1
|
Wang Y, Qin D, Guo Z, Shi F, Cannella N, Ciccocioppo R, Li H. Research progress on the potential novel analgesic BU08028. Eur J Pharmacol 2022; 914:174678. [PMID: 34875275 DOI: 10.1016/j.ejphar.2021.174678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Pain is a common symptom accompanying several clinical conditions and causes serious distress to patients. Addressing pain management is an important aspect of disease treatment, including cancer therapy. Opioid analgesics used to manage pain in human and veterinary medicine have been associated with substance dependence and other adverse effects, thereby limiting their application. Thus, the development of opioid analgesics with good safety profiles with minimal adverse effects and no addictive effects, is presently the focus of pain research. As a new potential analgesic, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028) has fewer adverse effects than other analgesics and is expected to be a safer alternative. In this review, we discuss the development of the opioid analog BU08028 and summarize its analgesic effects and biological characteristics, including efficiency, safety, and tolerance. Furthermore, we elaborate on studies showing the bifunctional effect of BU08028, which targets both mu opioid peptide and nociceptin-orphanin FQ peptide receptors, as well as the unique advantages of using BU08028 over single-target opioid agonists. Previous studies have suggested that BU08028 can not only weaken the reward and abuse effects of opioids and other drugs, but also enhance the anti-nociceptive effect of the mu opioid peptide receptors, making it a potent analgesic. Besides, we describe studies suggesting that BU08028 inhibits the effects of alcohol, making it a candidate drug for the management of alcohol addiction. Our review suggests that BU08028 is a potential novel medicine for managing pain and addiction.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Di Qin
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Zhihua Guo
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| |
Collapse
|
2
|
Pergolizzi JV, LeQuang JA, Berger GK, Raffa RB. The Basic Pharmacology of Opioids Informs the Opioid Discourse about Misuse and Abuse: A Review. Pain Ther 2017; 6:1-16. [PMID: 28341939 PMCID: PMC5447545 DOI: 10.1007/s40122-017-0068-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 02/01/2023] Open
Abstract
Morphine and other opioids are widely used to manage moderate to severe acute pain syndromes, such as pain associated with trauma or postoperative pain, and they have been used to manage chronic pain, even chronic nonmalignant pain. However, recent years have seen a renewed recognition of the potential for overuse, misuse, and abuse of opioids. Therefore, prescribing opioids is challenging for healthcare providers in that clinical effectiveness must be balanced against negative outcomes-with the possibility that neither are achieved perfectly. The current discourse about the dual 'epidemics' of under-treatment of legitimate pain and the over-prescription of opioids is clouded by inadequate or inaccurate understanding of opioid drugs and the endogenous pain pathways with which they interact. An understanding of the basic pharmacology of opioids helps inform the clinician and other stakeholders about these simultaneously under- and over-used agents.
Collapse
Affiliation(s)
| | | | | | - Robert B Raffa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol 2013; 83:907-18. [PMID: 23395957 PMCID: PMC3629824 DOI: 10.1124/mol.112.084632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 11/22/2022] Open
Abstract
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is the fourth and most recently discovered member of the opioid receptor superfamily that also includes μ, δ, and κ opioid receptor subtypes (MOR, DOR, and KOR, respectively). The widespread anatomic distribution of the NOP receptor enables the modulation of several physiologic processes by its endogenous agonist, N/OFQ. Accordingly, the NOP receptor has gained a lot of attention as a potential target for the development of ligands with therapeutic use in several pathophysiological states. NOP receptor activation frequently results in effects opposing classic opioid receptor action; therefore, regulation of the NOP receptor and conditions affecting its modulatory tone are important to understand. Mounting evidence reveals a heterologous interaction of the NOP receptor with other G protein-coupled receptors, including MOR, DOR, and KOR, which may subsequently influence their function. Our focus in this review is to summarize and discuss the findings that delineate the cellular mechanisms of NOP receptor signaling and regulation and the regulation of other receptors by N/OFQ and the NOP receptor.
Collapse
Affiliation(s)
- Courtney L Donica
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | | | | | | |
Collapse
|
4
|
Lee H. Effects of co-administration of intrathecal nociceptin/orphanin FQ and opioid antagonists on formalin-induced pain in rats. Yonsei Med J 2013; 54:763-71. [PMID: 23549827 PMCID: PMC3635624 DOI: 10.3349/ymj.2013.54.3.763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/10/2012] [Accepted: 12/12/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Nociceptin/orphanin FQ (N/OFQ) as an endogeneous hexadecapeptide is known to exert antinociceptive effects spinally. The aims of this study were to demonstrate the antinociceptive effects of i.t. N/OFQ and to investigate the possible interaction between N/OFQ and endogenous opioid systems using selective opioid receptor antagonists in rat formalin tests. MATERIALS AND METHODS I.t. N/OFQ was injected in different doses (1-10 nmol) via a lumbar catheter prior to a 50 μL injection of 5% formalin into the right hindpaw of rats. Flinching responses were measured from 0-10 min (phase I, an initial acute state) and 11-60 min (phase II, a prolonged tonic state). To observe which opioid receptors are involved in the anti-nociceptive effect of i.t. N/OFQ in the rat-formalin tests, naltrindole (5-20 nmol), β-funaltrexamine (1-10 nmol), and norbinaltorphimine (10 nmol), selective δ-, μ- and κ-opioid receptor antagonists, respectively, were administered intrathecally 5 min after i.t. N/OFQ. RESULTS I.t. N/OFQ attenuated the formalin-induced flinching responses in a dose-dependent manner in both phases I and II. I.t. administration of naltrindole and β-funaltrexamine dose-dependently reversed the N/OFQ-induced attenuation of flinching responses in both phases; however, norbinaltorphimine did not. CONCLUSION I.t. N/OFQ exerted an antinociceptive effect in both phases of the rat-formalin test through the nociceptin opioid peptide receptor. In addition, the results suggested that δ- and μ-opioid receptors, but not κ-opioid receptors, are involved in the antinociceptive effects of N/OFQ in the spinal cord of rats.
Collapse
Affiliation(s)
- Heeseung Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 158-710, Korea.
| |
Collapse
|
5
|
Mika J, Obara I, Przewlocka B. The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides 2011; 45:247-61. [PMID: 21477860 DOI: 10.1016/j.npep.2011.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/08/2023]
Abstract
Nociceptin-opioid peptide (NOP) receptor, also known as opioid receptor like-1 (ORL1), was identified following the cloning of the kappa-opioid peptide (KOP) receptor, and the characterization of these receptors revealed high homology. The endogenous ligand of NOP, nociceptin (NOC), which shares high homology to dynorphin (DYN), was discovered shortly thereafter, and since then, it has been the subject of several investigations. Despite the many advances in our understanding of the involvement of NOC and DYN systems in pain, tolerance and withdrawal, the precise function of these systems has not been fully characterized. Here, we review the recent literature concerning the distribution of the NOC and DYN systems in the central nervous system and the involvement of these systems in nociceptive transmission, especially under chronic pain conditions. We discuss the use of endogenous and exogenous ligands of NOP and KOP receptors in pain perception, as well as the potential utility of NOP ligands in clinical practice for pain management. We also discuss the modulation of opioid effects by NOC and DYN. We emphasize the important role of neuro-glial interactions in the effects of NOC and DYN, focusing on their presence in neuronal and non-neuronal cells and the changes associated with chronic pain conditions. We also present the dynamics of immune and glial regulation of neuronal functions and the importance of this regulation in the roles of NOC and DYN under conditions of neuropathic pain and in the use of drugs that alter these systems for better control of neuropathic pain.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
6
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
7
|
Bignan GC, Battista K, Connolly PJ, Orsini MJ, Liu J, Middleton SA, Reitz AB. 3-(4-Piperidinyl)indoles and 3-(4-piperidinyl)pyrrolo-[2,3-b]pyridines as ligands for the ORL-1 receptor. Bioorg Med Chem Lett 2006; 16:3524-8. [PMID: 16632355 DOI: 10.1016/j.bmcl.2006.03.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/28/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
A novel series of indoles and 1H-pyrrolo[2,3-b]pyridines having a piperidine ring at the 3-position were synthesized and found to bind with high affinity to the ORL-1 receptor. Structure-activity relationships at the piperidine nitrogen were investigated in each series. Substitution on the phenyl ring and nitrogen atom of the indole and 1H-pyrrolo[2,3-b]pyridine cores generated several selective high-affinity ligands that were agonists of the ORL-1 receptor.
Collapse
Affiliation(s)
- Gilles C Bignan
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C PO Box 300, 1000 Route 202, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kersanté F, Mollereau C, Zajac JM, Roumy M. Anti-opioid activities of NPFF1 receptors in a SH-SY5Y model. Peptides 2006; 27:980-9. [PMID: 16488058 DOI: 10.1016/j.peptides.2005.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/04/2005] [Indexed: 11/28/2022]
Abstract
In order to elucidate the mechanisms of the neuronal anti-opioid activity of Neuropeptide FF, we have transfected the SH-SY5Y neuroblastoma cell line, which expresses mu- and delta-opioid receptors, with the human NPFF1 receptor. The SH1-C7 clone expresses high affinity NPFF1 receptors in the same range order of density as opioid receptors. Similarly to the opioids, acute stimulation with the NPFF1 agonist NPVF inhibits adenylyl cyclase activity and voltage-gated (N-type) Ca2+ currents and enhances the intracellular Ca2+ release triggered by muscarinic receptors activation. In contrast, preincubation of cells with NPVF decreases the response to opioids on both calcium signaling, thus reproducing the cellular anti-opioid activity described in neurons. SH1-C7 cells are therefore a suitable model to investigate the interactions between NPFF and opioid receptors.
Collapse
Affiliation(s)
- Flavie Kersanté
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | |
Collapse
|