1
|
Ito T. Molecular pathology of small cell lung cancer: Overview from studies on neuroendocrine differentiation regulated by ASCL1 and Notch signaling. Pathol Int 2024; 74:239-251. [PMID: 38607250 DOI: 10.1111/pin.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Pulmonary neuroendocrine (NE) cells are rare airway epithelial cells. The balance between Achaete-scute complex homolog 1 (ASCL1) and hairy and enhancer of split 1, one of the target molecules of the Notch signaling pathway, is crucial for NE differentiation. Small cell lung cancer (SCLC) is a highly aggressive lung tumor, characterized by rapid cell proliferation, a high metastatic potential, and the acquisition of resistance to treatment. The subtypes of SCLC are defined by the expression status of NE cell-lineage transcription factors, such as ASCL1, which roles are supported by SRY-box 2, insulinoma-associated protein 1, NK2 homeobox 1, and wingless-related integration site signaling. This network reinforces NE differentiation and may induce the characteristic morphology and chemosensitivity of SCLC. Notch signaling mediates cell-fate decisions, resulting in an NE to non-NE fate switch. The suppression of NE differentiation may change the histological type of SCLC to a non-SCLC morphology. In SCLC with NE differentiation, Notch signaling is typically inactive and genetically or epigenetically regulated. However, Notch signaling may be activated after chemotherapy, and, in concert with Yes-associated protein signaling and RE1-silencing transcription factor, suppresses NE differentiation, producing intratumor heterogeneity and chemoresistance. Accumulated information on the molecular mechanisms of SCLC will contribute to further advances in the control of this recalcitrant cancer.
Collapse
Grants
- 20H03691 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K19489 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 16590318 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 25460439 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- Smoking Research Foundation, Japan
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Kumamoto Health Science University Faculty of Health Sciences, Kumamoto, Japan
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
3
|
Ito T, Kudoh S, Fujino K, Sanada M, Tenjin Y, Saito H, Nakaishi-Fukuchi Y, Kameyama H, Ichimura T, Udaka N, Kudo N, Matsuo A, Sato Y. Pulmonary Neuroendocrine Cells and Small Cell Lung Carcinoma: Immunohistochemical Study Focusing on Mechanisms of Neuroendocrine Differentiation. Acta Histochem Cytochem 2022; 55:75-83. [PMID: 35821751 PMCID: PMC9253501 DOI: 10.1267/ahc.22-00031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroendocrine (NE) differentiation has been histochemically detected in normal and cancer tissues and cells. Immunohistochemical analyses have provided a more detailed understanding of NE biology and pathology. Pulmonary NE cells are a rare lung epithelial type, and small cell carcinoma of the lung (SCLC) is a high-grade NE tumor. Pulmonary NE and SCLC cells share common mechanisms for NE differentiation. Neural or NE cell lineage-specific transcription factors, such as achaete-scute homologue 1 (Ascl1) and insulinoma-associated protein 1 (INSM1), are crucial for the development of pulmonary NE cells, and NE differentiation is influenced by the balance between Ascl1 and the suppressive neural transcription factor, hairy-enhancer of split 1, a representative target molecule of the Notch signaling pathway. In this review, we discuss the importance of Ascl1 and INSM1 in identifying pulmonary NE and SCLC cells and introduce Ascl1-related molecules detected by comparative RNA-sequence analyses. The molecular classification of SCLC based on the expression of lineage-specific transcription or co-transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, was recently proposed. We attempted to characterize these 4 SCLC subtypes using integrated immunohistochemical studies, which will provide insights into the molecular characteristics of these subtypes and clarify the inter- and intratumor heterogeneities of SCLC.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Kosuke Fujino
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Mune Sanada
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuki Tenjin
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Haruki Saito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuko Nakaishi-Fukuchi
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Hiroki Kameyama
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | | | - Naoko Udaka
- Division of Surgical Pathology, Yokohama City University Hospital
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| |
Collapse
|
4
|
ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. iScience 2021; 24:102953. [PMID: 34466783 PMCID: PMC8384902 DOI: 10.1016/j.isci.2021.102953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Lineage-defining transcription factors (LTFs) play key roles in small-cell lung cancer (SCLC) pathophysiology. Delineating the LTF-regulated genes operative in SCLC could provide a road map to identify SCLC dependencies. We integrated chromatin landscape and transcriptome analyses of patient-derived SCLC preclinical models to identify super-enhancers (SEs) and their associated genes in the ASCL1-, NEUROD1-, and POU2F3-high SCLC subtypes. We find SE signatures predict LTF-based classification of SCLC, and the SE-associated genes are enriched with those defined as common essential genes in DepMap. In addition, in ASCL1-high SCLC, we show ASCL1 complexes with NKX2-1 and PROX1 to co-regulate genes functioning in NOTCH signaling, catecholamine biosynthesis, and cell-cycle processes. Depletion of ASCL1 demonstrates it is a key dependency factor in preclinical SCLC models and directly regulates multiple DepMap-defined essential genes. We provide LTF/SE-based subtype-specific gene sets for SCLC for further therapeutic investigation. Super-enhancers support lineage-defining transcription factor SCLC classification SCLC super-enhancer-associated genes represent essential and lineage-identity genes ASCL1, NKX2-1, and PROX1 proteins interact in a complex in SCLC-A ASCL1, NKX2-1, and PROX1 regulate Notch-signaling, NE-specific, and cell-cycle genes
Collapse
|
5
|
Zhang J, Yang L, Li J. [Advances in Molecular Biomarker for Pulmonary Large Cell Neuroendocrine Carcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:983-988. [PMID: 33203199 PMCID: PMC7679220 DOI: 10.3779/j.issn.1009-3419.2020.101.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a pathological subtype of lung neuroendocrine cancer, which accounts for 2.4%-3.1% in surgical specimens of lung cancer. It is characterized by high invasiveness and poor prognosis, and highly correlated with smoking. There are few relevant studies due to the low incidence and small sample size. Therefore, it is relatively difficult to diagnosis and treatment in clinical practice. In this review, we described molecular subtype, diagnostic and prognostic-related markers about large cell neuroendocrine carcinoma of lung based on the recent progress in genomic sequencing and molecular markers, to find the direction for the next research.
.
Collapse
Affiliation(s)
- Jinyao Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
Zaleski M, Kalhor N, Moran CA. Typical and Atypical Carcinoid Tumors of the Mediastinum: A Biomarker Analysis of 27 Cases With Clinical Correlation. Int J Surg Pathol 2020; 29:358-367. [PMID: 33243039 DOI: 10.1177/1066896920976845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymic typical and atypical carcinoids are rare and appear to be more aggressive than similar tumors in other sites. We retrospectively analyzed a group of biomarkers that hold therapeutic and prognostic utility, in 27 of these tumors. All cases were immunohistochemically stained with PAX5, MET, CRMP5, paxillin, p21, p27, EZH2, PDL-1, and Ki-67, and then H-scored. Clinicopathologic and survival data were statistically analyzed against staining (χ2 test). Five- and 10-year-survival rates were 53% and 18%, respectively. Mitotic counts ≥4 per 2 mm2 and tumor size ≥5 cm, associated with death of disease (DoD; P = .010 and .016). Ki-67 expression ≥1% associated with DoD (P = .003) and death within 5 years (P = .031). Biomarkers stained tumor cases as follows: PDL-1 = 0%, PAX-5 = 0%, MET = 7.4%, paxillin = 41%, CRMP5 = 78%, p21 = 63%, p27 = 63%, EZH2 = 37%, and MASH1 = 59%. Overall ± staining did not associate with survival or grade. Cases with low CRMP5 H-scores (<80) associated with DoD (P = .002), while CRMP5 H-scores >80 associated with 10-year survival (P = .022). Cases with high MASH1 H-score (>100) associated with DoD (P = .021). Accurate grading and staging remain paramount in predicting clinical outcome. Biomarkers may have significance in subsets of patients and the use of these studies likely should be focused on a more personalize type of approach.
Collapse
Affiliation(s)
- Michael Zaleski
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar A Moran
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Wang Y, Zou S, Zhao Z, Liu P, Ke C, Xu S. New insights into small-cell lung cancer development and therapy. Cell Biol Int 2020; 44:1564-1576. [PMID: 32281704 PMCID: PMC7496722 DOI: 10.1002/cbin.11359] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Small‐cell lung cancer (SCLC) accounts for approximately 15% of lung cancer cases; however, it is characterized by easy relapse and low survival rate, leading to one of the most intractable diseases in clinical practice. Despite decades of basic and clinical research, little progress has been made in the management of SCLC. The current standard first‐line regimens of SCLC still remain to be cisplatin or carboplatin combined with etoposide, and the adverse events of chemotherapy are by no means negligible. Besides, the immunotherapy on SCLC is still in an early stage and novel studies are urgently needed. In this review, we describe SCLC development and current therapy, aiming at providing useful advices on basic research and clinical strategy.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Songyun Zou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Po Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China.,Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
8
|
Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells. Histochem Cell Biol 2020; 153:443-456. [PMID: 32170367 DOI: 10.1007/s00418-020-01863-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
ASCL1 is one of the master transcription factors of small cell lung carcinoma (SCLC). To investigate the significance of ASCL1 in pulmonary neuroendocrine carcinoma, we performed 2 comparative RNA-seq studies between H69 (ASCL1-positive, classical type SCLC) and H69AR (ASCL1-negative, variant type SCLC) and between ASCL1-transfected A549 adenocarcinoma cell lines (A549(ASCL1+) cell lines) and A549(control) cell lines. RNA-seq analyses revealed that 940 genes were significantly different between the H69 and H69AR cell lines, and 728 between the A549(ASCL1+) and A549(control) cell lines. In total, 120 common genes between these analyses were selected as candidate ASCL1-related genes, and included genes with various cellular functions, such as neural development, secretion, growth, and morphology. Their expression degrees in three classical and two variant SCLC cell lines, two A549(ASCL1+) and two A549(control) cell lines were subjected to quantitative PCR analyses. Since the candidate ASCL1-related genes were strongly expressed in the classical SCLC and A549(ASCL1+) cell lines and more weakly expressed in the variant SCLC and A549(control) cell lines, the ASCL1-related 7 molecules INSM1, ISL1, SYT4, KCTD16, SEZ6, MS4A8, and COBL were further selected. These molecules suggested diverse functions for A549(ASCL1+): INSM1 and ISL1 are transcription factors associated with neuroendocrine differentiation, while SYT4, KTCD16, and SEZ6 may be related to neurosecretory functions and MS4A8 and COBL to cell growth and morphology. An immunohistochemistry of these seven molecules was performed on lung carcinoma tissues and the xenotransplanted tumors of A549(ASCL1+), and they were preferentially and positively stained in ASCL1-postive tumor tissues.
Collapse
|
9
|
Zhao JF, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, Chang Y, Liu J, Guo AY, He XX. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:538-553. [PMID: 29858089 PMCID: PMC5944419 DOI: 10.1016/j.omtn.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignance, and the underlying mechanisms of this disease are not fully elucidated. In this study, the existence and function of achaete-scute homolog-1 (ASH1)-miR-375-YWHAZ signaling axis in HCC were determined. Our experiments and the Cancer Genome Atlas (TCGA) sequencing data analyses showed that ASH1 and miR-375 were significantly downregulated, whereas YWHAZ was significantly upregulated in HCC. Furthermore, we found that ASH1 positively regulates miR-375, and miR-375 directly downregulates its target YWHAZ. Gain- and loss-of-function study demonstrated ASH1 and miR-375 function as tumor suppressors, whereas YWHAZ acts as an oncogene in HCC. Animal experiment indicated that YWHAZ small interfering RNAs (siRNAs) (si-YWHAZ) delivered by nanoliposomes could suppress the growth of hepatoma xenografts and was well tolerant by nude mice. Further studies revealed that YWHAZ was involved in several protein networks, such as cell autophagy, epithelial-mesenchymal transition (EMT), apoptosis, cell cycle, invasion, and migration. In addition, the patient group with ASH1-high-expression-miR-375-high-expression-YWHAZ-low-expression was correlated with a better clinical prognosis compared with the opposite expression group. In conclusion, we proved the existence of ASH1-miR-375-YWHAZ signaling axis and interpreted its important role in driving HCC tumor progression.
Collapse
Affiliation(s)
- Juan-Feng Zhao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhi Liao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju-Sheng Lin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Xia
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Wang CY, Shahi P, Huang JTW, Phan NN, Sun Z, Lin YC, Lai MD, Werb Z. Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients. Mol Clin Oncol 2016; 6:7-18. [PMID: 28123722 PMCID: PMC5244854 DOI: 10.3892/mco.2016.1094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The achaete-scute complex-like (ASCL) family, also referred to as ‘achaete-scute complex homolog’ or ‘achaete-scute family basic helix-loop-helix transcription factor’, is critical for proper development of the nervous system and deregulation of ASCL plays a key role in psychiatric and neurological disorders. The ASCL family consists of five members, namely ASCL1, ASCL2, ASCL3, ASCL4 and ASCL5. The ASCL1 gene serves as a potential oncogene during lung cancer development. There is a correlation between increased ASCL2 expression and colon cancer development. Inhibition of ASCL2 reduced cellular proliferation and tumor growth in xenograft tumor experiments. Although previous studies demonstrated involvement of ASCL1 and ASCL2 in tumor development, little is known on the remaining ASCL family members and their potential effect on tumorigenesis. Therefore, a holistic approach to investigating the expression of ASCL family genes in diverse types of cancer may provide new insights in cancer research. In this study, we utilized a web-based microarray database (Oncomine; www.oncomine.org) to analyze the transcriptional expression of the ASCL family in clinical cancer and normal tissues. Our bioinformatics analysis revealed the potential involvement of multiple ASCL family members during tumor onset and progression in multiple types of cancer. Compared to normal tissue, ASCL1 exhibited a higher expression in cancers of the lung, pancreas, kidney, esophagus and head and neck, whereas ASCL2 exhibited a high expression in cancers of the breast, colon, stomach, lung, head and neck, ovary and testis. ASCL3, however, exhibited a high expression only in breast cancer. Interestingly, ASCL1 expression was downregulated in melanoma and in cancers of the bladder, breast, stomach and colon. ASCL2 exhibited low expression levels in sarcoma, melanoma, brain and prostate cancers. Reduction in the expression of ASCL3 was detected in lymphoma, bladder, cervical, kidney and epithelial cancers. Similarly, ASCL5 exhibited low expression in the majority of brain cancer subtypes, such as glioblastoma and oligodendroglioma. This analysis supports the hypothesis that specific ASCL members may play an important role in cancer development. Collectively, our data suggest that alterations in the expression of ASCL gene family members are correlated with cancer development. Furthermore, ASCL family members were categorized according to cancer subtype. The aim of this report was to provide novel insights to the significance of the ASCL family in various cancers and our findings suggested that the ASCL gene family may be an ideal target for future cancer studies.
Collapse
Affiliation(s)
- Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, CA 94143, USA; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C.; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C
| | - Payam Shahi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - John Ting Wei Huang
- Department of Oncology, University of California, San Francisco, CA 94143, USA
| | - Nam Nhut Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh 7000, Vietnam; Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan 11114, R.O.C
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, CA 94143, USA
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan 11114, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C.; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 11114, R.O.C
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Ito T, Kudoh S, Ichimura T, Fujino K, Hassan WAMA, Udaka N. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell 2016; 30:1-10. [DOI: 10.1007/s13577-016-0149-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
|
12
|
DAI MENGYUAN, FANG FANG, ZOU YOU, YI XING, DING YONGJUN, CHEN CHEN, TAO ZEZHANG, CHEN SHIMING. Downregulation of Notch1 induces apoptosis and inhibits cell proliferation and metastasis in laryngeal squamous cell carcinoma. Oncol Rep 2015; 34:3111-9. [DOI: 10.3892/or.2015.4274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 11/06/2022] Open
|
13
|
Hassan WA, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T. Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer 2014; 86:304-10. [PMID: 25456735 DOI: 10.1016/j.lungcan.2014.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Notch signaling plays a key role in a wide variety of human neoplasms, and it can be either oncogenic or anti-proliferative. Moreover, Notch function in regulating cancer is unpredictable, and its outcome is strictly context-dependent. AIM To study the role of Notch1 signaling in human small cell lung carcinoma (SCLC) and its effect on cell invasion and metastasis. MATERIALS AND METHODS We used small interfering RNA (siRNA) technology, to down-regulate the expression of Notch1 in H69AR and SBC3 SCLC cells. On the other hand, we up-regulated Notch1 in H69 and H1688 SCLC cells through transfection with venus Notch1 intracellular domain (v.NICD) plasmid. In addition, H69 cells with v.NICD were xenotransplanted into immune-compromised Rag2(-/-) Jak3(-/-) mice, for analysis of ex vivo tumor epithelial mesenchymal transition (EMT) phenotype and for detection of metastatic cancer cells in the lung tissues. Moreover, we examined the metastatic ability for H69AR and SBC3 cells transfected with siRNA against Notch1, compared to their subsequent controls, by use of tail vein xenograft mouse models. RESULTS Notch1 controls cell adhesion and EMT. Overexpression of Notch1 in SCLC switched off EMT, cell motility and cell metastatic potential. CONCLUSION Our results demonstrate that activation of Notch1 signaling pathway may represent a new strategy for treating human SCLC.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan; Department of Pathology, Faculty of Medicine, Suez Canal University, Egypt
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Koki Hasegawa
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Kanako Niimori-Kita
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan.
| |
Collapse
|
14
|
Kato T, Sakata-Yanagimoto M, Nishikii H, Ueno M, Miyake Y, Yokoyama Y, Asabe Y, Kamada Y, Muto H, Obara N, Suzukawa K, Hasegawa Y, Kitabayashi I, Uchida K, Hirao A, Yagita H, Kageyama R, Chiba S. Hes1 suppresses acute myeloid leukemia development through FLT3 repression. Leukemia 2014; 29:576-85. [PMID: 25234168 DOI: 10.1038/leu.2014.281] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022]
Abstract
In leukemogenesis, Notch signaling can be up and downregulated in a context-dependent manner. The transcription factor hairy and enhancer of split-1 (Hes1) is well-characterized as a downstream target of Notch signaling. Hes1 encodes a basic helix-loop-helix-type protein, and represses target gene expression. Here, we report that deletion of the Hes1 gene in mice promotes acute myeloid leukemia (AML) development induced by the MLL-AF9 fusion protein. We then found that Hes1 directly bound to the promoter region of the FMS-like tyrosine kinase 3 (FLT3) gene and downregulated the promoter activity. FLT3 was consequently upregulated in MLL-AF9-expressing immortalized and leukemia cells with a Hes1- or RBPJ-null background. MLL-AF9-expressing Hes1-null AML cells showed enhanced proliferation and ERK phosphorylation following FLT3 ligand stimulation. FLT3 inhibition efficiently abrogated proliferation of MLL-AF9-induced Hes1-null AML cells. Furthermore, an agonistic anti-Notch2 antibody induced apoptosis of MLL-AF9-induced AML cells in a Hes1-wild type but not a Hes1-null background. We also accessed two independent databases containing messenger RNA (mRNA) expression profiles and found that the expression level of FLT3 mRNA was negatively correlated with those of HES1 in patient AML samples. These observations demonstrate that Hes1 mediates tumor suppressive roles of Notch signaling in AML development, probably by downregulating FLT3 expression.
Collapse
Affiliation(s)
- T Kato
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Life Science center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan [3] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - M Sakata-Yanagimoto
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - H Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - M Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Y Miyake
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Y Yokoyama
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Y Asabe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Y Kamada
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - H Muto
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - N Obara
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - K Suzukawa
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Y Hasegawa
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - I Kitabayashi
- Molecular Oncology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - K Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - A Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - H Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - R Kageyama
- 1] Institute of Virus Research, Kyoto University, Kyoto, Japan [2] World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - S Chiba
- 1] Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan [2] Life Science center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan [3] Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta Rev Cancer 2012; 1826:255-71. [PMID: 22579738 DOI: 10.1016/j.bbcan.2012.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/04/2012] [Indexed: 12/18/2022]
Abstract
Pulmonary neuroendocrine tumors (NETs) are traditionally described as comprising a spectrum of neoplasms, ranging from low grade typical carcinoids (TCs) via the intermediate grade atypical carcinoids (ACs) to the highly malignant small cell lung cancers (SCLCs) and large cell neuroendocrine carcinomas (LCNECs). Recent data, however, suggests that two categories can be distinguished on basis of molecular and clinical data, i.e. the high grade neuroendocrine (NE) carcinomas and the carcinoid tumors. Bronchial carcinoids and SCLCs may originate from the same pulmonary NE precursor cells, but a precursor lesion has only been observed in association with carcinoids, termed diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. The occurrence of mixed tumors exclusively comprising high grade NE carcinomas also supports a different carcinogenesis for these two groups. Histopathologically, high grade NE lung tumors are characterized by high mitotic and proliferative indices, while carcinoids are defined by maximally 10 mitoses per 2mm(2) (10 high-power fields) and rarely have Ki67-proliferative indices over 10%. High grade NE carcinomas are chemosensitive tumors, although they usually relapse. Surgery is often not an option due to extensive disease at presentation and early metastasis, especially in SCLC. Conversely, carcinoids are often insensitive to chemo- and radiation therapy, but cure can usually be achieved by surgery. A meta-analysis of comparative genomic hybridization studies performed for this review, as well as gene expression profiling data indicates separate clustering of carcinoids and carcinomas. Chromosomal aberrations are much more frequent in carcinomas, except for deletion of 11q, which is involved in the whole spectrum of NE lung tumors. Deletions of chromosome 3p are rare in carcinoids but are a hallmark of the high grade pulmonary NE carcinomas. On the contrary, mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are restricted to carcinoid tumors. Many of the differences between carcinoids and high grade lung NETs can be ascribed to tobacco consumption, which is strongly linked to the occurrence of high grade NE carcinomas. Smoking causes p53 mutations, very frequently present in SCLCs and LCNECs, but rarely in carcinoids. It further results in other early genetic events in SCLCs and LCNECs, such as 3p and 17p deletions. Smoking induces downregulation of E-cadherin and associated epithelial to mesenchymal transition. Also, high grade lung NETs display higher frequencies of aberrations of the Rb pathway, and of the intrinsic and extrinsic apoptotic routes. Carcinoid biology on the other hand is not depending on cigarette smoke intake but rather characterized by aberrations of other specific genetic events, probably including Menin or its targets and interaction partners. This results in a gradual evolution, most likely from proliferating pulmonary NE cells via hyperplasia and tumorlets towards classical carcinoid tumors. We conclude that carcinoids and high grade NE lung carcinomas are separate biological entities and do not comprise one spectrum of pulmonary NETs. This implies the need to reconsider both diagnostic as well as therapeutic approaches for these different groups of malignancies.
Collapse
|
16
|
Redmond EM, Guha S, Walls D, Cahill PA. Investigational Notch and Hedgehog inhibitors--therapies for cardiovascular disease. Expert Opin Investig Drugs 2011; 20:1649-64. [PMID: 22007748 DOI: 10.1517/13543784.2011.628658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION During the past decade, a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. AREAS COVERED This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the preclinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. EXPERT OPINION Preclinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands have proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. By contrast, the Hedgehog-based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients.
Collapse
Affiliation(s)
- Eileen M Redmond
- University of Rochester, Department of Surgery, 601 Elmwood Ave, Box SURG, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
17
|
Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011; 27:493-512. [PMID: 21639799 DOI: 10.1146/annurev-cellbio-100109-104040] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate lung is elegantly patterned to carry out gas exchange and host defense. Similar to other organ systems, endogenous stem and progenitor cells fuel the organogenesis of the lung and maintain homeostasis in the face of normal wear and tear. In the context of acute injury, these progenitor populations are capable of effecting efficient repair. However, chronic injury, inflammation, and immune rejection frequently result in pathological airway remodeling and serious impairment of lung function. Here, we review the development, maintenance, and repair of the vertebrate respiratory system with an emphasis on the roles of epithelial stem and progenitor cells. We discuss what is currently known about their identities, lineage relationships, and the mechanisms that regulate their differentiation along various lineages. A deeper understanding of these progenitor populations will undoubtedly accelerate the discovery of improved cellular, genetic, molecular, and bioengineered therapies for lung disease.
Collapse
Affiliation(s)
- Jason R Rock
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
18
|
Nasgashio R, Sato Y, Matsumoto T, Kageyama T, Hattori M, Iyoda A, Satoh Y, Ryuge S, Masuda N, Jiang SX, Saegusa M. The balance between the expressions of hASH1 and HES1 differs between large cell neuroendocrine carcinoma and small cell carcinoma of the lung. Lung Cancer 2011; 74:405-10. [PMID: 21601304 DOI: 10.1016/j.lungcan.2011.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/19/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
Abstract
To clarify the biological differences between small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC), we investigated the expression of two bHLH type transcription factors, human achaete-scute homolog 1 (hASH1) and hairy/enhancer of split 1 (HES1), which positively and negatively regulate the neuroendocrine differentiation of respiratory epithelial cells, respectively. Eighty-eight formalin-fixed and paraffin-embedded pulmonary carcinomas (32 SCLC, 32 LCNEC, 14 adenocarcinomas, and 10 squamous cell carcinomas) and 14 SCLC and 1 LCNEC derived cell lines were used. hASH1 and HES1 mRNA were detected using a highly sensitive in situ hybridization method with digoxigenin-labeled cRNA probes and biotinylated tyramide. The staining results were scored from 0 to 12 by multiplying the staining intensity by the percentage of positive tumor cells. The mean staining score of hASH1 mRNA was significantly higher in SCLC than in LCNEC (p<0.01); conversely, that of HES1 mRNA was lower in SCLC than in LCNEC (p<0.01). These findings reveal that SCLC more strongly expresses the neuroendocrine phenotype, while LCNEC shows characteristics more similar to the ciliated epithelium phenotype, suggesting that the biological characteristics of these two tumors are different.
Collapse
Affiliation(s)
- Ryo Nasgashio
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kannan S, Fang W, Song G, Mullighan CG, Hammitt R, McMurray J, Zweidler-McKay PA. Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood 2011; 117:2891-900. [PMID: 21224467 PMCID: PMC3062299 DOI: 10.1182/blood-2009-12-253419] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Notch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T-cell acute lymphoblastic leukemia (ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-cell ALL (B-ALL) leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL; however, the mechanism is not yet known. We report that HES1 regulates proapoptotic signals by the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. Interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation, and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of nicotinamide adenine dinucleotide(+), diminished adenosine triphosphate levels, and translocation of apoptosis-inducing factor from mitochondria to the nucleus, resulting in apoptosis in B-ALL but not T-cell ALL. Importantly, induction of Notch signaling by the Notch agonist peptide Delta/Serrate/Lag-2 can reproduce these events and leads to B-ALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism shows a cell type-specific proapoptotic pathway that may lead to Notch agonist-based cancer therapeutics.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Popler J, Gower WA, Mogayzel PJ, Nogee LM, Langston C, Wilson AC, Hay TC, Deterding RR. Familial neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2010; 45:749-55. [PMID: 20623780 DOI: 10.1002/ppul.21219] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Neuroendocrine cell hyperplasia of infancy (NEHI) is a recently described children's interstitial lung disease (chILD) disorder of unknown etiology. It manifests clinically with tachypnea, retractions, hypoxemia, and crackles. The characteristic radiographic appearance consists of pulmonary hyperexpansion and ground-glass densities on high-resolution computed tomography (HRCT). Lung histology shows hyperplasia of bombesin-immunopositive neuroendocrine cells within distal bronchioles and alveolar ducts without other identifiable lung pathology or developmental anomaly. METHODS We describe four families with multiple siblings diagnosed with NEHI. Cases were identified at three pediatric centers. Inclusion criteria included clinical findings consistent with NEHI, lung biopsy confirmation in the index case, and a diagnostic HRCT or biopsy in other siblings. RESULTS Each family had a proband diagnosed with NEHI based upon pathologic review, and at least one additional sibling diagnosed either by pathologic review or HRCT. All patients presented between 2 and 15 months of age. Both male and female children were affected. The majority of the patients underwent both HRCT and lung biopsy. There were no deaths among affected children. No environmental exposures or other potential etiologies were identified as a cause of presenting symptoms. CONCLUSIONS The familial occurrence of NEHI suggests the possibility of a genetic etiology for this disorder and highlights the importance of taking a complete family medical history for infants presenting with a suggestive clinical picture. Identification of familial NEHI patients allows for the opportunity to further our understanding of this disorder, its natural history, the phenotypic spectrum, and potential genetic causes.
Collapse
Affiliation(s)
- J Popler
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
A tissue microarray-based comparative analysis of novel and traditional immunohistochemical markers in the distinction between adrenal cortical lesions and pheochromocytoma. Am J Surg Pathol 2010; 34:423-32. [PMID: 20154585 DOI: 10.1097/pas.0b013e3181cfb506] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have encountered an increasing number of image-guided adrenal mass biopsies in which the differential diagnosis is adrenal cortical lesion versus pheochromocytoma. This distinction is sometimes difficult because of confounding clinical presentations, overlapping morphologies, and some degree of immunophenotypic overlap including focal staining with markers of purported lineage specificity. Interventional radiologists commonly use narrow gauge biopsy needles in this setting, which yield scant diagnostic tissue and further complicate pathologic evaluation. In this study, a detailed immunoprofile of 63 adrenal cortical lesions (3 adrenal rests, 6 adrenal cortical hyperplasias, 43 adrenal cortical adenomas, 4 adrenal cortical neoplasms of uncertain malignant potential, and 7 adrenal cortical carcinomas) was compared with 35 pheochromocytomas using traditional (calretinin, chromogranin, inhibin, melanA, and synaptophysin) and novel [steroidogenic factor-1 (SF-1), microtubule-associated protein 2, and mammalian achaete-scute homolog-1] antibodies, using tissue microarray technology to simulate small image-guided biopsies. Staining extent and intensity were each scored semiquantitatively for each antibody. A comparison of sensitivity and specificity using different intensity thresholds required for a "positive" result (> or = 1+ vs. > or = 2+) was performed. Staining results based on a > or = 1+ and (> or = 2+) intensity threshold were as follows: calretinin-95% (89%) in adrenal cortical lesions and 14% (0%) in pheochromocytomas; chromogranin-0% in adrenal cortical lesions and 100% in pheochromocytomas; inhibin-97% (86%) in adrenal cortical lesions and 6% (0%) in pheochromocytomas; microtubule-associated protein 2-29% (16%) in adrenal cortical lesions and 100% (89%) in pheochromocytomas; mammalian achaete-scute homolog-1-0% in both adrenal cortical lesions and pheochromocytomas; melanA-94% (86%) in adrenal cortical lesions and 6% (0%) in pheochromocytomas; SF-1-87% (86%) in adrenal cortical lesions and 0% in pheochromocytomas; synaptophysin-67% (59%) in adrenal cortical lesions and 100% in pheochromocytomas. Using an antibody panel consisting of chromogranin plus the nuclear antibody SF-1 and either calretinin or inhibin, while requiring a high-staining intensity threshold, helps to eliminate interpretative issues of artifactual or background reactivity, improves diagnostic sensitivity/specificity, and makes for an effective immunohistochemical approach in distinguishing adrenal cortical lesions from pheochromocytomas.
Collapse
|
22
|
Moran CA, Suster S, Coppola D, Wick MR. Neuroendocrine carcinomas of the lung: a critical analysis. Am J Clin Pathol 2009; 131:206-21. [PMID: 19141381 DOI: 10.1309/ajcp9h1otmucskqw] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neuroendocrine carcinomas represent an important group of primary neoplasms in the lung. During the last decades, the nomenclature of these tumors has evolved and the current use of immunohistochemical and molecular biology studies have, to some extent, expanded the conventional view of these tumors. However, the primary diagnosis of most of these lesions is performed on limited biopsy specimens, which may not translate well when one is confronted with a nomenclature that is based on resected material. In addition, for some of these specific entities, some confusion and controversy apparently remain, allowing for the proliferations of different terms that, although they may be dismissed as "semantics," may have a role in interpretation, further subclassification, and, possibly, treatment. Herein we review current concepts regarding the classification of these neoplasms and the role of this classification in our daily practice and discuss how it may impact treatment.
Collapse
Affiliation(s)
- Cesar A. Moran
- Departments of Pathology, University of Texas, M.D. Anderson Cancer Center, Houston
| | | | | | | |
Collapse
|
23
|
Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H. Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol 2009; 20:101-7. [PMID: 19390995 DOI: 10.1007/s12022-009-9072-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Small cell lung cancer (SCLC) exhibits highly aggressive behavior and has a poor prognosis. While numerous investigations have been carried out, the exact mechanism of its carcinogenesis and aggressiveness is still unclear. SCLC is categorized as a neuroendocrine neoplasia and has a genetic profile characterized by universal alterations of the RB and TP53 genes. Epidemiological studies indicate the majority of SCLCs to be caused by smoking and the TP53 mutational pattern to be consistent with that evoked by smoke carcinogens; however, there is no direct evidence that such carcinogens induce alterations to RB in SCLC. While the importance of these alterations in the carcinogenesis of SCLC is strongly suggested, the exact molecular mechanism has been only little elucidated. SCLC cells almost always express mammalian achaete-scute homolog-1 (MASH1) and thyroid transcription factor-1 (TTF-1). MASH1 plays a critical role in neuroendocrine differentiation. TTF-1 is a characteristic marker of distal airway cells and pulmonary adenocarcinomas, but is also expressed in extrapulmonary neuroendocrine cancers. Thus, TTF-1 may well play a significant role in the development of neuroendocrine cancers. Recent studies indicate that the airway stem cell is committed to the neuroendocrine lineage through MASH1 and Notch signaling and that only RB-deleted neuroendocrine cells selectively proliferate in response to E2F3, eventually undergoing transformation to neuroendocrine cancer cells, probably in concert with TP53 gene aberrations. Thus, alterations of both the RB and TP53 genes are central to the carcinogenesis of SCLC, while many other factors including MASH1 and TTF-1 contribute to the development and biological behavior of SCLC.
Collapse
Affiliation(s)
- Hitoshi Kitamura
- Department of Pathology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | | | | | | | | |
Collapse
|
24
|
Ralston J, Chiriboga L, Nonaka D. MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol 2008; 21:1357-62. [PMID: 18587322 DOI: 10.1038/modpathol.2008.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merkel cell carcinoma is the cutaneous counterpart of small cell carcinoma, and the most important differential diagnosis is cutaneous metastasis of small cell carcinoma of the lung. There have been a handful of studies reporting on the utility of a variety of immunohistochemical markers that distinguish between the two entities. Achaete-scute complex-like 1 (MASH1, ASCL1) is important in the development of the brain and the diffuse neuroendocrine system including pulmonary neuroendocrine cells. A recent study, using a cDNA array, identified Mash1 as one of the best classifier genes to differentiate pulmonary small cell carcinoma from Merkel cell carcinoma. We immunohistochemically applied this finding to the diagnostic setting. A total of 30 cases of Merkel cell carcinoma and 59 cases of small cell carcinoma of the lung were immunostained with anti-MASH1 and TTF-1 antibodies. Of 59 small cell carcinomas, 49 (83%) expressed MASH1 in nuclear staining whereas out of 59 small cell carcinomas, 43 (73%) expressed TTF-1 in nuclear staining. MASH1 was completely negative in all 30 Merkel cell carcinomas whereas TTF-1 expression was seen in 1 of the 30 Merkel cell carcinomas (3%). MASH1 is a useful adjunct marker for differentiating small cell carcinoma of the lung from Merkel cell carcinoma.
Collapse
Affiliation(s)
- Jonathan Ralston
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
25
|
Gupta A, Wang Y, Browne C, Kim S, Case T, Paul M, Wills ML, Matusik RJ. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Prostate 2008; 68:50-60. [PMID: 18004726 DOI: 10.1002/pros.20650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neuroendocrine (NE) prostate cancer develops as an aggressive disease that does not respond to androgen ablation therapy. It has been demonstrated that the paracrine action of NE cells facilitates the progression of androgen dependent adenocarcinoma to an androgen independent state, suggesting a significant role for NE cells during failure of androgen ablation therapy. METHODS To investigate the pathways that are involved in NE differentiation of prostate cancer, we have looked at the expression of genes known to be involved in endocrine differentiation of beta-cells in the pancreas. This study has been performed using the NE prostate cancer mouse model (12T-10) and the derivative allograft model (NE-10). RESULTS Immunohistochemical studies have shown that the neuroendocrine prostate tumors express the transcription factors Foxa2, mouse achaete-scute homolog-1 (mash-1), neurogenin3 (Ngn3) and Nkx2.2. These tumors show a loss of hairy/enhancer of split (Hes-1), a gene that inhibits NE differentiation. Human NE prostate cancers also express Foxa2 and human achaete-scute homolog-1 (HASH-1). These genes are expressed in NE prostate tumors in the similar sequential manner as they appear in a pancreatic beta-cell endocrine differentiation. Foxa2 expression is detected in early prostatic intraepithelial neoplasia (PIN). Mash-1 expression is detected in a few clusters within low grade PIN lesions and Nkx2.2 expression is rarely detected in individual scattered cells within the PIN lesion. Ngn3 and Nkx2.2 frequently appear in the invasive NE cancer. Subsequent NE metastasis to lung and liver show a distinct gene expression pattern. The lung metastasis expresses Ngn3 but does not express Nkx2.2 whereas liver metastases do not express Ngn3 but express Nkx2.2. CONCLUSIONS These results suggest that Ngn3 and Nkx2.2 expression are markers for site-specific metastasis and/or transcriptionally regulated genes that are required for organ-specific metastasis. This study indicates that a pathway similar to pancreatic beta-cell differentiation is involved in NE differentiation of prostate cancer.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Adenocarcinoma/physiopathology
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Neuroendocrine/physiopathology
- Carcinoma, Neuroendocrine/secondary
- Carcinoma, Small Cell/physiopathology
- Carcinoma, Small Cell/secondary
- Cell Differentiation/physiology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Homeobox Protein Nkx-2.2
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Insulin-Secreting Cells/cytology
- Liver Neoplasms, Experimental/physiopathology
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/physiopathology
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Mice, Transgenic
- Neoplasm Transplantation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/physiopathology
- Transcription Factor HES-1
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zebrafish Proteins
Collapse
Affiliation(s)
- Aparna Gupta
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A growing body of literature is demonstrating that Notch signaling is a more complex process than originally thought. Contradictory findings of notch-1 acting as an oncogene or a tumor suppressor revealed that its role is very specific to the cellular context. In this review we focus on the tumor suppressor role of Notch-1 signaling in neuroendocrine tumors (NETs) such as carcinoid and medullary thyroid cancers. NETs secrete various bioactive hormones that can cause debilitating symptoms. Surgery is the only potential curative treatment for the patients with NETs. Notch-1 signaling is absent in these tumors and activation of Notch-1 significantly reduces tumor growth in vitro. Therefore, identification of compound(s) that activate the Notch-1 pathway in NETs could be a potential strategy to treat patients with NETs.
Collapse
|
27
|
Cutz E, Yeger H, Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol 2007; 10:419-35. [PMID: 18001162 DOI: 10.2350/07-04-0267.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 09/04/2007] [Indexed: 11/20/2022]
Abstract
The airway epithelium of human and animal lungs contains highly specialized pulmonary neuroendocrine cells (PNEC), distributed as solitary cells and as innervated clusters, neuroepithelial bodies (NEB). The designation "PNEC system" stems from the expression of both neural and endocrine cell phenotypes, including the synthesis and release of amine (serotonin, 5-HT) and a variety of neuropeptides (that is, bombesin). The role and function of PNEC in the lung have remained a subject of speculation for many years. During the last decade, studies using modern techniques of cellular and molecular biology revealed a complex functional role for PNEC, beginning during the early stages of lung development as modulators of fetal lung growth and differentiation and at the time of birth as airway O2 sensors involved in neonatal adaptation. Postnatally and beyond, PNEC/NEB are providers of a lung stem cell niche that is important in airway epithelial regeneration and lung carcinogenesis. The focus of this review is to present and discuss recent findings pertaining to the responses of PNEC to intrauterine environmental stimuli, ontogeny and molecular regulation of PNEC differentiation, innervation of NEB, and their role as airway chemoreceptors, including mechanisms of O2 sensing and chemotransmission of hypoxia stimulus. Abnormalities of PNEC/NEB have been reported in a variety of pediatric pulmonary disorders but the clinical significance or the mechanisms involved are unknown. The discussion on the possible role of PNEC/NEB in the pathogenesis and pathobiology of pediatric lung diseases includes congenital lung disorders, bronchopulmonary dysplasia, disorders of respiratory control, neuroendocrine hyperplasia of infancy, cystic fibrosis, bronchial asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Ernest Cutz
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto,ON, Canada.
| | | | | |
Collapse
|
28
|
Volante M, Rindi G, Papotti M. The grey zone between pure (neuro)endocrine and non-(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch 2006; 449:499-506. [PMID: 17033797 DOI: 10.1007/s00428-006-0306-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/28/2006] [Indexed: 12/18/2022]
Abstract
Terms such as "mixed endocrine-exocrine carcinoma" (MEEC) and "adenocarcinoma with neuroendocrine (NE) differentiation" (ADC-NE) identify tumours belonging to the spectrum of neoplasms with divergent exocrine and (neuro)endocrine differentiation. These tumours display variable quantitative extent of the two components, potentially ranging from 1 to 99%, and variable structural patterns, ranging from single scattered NE cells to a well-defined NE tumour cell population organized in organoid, trabecular or solid growth patterns. In the present report, the grey zone of tumours/carcinomas with mixed NE and non-NE features is explored for various organs. From a practical point of view, MEECs differ from carcinomas with focal NE differentiation by (1) the extension of each component (more than 30%) and (2) the structural pattern of the NE component, either organoid for well-differentiated or solid/diffuse for poorly differentiated cases. In MEECs, the most aggressive cell population drives the clinical behaviour. Conversely, ADC-NE generally do not show a different clinical outcome, compared to the corresponding conventional forms, except for prostatic adenocarcinoma, in which NE cells are a negative prognostic factor. The recognition of MEECs may be of relevance for a targeted therapeutic strategy, foreseeing the use of biotherapies similar to those proposed for pure NE tumours.
Collapse
Affiliation(s)
- Marco Volante
- Department of Clinical and Biological Sciences, University of Turin and San Luigi Hospital, Regione Gonzole10, 10043 Orbassano-Torino, Italy
| | | | | |
Collapse
|
29
|
Shan L, Aster JC, Sklar J, Sunday ME. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. Am J Physiol Lung Cell Mol Physiol 2006; 292:L500-9. [PMID: 17028268 DOI: 10.1152/ajplung.00052.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The notch gene family encodes transmembrane receptors that regulate cell differentiation by interacting with surface ligands on adjacent cells. Previously, we demonstrated that tumor necrosis factor-alpha (TNF) induces neuroendocrine (NE) cell differentiation in H82, but not H526, undifferentiated small cell lung carcinoma lines. We now test the hypothesis that TNF mediates NE cell differentiation in part by altering Notch gene expression. First, using RT-PCR, we determined that TNF treatment of H82, but not H526, transiently decreases notch-1 mRNA in parallel with induction of gene expression for the NE-specific marker DOPA decarboxylase (DDC). Second, we treated H82 and H526 with notch-1 antisense vs. sense oligodeoxynucleotides. Using quantitative RT-PCR and Western analyses we demonstrate that DDC mRNA and protein are increased in H82 by notch-1 antisense, whereas notch-1 mRNA and activated Notch-1 protein are decreased. mRNA for Hes1, a transcription factor downstream from activated Notch, is also decreased by Notch-1 antisense in H82 but not H526. After 7 days of Notch-1 antisense treatment, neural cell adhesion molecule (NCAM) immunoreactivity is induced in H82 but not H526. Third, we generated transgenic mice bearing notch-1 driven by the neural/NE-specific calcitonin promoter, which express activated Notch-1 in developing lung epithelium. Newborn NotchCal mouse lungs have high levels of hes1 mRNA, reflecting increased activated Notch, compared with wild-type. NotchCal lungs have decreased CGRP-positive NE cells, decreased protein gene product 9.5 (PGP9.5)-positive NE cells, and decreased gastrin-releasing peptide (GRP), CGRP, and DDC mRNA levels compared with normal littermates. Cumulatively, these observations provide further support for a role for Notch-1 signaling in regulating pulmonary NE cell differentiation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcitonin/genetics
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Dopa Decarboxylase/genetics
- Gastrin-Releasing Peptide/genetics
- Gastrin-Releasing Peptide/metabolism
- Gene Expression/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung/cytology
- Lung/drug effects
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice
- Mice, Transgenic
- Neural Cell Adhesion Molecules/metabolism
- Neurosecretory Systems/cytology
- Neurosecretory Systems/drug effects
- Oligonucleotides, Antisense/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Lin Shan
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Pulmonary neuroendocrine cells (PNECs) have been around for 60 years in the scientific literature, although phylogenetically they are ancient. Their traditionally ascribed functions include chemoreception and regulation of lung maturation and growth. There is recent evidence that neuroendocrine (NE) differentiation in the lung is regulated by genes and pathways that are conserved in the development of the nervous system from Drosophila to humans (such as achaete-scute homolog-1), or implicated in the carcinogenesis of the nervous or NE system (such as the retinoblastoma tumor suppressor gene). In addition, complex neural networks are in place to regulate chemosensory and other functions. Even solitary PNECs appear to be innervated. For the first time ever, we have mouse models for lung NE carcinomas, including the most common and virulent small cell lung carcinoma. Moreover, PNECs may be important for inflammatory responses, and pivotal for lung stem cell niches. These discoveries signify an exciting new era for PNECs and are likely to have therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T. ASH1Gene Is a Specific Therapeutic Target for Lung Cancers with Neuroendocrine Features. Cancer Res 2005; 65:10680-5. [PMID: 16322211 DOI: 10.1158/0008-5472.can-05-1404] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancers with neuroendocrine features are usually aggressive, although the underlying molecular mechanisms largely remain to be determined. The basic helix-loop-helix protein, achaete-scute complex-like 1/achaete-scute homologue 1 (ASH1), is expressed in normal fetal pulmonary neuroendocrine cells and lung cancers with neuroendocrine elements and is suggested to be involved in lung carcinogenesis. In the present study, we show inhibition of ASH1 expression by plasmid-based RNA interference (RNAi) to significantly suppress growth of lung cancer cells with ASH1 expression through G2-M cell cycle arrest and accumulation of sub-G1 populations, possibly linked to cleavage of caspase-9 and caspase-7. However, lung cancer cell lines without ASH1 expression and immortalized normal BEAS2B bronchial epithelial cells were not affected. The RNAi-resistant mutant ASH1 clearly induced rescue from G2-M arrest, suggesting a target-specific effect of RNAi. An ASH1-RNAi adenovirus was also established and significantly inhibited not only in vitro cell proliferation but also in vivo xenograft growth of ASH1-positive NCI-H460 cells. Elevated levels of apoptosis were also observed in NCI-H460 xenografts with the ASH1-RNAi adenovirus. The present study therefore suggests that ASH1 plays a crucial role in lung cancer development and may be an effective therapeutic target in lung cancers with neuroendocrine features.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Chikusa, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
32
|
Fukushima M, Homma KI, Hashimoto T, Suzuki R, Koike T. Histologically unique case of combined small cell and squamous cell carcinoma in a polypoid bronchial tumor. Pathol Int 2005; 55:785-91. [PMID: 16287494 DOI: 10.1111/j.1440-1827.2005.01907.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Presented herein is a case of combined small cell and squamous cell carcinoma in a polypoid bronchial tumor, showing a histologically unique progression, in a 76-year-old Japanese man. A bronchofiberscopic examination revealed that the bronchus (left B3) was occluded by the polypoid tumor. Biopsies were performed, and the pathological diagnosis was poorly differentiated squamous cell carcinoma. The patient consequently underwent a left upper lung lobectomy. The surgical specimen was described as a 24 x 8 x 8 mm soft tumor, emanating from the bronchial wall (left B3). Histologically, the tumor had two distinct components: (i) nearly the entire tumor was composed of atypical small round cells, with a high nuclear-cytoplasmic ratio, in the lamina propria, under the basement membrane; and (ii) the surface of the tumor was composed of poorly differentiated squamous cell carcinoma that had proliferated primarily above the basement membrane but there was also some proliferation, seen as island-like formations, below the basement membrane. The histological diagnosis was combined small cell and squamous cell carcinoma. It was suspected that poorly differentiated squamous cell carcinoma, generated in the bronchial epithelium, had caused small cell carcinoma resulting from neuroendocrine differentiation during its invasion into the lamina propria.
Collapse
|
33
|
Abstract
In recent years several new mouse models for lung cancer have been described. These include models for both non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Tumorigenesis in these conditional mouse tumor models can be initiated in adult mice through Cre-recombinase-induced activation of oncogenic mutations in a subset of the cells. They present a marked improvement over mouse models that depend on carcinogen induction of tumors. These models permit us to study the consecutive steps involved in initiation and progression and allow us to address questions like the cell of origin, and the role of cancer stem cells in the maintenance of these tumors. They now need to be validated as suitable preclinical models for intervention studies in which questions with respect to therapy response and resistance can be addressed.
Collapse
Affiliation(s)
- Ralph Meuwissen
- Division of Molecular Genetics and Center of Biomedical Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Abstract
The basic helix-loop-helix proteins form a special group of transcription factors unique for the eukaryotic organisms. They are crucial for the embryonic development of many fundamental organ systems such as muscle, heart, central nervous system, hematopoiteic system, and many others. They are very flexible in terms of regulating transcription in that they can either promote or repress transcription, and do so in many different ways. Basic helix-loop-helix proteins can form homo- or heterodimers with other members of the group, and are subject to post-transcriptional modifications. In this review, an overview of basic helix-loop-helix protein classification, biochemical function, and examples of past and recent advances in our understanding of embryonic development are presented, with emphasis on the vertebrate muscle, heart, brain, and eye.
Collapse
Affiliation(s)
- Tord Hjalt
- Department for Cell and Molecular Biology, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|