1
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
2
|
Marwarha G, Claycombe-Larson K, Schommer J, Ghribi O. Maternal low-protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring. J Nutr Biochem 2017; 45:54-66. [PMID: 28432877 PMCID: PMC5466833 DOI: 10.1016/j.jnutbio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 01/15/2023]
Abstract
Prenatal exposure to a maternal low-protein (LP) diet has been known to cause cognitive impairment, learning and memory deficits. However, the underlying mechanisms have not been identified. Herein, we demonstrate that a maternal LP diet causes, in the brains of the neonatal rat offspring, an attenuation in the basal expression of the brain-derived neurotrophic factor (BDNF), a neurotrophin indispensable for learning and memory. Female rats were fed either a 20% normal protein (NP) diet or an 8% LP 3 weeks before breeding and during the gestation period. Maternal LP diet caused a significant reduction in the Bdnf expression in the brains of the neonatal rats. We further found that the maternal LP diet reduced the activation of the cAMP/protein kinase A/cAMP response element binding protein (CREB) signaling pathway. This reduction was associated with a significant decrease in CREB binding to the Bdnf promoters. We also show that prenatal exposure to the maternal LP diet results in an inactive or repressed exon I and exon IV promoter of the Bdnf gene in the brain, as evidenced by fluxes in signatory hallmarks in the enrichment of acetylated and trimethylated histones in the nucleosomes that envelop the exon I and exon IV promoters, causing the Bdnf gene to be refractory to transactivation. Our study is the first to determine the impact of a maternal LP diet on the basal expression of BDNF in the brains of the neonatal rats exposed prenatally to an LP diet.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Kate Claycombe-Larson
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Jared Schommer
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
3
|
Thorsell A, Nätt D. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw012. [PMID: 29492293 PMCID: PMC5804527 DOI: 10.1093/eep/dvw012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/15/2016] [Accepted: 06/26/2016] [Indexed: 06/08/2023]
Abstract
It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.
Collapse
Affiliation(s)
- Annika Thorsell
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, SE 581 83, Linköping, Sweden
| | - Daniel Nätt
- Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience, Linköping University, SE 581 83, Linköping, Sweden
| |
Collapse
|
4
|
Abstract
Methionine and folate are the key components of one carbon metabolism, providing the methyl groups for numerous methyl transferase reactions via the ubiquitous methyl donor, s-adenosyl methionine. Methionine metabolism is responsive to nutrient intake, is regulated by several hormones and requires a number of vitamins (B12, pyridoxine, riboflavin) as co-factors. The critical relationship between perturbations in the mother's methionine metabolism and its impact on fetal growth and development is now becoming evident. The relation of folate intake to fetal teratogenesis has been known for some time. Studies in human pregnancy show a continuous decrease in plasma homocysteine, and an increase in plasma choline concentrations with advancing gestation. A higher rate of transsulfuration of methionine in early gestation and of transmethylation in the 3rd trimester was seen in healthy pregnant women. How these processes are impacted by nutritional, hormonal and other influences in human pregnancy and their effect on fetal growth has not been examined. Isocaloric protein restriction in pregnant rats, resulted in fetal growth restriction and metabolic reprogramming. Isocaloric protein restriction in the non-pregnant rat, resulted in differential expression of a number of genes in the liver, a 50% increase in whole body serine biosynthesis and high rate of transmethylation, suggesting high methylation demands. These responses were associated with a significant decrease in intracellular taurine levels in the liver suggesting a role of cellular osmolarity in the observed metabolic responses. These unique changes in methionine and one carbon metabolism in response to physiological, nutritional and hormonal influences make these processes critical for cellular and organ function and growth.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
5
|
Pre- and/or postnatal protein restriction developmentally programs affect and risk assessment behaviors in adult male rats. Behav Brain Res 2012; 227:324-9. [DOI: 10.1016/j.bbr.2011.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/26/2011] [Accepted: 06/09/2011] [Indexed: 11/20/2022]
|
6
|
Tanaka Y, Kadokawa H. Providing a diet containing only maintenance levels of energy and protein during the latter stages of pregnancy resulted in a prolonged delivery time during parturition in rats. Reprod Fertil Dev 2012; 24:317-22. [PMID: 22281077 DOI: 10.1071/rd11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022] Open
Abstract
In mammals, a prolonged delivery time during parturition is dangerous for both mother and fetus, although the mechanisms that prolong delivery are unclear. To investigate whether nutrition affects delivery time, we administered two feeds containing maintenance (L-feed) or higher (H-feed) levels of energy and protein at different points during the latter half of pregnancy and compared the effects of the various treatments on delivery time in rats. After the rats had been maintained on the L-feed and then copulated on pro-oestrus (Day 0), pregnant females were randomly allocated to one of three groups: (1) the no-improvement group, which was fed L-feed throughout gestation; (2) the early group, which was fed L-feed until Day 11 of gestation and then switched to H-feed; and (3) the late group, which was fed L-feed until Day 16 of gestation and then switched to H-feed. There was no significant difference in the number of pups among the three groups. However, delivery time was significantly longer in the no-improvement group (73.7±5.2 min) than the early (46.9±5.6 min) and late (55.4±5.5 min) groups. Consuming a maintenance diet during the latter half of pregnancy resulted in a prolonged delivery time.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Veterinary Medicine, Faculty of Agricultural Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | |
Collapse
|
7
|
Reyes‐Castro L, Rodriguez J, Charco R, Bautista C, Larrea F, Nathanielsz P, Zambrano E. Maternal protein restriction in the rat during pregnancy and/or lactation alters cognitive and anxiety behaviors of female offspring. Int J Dev Neurosci 2011; 30:39-45. [DOI: 10.1016/j.ijdevneu.2011.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 02/08/2023] Open
Affiliation(s)
- L.A. Reyes‐Castro
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City14000Mexico
| | - J.S. Rodriguez
- Center for Pregnancy and Newborn ResearchDepartment of ObstetricsUniversity of TexasHealth Science Center San AntonioSan AntonioTX78229USA
| | - R. Charco
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City14000Mexico
| | - C.J. Bautista
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City14000Mexico
| | - F. Larrea
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City14000Mexico
| | - P.W. Nathanielsz
- Center for Pregnancy and Newborn ResearchDepartment of ObstetricsUniversity of TexasHealth Science Center San AntonioSan AntonioTX78229USA
| | - E. Zambrano
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City14000Mexico
| |
Collapse
|
8
|
Vieau D, Sebaai N, Léonhardt M, Dutriez-Casteloot I, Molendi-Coste O, Laborie C, Breton C, Deloof S, Lesage J. HPA axis programming by maternal undernutrition in the male rat offspring. Psychoneuroendocrinology 2007; 32 Suppl 1:S16-20. [PMID: 17644270 DOI: 10.1016/j.psyneuen.2007.03.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/16/2007] [Accepted: 03/28/2007] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental studies have demonstrated that perinatal alterations such as maternal undernutrition are frequently associated with the onset of several chronic adult diseases. Although the physiological mechanisms involved in this "fetal programming" remain largely unknown, it has been shown that early exposure to undernutrition programs hypothalamic-pituitary-adrenal (HPA) axis throughout lifespan. However, the wide spectrum of experimental paradigms used (species, sex, age of the animals, and duration and severity of undernutrition exposure) has given rise to variable results that are difficult to interpret. To circumvent this problem, we used the same experimental protocol of maternal food restriction to study the effects of a severe maternal undernutrition on the HPA axis activity in the male rat offspring throughout the life, namely from fetal stage to adulthood. Mothers exposed to food restriction received 50% (FR50) of the daily intake of pregnant dams during the last week of gestation and lactation. In FR50 fetuses, HPA axis function was reduced and associated with a decreased placental 11beta-HSD2 activity and a greater transplacental transfer of glucocorticoids. At weaning, maternal food restriction reduced HPA axis activity in response to an ether inhalation stress. In young adults (4-month-old), only fine HPA axis alterations were observed, whereas in older ones (8-month-old), maternal undernutrition was associated with chronic hyperactivity of this neuroendocrine axis. Interestingly, excessive glucocorticoids production is observed in a growing number of pathologies such as metabolic, cognitive, immune and inflammatory diseases, suggesting that they could, at least in part, result from fetal undernutrition and thus have a neurodevelopmental origin.
Collapse
Affiliation(s)
- Didier Vieau
- Laboratory of Adaptative Neurosciences and Physiology, Perinatal Stress Unit, University of Lille1, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tardif S, Power M, Layne D, Smucny D, Ziegler T. Energy restriction initiated at different gestational ages has varying effects on maternal weight gain and pregnancy outcome in common marmoset monkeys (Callithrix jacchus). Br J Nutr 2007; 92:841-9. [PMID: 15533274 DOI: 10.1079/bjn20041269] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With relatively high fertility and short lifespan, marmoset monkeys (Callithrix jacchus) may become useful primate models of prenatal nutritional effects on birth condition and adult disease risk. The present study determined the effects of energy restriction to 75% of expected ad libitum consumption during mid- (day 66) or late (day 99) gestation on maternal weight, fetal growth and pregnancy outcomes in this species. Mid-restriction reliably induced the loss of pregnancy before term, at 92 d, on average. Of the late-restricted pregnancies, four of seven were normal term length while three were preterm deliveries, at 101, 117 and 132 d. Control females had a mean mid-pregnancy weight gain of 0·67 g/d while mid-restricted females lost −0·65 g/d, on average. Control pregnancies averaged a 1·06 g/d gain during late pregnancy, while energy-restricted females lost −0·67 g/d, on average. Restriction-related weight change was highly variable, ranging from +0·55 to −2·56 g/d for mid-restriction pregnancies and from +0·79 to −3·91 g/d for late-restriction pregnancies. For mid-restriction pregnancies, the number of restriction days was best explained by linear weight change and total weight loss while the number of restriction days in late pregnancy was best explained by linear weight change alone. In late-restriction pregnancies, smaller females had higher daily weight losses. Restrictions did not induce litter-size reduction or growth restriction in those infants that were delivered at term but the size of aborted fetuses suggested that at least some pregnancies lost preterm may have involved impaired intra-uterine growth.
Collapse
Affiliation(s)
- Suzette Tardif
- Southwest National Primate Research Center, San Antonio, TX 78245-0549, USA.
| | | | | | | | | |
Collapse
|
10
|
Lesage J, Sebaai N, Leonhardt M, Dutriez-Casteloot I, Breton C, Deloof S, Vieau D. Perinatal maternal undernutrition programs the offspring hypothalamo-pituitary-adrenal (HPA) axis. Stress 2006; 9:183-98. [PMID: 17175504 DOI: 10.1080/10253890601056192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is now compelling evidence, coming both from animal and human studies that an early exposure to undernutrition is frequently associated with low birth weight and programs HPA axis alterations throughout the lifespan. Although animal models have reported conflicting findings arising from differences in experimental paradigms and species, they have clearly demonstrated that such programming not only affects the brain but also the pituitary corticotrophs and the adrenal cortex. In fetuses, maternal undernutrition reduces HPA axis function and implicates a reduction of placental 11beta-HSD2 activity and a greater transplacental transfer of glucocorticoids (GRs). In young adults, usually only fine HPA axis alterations were observed, whereas in older ones, maternal undernutrition was frequently associated with chronic hyperactivity of this neuroendocrine axis. In humans, evidence of HPA axis dysregulation in people who were small at birth has recently emerged. Thus, we suggest that such alterations in adults may be implicated in the aetiology of several disorders related to the metabolic syndrome as well as to immune or inflammatory diseases. To reverse such programming, recent experimental reports have shown that postnatal environmental interventions, dietary modifications and the use of agents modulating the epigenomic state could partly restore physiological functions and thus open new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Lesage
- Perinatal Stress Unit, Department of Adaptative Neurosciences and Physiology, University of Lille1, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
He J, Varma A, Weissfeld LA, Devaskar SU. Postnatal glucocorticoid exposure alters the adult phenotype. Am J Physiol Regul Integr Comp Physiol 2004; 287:R198-208. [PMID: 15001431 DOI: 10.1152/ajpregu.00349.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of six doses of dexamethasone (Dex) administered daily (2–7 days of age) to postnatal rats on body weight gain, food and water intake, peripheral hormonal/metabolic milieu, and hypothalamic neuropeptides that regulate food intake. We observed a Dex-induced acute (3 days of age) suppression of endogenous corticosterone and an increase in circulating leptin concentrations that were associated with a decrease in body weight in males and females. Followup during the suckling, postsuckling, and adult stages (7–120 days of age) revealed hypoleptinemia in males and females, and hypoinsulinemia, a relative increase in the glucose-to-insulin ratio, and a larger increase in skeletal muscle glucose transporter (GLUT 4) concentrations predominantly in the males, reflective of a catabolic state associated with a persistent decrease in body weight gain. The increase in the glucose-to-insulin ratio and hyperglycemia was associated with an increase in water intake. In addition, the changes in the hormonal/metabolic milieu were associated with an increase in hypothalamic neuropeptide Y content in males and females during the suckling phase, which persisted only in the 120-day-old female with a transient postnatal decline in α-melanocyte-stimulating hormone and corticotropin-releasing factor. This increase in neuropeptide Y (NPY) during the suckling phase in males and females was associated with a subsequent increase in adult food intake that outweighed the demands of body weight gain. In contrast to the adult hypothalamic findings, cerebral ventricular dilatation was more prominent in adult males. We conclude that postnatal Dex treatment causes permanent sex-specific changes in the adult phenotype, setting the stage for future development of diabetes (increased glucose:insulin ratio), obesity (increased NPY and food intake), and neurological impairment (loss of cerebral volume).
Collapse
Affiliation(s)
- Jing He
- Divisions of Neonatology and Developmental Biology, Departments of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
12
|
Mahajan SD, Singh S, Shah P, Gupta N, Kochupillai N. Effect of maternal malnutrition and anemia on the endocrine regulation of fetal growth. Endocr Res 2004; 30:189-203. [PMID: 15473129 DOI: 10.1081/erc-200027380] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fetal growth retardation is a result of a complex pathology caused by multiple factors of fetal, placental, and maternal origin. Hormones and growth factors released as a result of maternal-fetal physiological interactions play an importance role in fetal well being and fetal outcome. Intrauterine Growth Retardation (IUGR) is associated with significant perinatal and childhood morbidity. It is estimated that 13.7 million infants are born annually with IUGR, comprising 11% of all births in developing countries. Both maternal malnutrition and anemia are associated with various degrees of fetal growth retardation. The relationship between decreasing birth weight percentiles and increasing fetal morbidity and mortality has been demonstrated by several investigators and epidemiological studies suggest that IUGR is a significant risk factor for the subsequent development of chronic hypertension, ischemic heart disease, diabetes, and obstructive lung disease in adult life (Barker's Hypothesis). Maternal anemia and/or malnutrition are recognized to be the most frequent cause of IUGR and SGA birth in developing countries like India. In order to investigate adaptive mechanisms by the fetus to overcome the growth disadvantage caused due to maternal nutritional limitations, we examined the quantitative variations in hormonal and growth factor profiles in paired cord blood and maternal samples obtained from neonates born to malnourished and/or anemic mothers. The results of our study show that: 1) The percentage of small for gestational age (SGA) neonates born to malnourished and anemic mothers was significantly higher than those born to mothers who were either malnourished or anemic; 2) Significantly higher levels of GH, PRL, HPL and IGF-1 were observed in the cord blood of neonates born to malnourished and anemic mothers indicative of an adaptive response on part of the fetus to over come an in-utero growth disadvantage; 3) The anoxemia-related fetal perturbations may have unique features that make them distinct from nutrient deficiency-related IUGR. Thus, these novel observations are relevant to the context of the ongoing scientific debate on Barker's hypothesis.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | | | |
Collapse
|