van Hooijdonk L, Schouten T, Kamphorst J, Fitzsimons C, Vreugdenhil E. Identification of new Nerve Growth Factor-responsive immediate-early genes. Brain Res 2009; 1249:19-33. [DOI: 10.1016/j.brainres.2008.10.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/16/2008] [Accepted: 10/11/2008] [Indexed: 12/16/2022]
|
26
|
KLF4 promotes the expression, translocation, and releas eof HMGB1 in RAW264.7 macrophages in response to LPS. Shock 2008; 30:260-6. [PMID: 18197146 DOI: 10.1097/shk.0b013e318162bef7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor with diverse regulatory functions in cell growth, proliferation, differentiation, and embryogenesis. In our previous study, we found that KLF4 mRNA was up-regulated more than 10-fold in adult mice lung tissues after endotoxin stimuli, and that KLF4 can regulate the expression of IL -10, an early inflammatory mediator. To determine whether KLF4 influences the expression and release of high-mobility group box 1 (HMGB1), an important late inflammatory mediator, which contains two potential KLF4-binding elements in its promoter, pcDNA3.1-KLF4 expression plasmid or KLF4 antisense oligonucleotide was transfected into RAW264.7 macrophages, the expression and release of HMGB1 were examined by reverse-transcriptase-polymerase chain reaction and Western blot, respectively. Electrophoretic mobility shift assay was performed to detect the binding activity of KLF4 to the HMGB1 promoter. The results showed that KLF4 overexpression led to an increased expression of HMGB1 in both cytoplasm and nucleus, whereas KLF4 deficiency led to a decrease in HMGB1. Moreover, compared with the control group, the release of HMGB1 was increased after KLF4 overexpression after LPS treatment, whereas the release of HMGB1 was decreased after KLF4 deficiency in response to LPS. Electrophoretic mobility shift assay results showed the binding of KLF4 to the oligonucleotides designed according to the HMGB1 promoter, and the binding activity was increased in response to LPS stimulation. These results indicate that KLF4 plays an important role in regulating the expression of HMGB1 in normal condition, as well as the translocation and release of HMGB1 in response to LPS.
Collapse
|
27
|
Liu Y, Zhao J, Liu J, Zhang H, Liu M, Xiao X. Upregulation of the constitutively expressed HSC70 by KLF4. Cell Stress Chaperones 2008; 13:337-45. [PMID: 18379898 PMCID: PMC2673948 DOI: 10.1007/s12192-008-0033-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that is abundantly expressed in various organisms from bacteria to mammals. It has been demonstrated that KLF4 regulates the expression of a wide range of genes. Analysis of KLF4 target genes reveals its diverse regulatory functions in cell growth, proliferation, differentiation, embryogenesis, and inflammation. However, the regulation of the expression of inducible heat shock protein 70 (HSP72) and heat shock cognate 70 (HSP73) by KLF4 is not defined. In our previous study, a complementary deoxyribonucleic acid microarray assay showed that KLF4 overexpression led to dramatic upregulation of HSP73 messenger ribonucleic acid (mRNA) in murine C2C12 myoblast cells, suggesting that HSP73 is a potential target gene regulated by KLF4. The effect of KLF4 on the expression of HSP72 and HSP73 was further examined by reverse transcriptase polymerase chain reaction and Western blot in KLF4-overexpressing or KLF4-deficient cells. The results showed the upregulation of the HSP73 constitutive expression by KLF4 overexpression in both C2C12 cells and murine RAW264.7 macrophages; in response to heat stress, however, few changes were observed in the levels of HSP73 by KLF4 overexpression. In addition, knockdown of endogenous KLF4 expression by morpholino antisense oligonucleotides significantly decreased both HSP73 mRNA and protein levels under normal conditions. Conversely, KLF4 had no effect on the expression of HSP72. Taken together, these findings suggest an important role for KLF4 as a novel regulator of the constitutive expression of HSP73.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008 People’s Republic of China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 People’s Republic of China
| | - Junwen Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008 People’s Republic of China
| | - Huali Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008 People’s Republic of China
| | - Meidong Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008 People’s Republic of China
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008 People’s Republic of China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
28
|
Liu S, Zhang H, Zhu L, Zhao L, Dong Y. Kruppel-like factor 4 is a novel mediator of selenium in growth inhibition. Mol Cancer Res 2008; 6:306-13. [PMID: 18314491 DOI: 10.1158/1541-7786.mcr-07-0159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A previous prevention trial showed that selenium supplementation was effective in reducing (by 50%) the incidence of prostate cancer. Selenium has been reported to inhibit the growth of prostate cancer cells in vitro. Multiple mechanisms are likely to be operative in the underlying effect of selenium. Here, we report that Krüppel-like factor 4 (KLF4), a transcription factor of the KLF family, is an important target of selenium. We found that selenium up-regulates KLF4 expression and increases the DNA-binding activity of KLF4 in both the androgen-dependent LNCaP and the androgen-independent PC-3 human prostate cancer cells. The increase of KLF4 mRNA is accounted for primarily by enhanced transcription, although the contribution of a slight abatement in mRNA degradation cannot be ruled out. KLF4 knockdown using short interference RNA significantly weakens the effects of selenium on DNA synthesis inhibition, apoptosis induction, and the expression of three KLF4 target genes, cyclin D1, p21/WAF1, and p27/Kip1. In addition, the overexpression of KLF4 not only leads to an induction of apoptosis in the control cells, but also enhances the DNA synthesis-suppressive and-proapoptotic activities of selenium. Taken together, our results suggest that KLF4 plays a key role in mediating the growth-inhibitory effect of selenium in prostate cancer cells.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
29
|
Liu J, Zhang H, Liu Y, Wang K, Feng Y, Liu M, Xiao X. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages. Biochem Biophys Res Commun 2007; 362:575-81. [PMID: 17719562 DOI: 10.1016/j.bbrc.2007.07.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/29/2022]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor. In the current study, RAW264.7 murine macrophages were treated with Escherichia coli lipopolysaccharide (LPS) to determine the expression of KLF4. A full-length cDNA or antisense oligonucleotides of KLF4 was transfected into RAW264.7 macrophages, and the expression and release of IL-10 were analyzed by RT-PCR and ELISA. The transcription and DNA binding activities of KLF4 to the IL-10 promoter were detected by the luciferase reporter and electrophoretic mobility shift assays. The results showed that treatment of RAW264.7 macrophages with LPS resulted in a dose- and time-dependent increase in KLF4 protein levels; KLF4 overexpression increased the expression of IL-10, while KLF4 inhibition decreased the expression of IL-10. The overexpression of KLF4 promoted the transcription and DNA binding activities of KLF4 to the IL-10 promoter. These results indicate that KLF4 plays an important role in regulating the expression of IL-10.
Collapse
Affiliation(s)
- Junwen Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|