1
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
2
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
4
|
Franco R, Rivas‐Santisteban R, Reyes-Resina I, Navarro G. The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. Front Pharmacol 2021; 11:628601. [PMID: 33584311 PMCID: PMC7878529 DOI: 10.3389/fphar.2020.628601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Biased signaling is a concept that has arisen in the G protein-coupled receptor (GCPR) research field, and holds promise for the development of new drug development strategies. It consists of different signaling outputs depending on the agonist's chemical structure. Here we review the most accepted mechanisms for explaining biased agonism, namely the induced fit hypothesis and the key/lock hypothesis, but we also consider how bias can be produced by a given agonist. In fact, different signaling outputs may originate at a given receptor when activated by, for instance, the endogenous agonist. We take advantage of results obtained with adenosine receptors to explain how such mechanism of functional selectivity depends on the context, being receptor-receptor interactions (heteromerization) one of the most relevant and most studied mechanisms for mammalian homeostasis. Considering all the possible mechanisms underlying functional selectivity is essential to optimize the selection of biased agonists in the design of drugs targeting GPCRs.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Rafael Rivas‐Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Irene Reyes-Resina
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Wang X, van Westen GJP, Heitman LH, IJzerman AP. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem Pharmacol 2020; 187:114370. [PMID: 33338473 DOI: 10.1016/j.bcp.2020.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins with around 800 members in the human genome/proteome. Extracellular signals such as hormones and neurotransmitters regulate various biological processes via GPCRs, with GPCRs being the bodily target of 30-40% of current drugs on the market. Complete identification and understanding of GPCR functionality will provide opportunities for novel drug discovery. Yeast expresses three different endogenous GPCRs regulating pheromone and sugar sensing, with the pheromone pathway offering perspectives for the characterization of heterologous GPCR signaling. Moreover, yeast offers a ''null" background for studies on mammalian GPCRs, including GPCR activation and signaling, ligand identification, and characterization of disease-related mutations. This review focuses on modifications of the yeast pheromone signaling pathway for functional GPCR studies, and on opportunities and usage of the yeast system as a platform for human GPCR studies. Finally, this review discusses in some further detail studies of adenosine receptors heterologously expressed in yeast, and what Geoff Burnstock thought of this approach.
Collapse
Affiliation(s)
- Xuesong Wang
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H Heitman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Rev Neurosci 2018; 29:703-726. [DOI: 10.1515/revneuro-2017-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/01/2018] [Indexed: 01/14/2023]
Abstract
Abstract
The proposal of receptor-receptor interactions (RRIs) in the early 1980s broadened the view on the role of G protein-coupled receptors (GPCR) in the dynamics of the intercellular communication. RRIs, indeed, allow GPCR to operate not only as monomers but also as receptor complexes, in which the integration of the incoming signals depends on the number, spatial arrangement, and order of activation of the protomers forming the complex. The main biochemical mechanisms controlling the functional interplay of GPCR in the receptor complexes are direct allosteric interactions between protomer domains. The formation of these macromolecular assemblies has several physiologic implications in terms of the modulation of the signaling pathways and interaction with other membrane proteins. It also impacts on the emerging field of connectomics, as it contributes to set and tune the synaptic strength. Furthermore, recent evidence suggests that the transfer of GPCR and GPCR complexes between cells via the exosome pathway could enable the target cells to recognize/decode transmitters and/or modulators for which they did not express the pertinent receptors. Thus, this process may also open the possibility of a new type of redeployment of neural circuits. The fundamental aspects of GPCR complex formation and function are the focus of the present review article.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Cinzia Tortorella
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences , University of Modena and Reggio Emilia , I-41121 Modena , Italy
- Department of Neuroscience , Karolinska Institutet , S-17177 Stockholm , Sweden
| |
Collapse
|
8
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
9
|
Pinto I, Serpa A, Sebastião AM, Cascalheira JF. The Role of cGMP on Adenosine A 1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus. Front Pharmacol 2016; 7:103. [PMID: 27148059 PMCID: PMC4840265 DOI: 10.3389/fphar.2016.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 01/14/2023] Open
Abstract
Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway.
Collapse
Affiliation(s)
- Isa Pinto
- CICS-UBI - Health Sciences Research Center, University of Beira Interior Covilhã, Portugal
| | - André Serpa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior Covilhã, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of LisbonLisboa, Portugal; Institute of Molecular Medicine, University of LisbonLisboa, Portugal
| | - José F Cascalheira
- CICS-UBI - Health Sciences Research Center, University of Beira InteriorCovilhã, Portugal; Department of Chemistry, University of Beira InteriorCovilhã, Portugal
| |
Collapse
|
10
|
Serpa A, Sebastião AM, Cascalheira JF. Modulation of cGMP accumulation by adenosine A1 receptors at the hippocampus: influence of cGMP levels and gender. Eur J Pharmacol 2014; 744:83-90. [PMID: 25300679 DOI: 10.1016/j.ejphar.2014.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022]
Abstract
Adenosine A1 receptor is highly expressed in hippocampus where it inhibits neurotransmitter release and has neuroprotective activity. Similar actions are obtained by increasing cGMP concentration, but a clear link between adenosine A1 receptor and cGMP levels remains to be established. The present work aims to investigate if cGMP formation is modulated by adenosine A1 receptors at the hippocampus and if this effect is gender dependent. cGMP accumulation, induced by phosphodiesterases inhibitors Zaprinast (100 μM) and Bay 60-7550 (10 μM), and cAMP accumulation, induced by Forskolin (20 μM) and Rolipram (50 μM), were quantified in rat hippocampal slices using specific enzymatic immunoassays. N6-cyclopentyladenosine (CPA, 100 nM) alone failed to modify basal cGMP accumulation. However, the presence of adenosine deaminase (ADA, 2 U/ml) unmasked a CPA (0.03-300 nM) stimulatory effect on basal cGMP accumulation (EC50: 4.2±1.4 nM; Emax: 17±0.9%). ADA influence on CPA activity was specific for cGMP, since inhibition of cAMP accumulation by CPA was not affected by the presence of ADA, though ADA inhibited cAMP accumulation in the absence of CPA. Increasing cGMP accumulation, by about four-fold, with sodium nitroprusside (SNP, 100 μM) abolished the CPA (100 nM) effect on cGMP accumulation in males but did not modify the effect of CPA in female rats. This effect was reversed by 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM), indicating an adenosine A1 receptor mediated effect on cGMP accumulation. In conclusion, adenosine A1 receptors increase intracellular cGMP formation at hippocampus both in males and females under basal conditions, but only in females when cGMP levels are increased by SNP.
Collapse
Affiliation(s)
- André Serpa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
11
|
Franco N, Franco R. Understanding the added value of g-protein-coupled receptor heteromers. SCIENTIFICA 2014; 2014:362937. [PMID: 24864225 PMCID: PMC4017843 DOI: 10.1155/2014/362937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute the most populated family of proteins within the human genome. Since the early sixties work on GPCRs and on GPCR-mediated signaling has led to a number of awards, the most recent being the Nobel Prize in Chemistry for 2012. The future of GPCRs research is surely based on their capacity for heteromerization. Receptor heteromers offer a series of challenges that will help in providing success in academic/basic research and translation into more effective and safer drugs.
Collapse
Affiliation(s)
- Nuria Franco
- Department Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Prevosti Building, Diagonal 645, 08028 Barcelona, Spain
| | - Rafael Franco
- Department Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Prevosti Building, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6946-2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochem J 2011; 435:701-9. [DOI: 10.1042/bj20101749] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.
Collapse
|
14
|
Jinka TR, Carlson ZA, Moore JT, Drew KL. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats. Psychopharmacology (Berl) 2010; 209:217-24. [PMID: 20186398 PMCID: PMC2892230 DOI: 10.1007/s00213-010-1778-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE Evidence links longevity to dietary restriction (DR). A decrease in body temperature (T(b)) is thought to contribute to enhanced longevity because lower T(b) reduces oxidative metabolism and oxidative stress. It is as yet unclear how DR decreases T(b). OBJECTIVE Here, we test the hypothesis that prolonged DR decreases T(b) by sensitizing adenosine A(1) receptors (A(1)AR) and adenosine-induced cooling. METHODS AND RESULTS Sprague-Dawley rats were dietary restricted using an every-other-day feeding protocol. Rats were fed every other day for 27 days and then administered the A(1)AR agonist, N(6)-cyclohexyladenosine (CHA; 0.5 mg/kg, i.p.). Respiratory rate (RR) and subcutaneous T(b) measured using IPTT-300 transponders were monitored every day and after drug administration. DR animals displayed lower RR on day 20 and lower T(b) on day 22 compared to animals fed ad libitum and displayed a larger response to CHA. In all cases, RR declined before T(b). Contrary to previous reports, a higher dose of CHA (5 mg/kg, i.p.) was lethal in both dietary groups. We next tested the hypothesis that sensitization to the effects of CHA was due to increased surface expression of A(1)AR within the hypothalamus. We report that the abundance of A(1)AR in the membrane fraction increases in hypothalamus, but not cortex of DR rats. CONCLUSION These results suggest that every-other-day feeding lowers T(b) via sensitization of thermoregulatory effects of endogenous adenosine by increasing surface expression of A(1)AR. DISCUSSION Evidence that diet can modulate purinergic signaling has implications for the treatment of stroke, brain injury, epilepsy, and aging.
Collapse
|
15
|
Franco R, Canela EI, Casado V, Ferre S. Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. Expert Opin Drug Discov 2010; 5:391-403. [DOI: 10.1517/17460441003653163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Garlid KD, Costa ADT, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 2008; 46:858-66. [PMID: 19118560 DOI: 10.1016/j.yjmcc.2008.11.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/07/2008] [Accepted: 11/26/2008] [Indexed: 01/05/2023]
Abstract
Mitochondria are central players in the pathophysiology of ischemia-reperfusion. Activation of plasma membrane G-coupled receptors or the Na,K-ATPase triggers cytosolic signaling pathways that result in cardioprotection. Our working hypothesis is that the occupied receptors migrate to caveolae, where signaling enzymes are scaffolded into signalosomes that bud off the plasma membrane and migrate to mitochondria. The signalosome-mitochondria interaction then initiates intramitochondrial signaling by opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). MitoK(ATP) opening causes an increase in ROS production, which activates mitochondrial protein kinase C epsilon (PKCvarepsilon), which inhibits the mitochondrial permeability transition (MPT), thus decreasing cell death. We review the experimental findings that bear on these hypotheses and other modes of protection involving mitochondria.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, Portland, OR 97201-0751, USA.
| | | | | | | | | |
Collapse
|
17
|
Internalization and desensitization of adenosine receptors. Purinergic Signal 2007; 4:21-37. [PMID: 18368531 PMCID: PMC2245999 DOI: 10.1007/s11302-007-9086-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/02/2007] [Indexed: 01/28/2023] Open
Abstract
Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed.
Collapse
|
18
|
Sichardt K, Nieber K. Adenosine A(1) receptor: Functional receptor-receptor interactions in the brain. Purinergic Signal 2007; 3:285-98. [PMID: 18404442 PMCID: PMC2072922 DOI: 10.1007/s11302-007-9065-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders.
Collapse
Affiliation(s)
- Kathrin Sichardt
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| | - Karen Nieber
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Romanowska M, Ostrowska M, Komoszyński MA. Adenosine ecto-deaminase (ecto-ADA) from porcine cerebral cortex synaptic membrane. Brain Res 2007; 1156:1-8. [PMID: 17499224 DOI: 10.1016/j.brainres.2007.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 03/28/2007] [Accepted: 04/14/2007] [Indexed: 10/23/2022]
Abstract
We have purified and investigated the role of adenosine ecto-deaminase (ecto-ADA) in porcine brain synaptic membranes and found a low activity of ecto-ADA in synaptic preparations from the cerebral cortex, hippocampus, striatum and medulla oblongata in the presence of purine transport inhibitors (NBTI, dipyridamole and papaverine). The purification procedure with affinity chromatography on epoxy-Toyopearl gel/purine riboside column as a crucial step of purification allowed a 214-fold purification of synaptic ecto-ADA with a yield of 30%. Gel filtration chromatography revealed a molecular mass estimated at 42.4+/-3.9 kDa. The enzyme had a broad optimum pH and was not affected by mono- and divalent cations. Ecto-ADA revealed a low affinity to adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) (K(M)=286.30+/-40.38 microM and 287.14+/-46.50 microM, respectively). We compared the affinity of ecto-ADA to the substrates with the physiological and pathological concentrations of the extracellular Ado in brains that do not exceed a low micromolar range even during ischemia and hypoxia, and with the affinity of adenosine receptors to Ado not exceeding a low nanomolar (A(1) and A(2A) receptors) or low micromolar (A(2B) and A(3)) range. Taken together, our data suggest that the role of synaptic ecto-ADA in the regulation of the ecto-Ado level in the brain and in the termination of adenosine receptor signaling is questionable. The porcine brain synapses must have other mechanisms for the ecto-Ado removal from the synaptic cleft and synaptic ecto-ADA may also play an extra-enzymatic role in cell adhesion and non-enzymatic regulation of adenosine receptor activity.
Collapse
Affiliation(s)
- Małgorzata Romanowska
- Department of Biochemistry, Faculty of Biology and Earth Sciences, Nicolaus Copernicus University, 9 Gagarina St., 87-100 Toruń, Poland.
| | | | | |
Collapse
|
20
|
Shakirzyanova AV, Bukharaeva EA, Nikolsky EE, Giniatullin RA. Negative cross-talk between presynaptic adenosine and acetylcholine receptors. Eur J Neurosci 2006; 24:105-15. [PMID: 16800865 DOI: 10.1111/j.1460-9568.2006.04884.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional interactions between presynaptic adenosine and acetylcholine (ACh) autoreceptors were studied at the frog neuromuscular junction by recording miniature end-plate potentials (MEPPs) during bath or local application of agonists. The frequency of MEPPs was reduced by adenosine acting on presynaptic adenosine A1 receptors (EC(50) = 1.1 microm) or by carbachol acting on muscarinic M2 receptors (EC(50) = 1.8 microm). However, carbachol did not produce the depressant effect when it was applied after the action of adenosine had reached its maximum. This phenomenon implied that the negative cross-talk (occlusion) had occurred between A1 and M2 receptors. Moreover, the occlusion was receptor-specific as ATP applied in the presence of adenosine continued to depress MEPP frequency. Muscarinic antagonists [atropine or 1-[[2-[(diethylamino)methyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepine-6-one) (AFDX-116)] had no effect on the inhibitory action of adenosine and adenosine antagonists [8-(p-sulfophenyl)theophylline (8-SPT) or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX)] had no effect on the action of carbachol. These data suggested that membrane-delimited interactions did not occur between A1 and M2 receptors. Both carbachol and adenosine similarly inhibited quantal release triggered by high potassium, ionomycin or sucrose. These results indicated a convergence of intracellular pathways activated by M2 and A1 receptors to a common presynaptic effector located downstream of Ca(2+) influx. We propose that the negative cross-talk between two major autoreceptors could take place during intense synaptic activity and thereby attenuate the presynaptic inhibitory effects of ACh and adenosine.
Collapse
Affiliation(s)
- A V Shakirzyanova
- Kazan Institute of Biochemistry and Biophysics KSC RAS, 420111 Kazan, Tatarstan, Russia
| | | | | | | |
Collapse
|
21
|
Back SA. Perinatal white matter injury: The changing spectrum of pathology and emerging insights into pathogenetic mechanisms. ACTA ACUST UNITED AC 2006; 12:129-40. [PMID: 16807910 DOI: 10.1002/mrdd.20107] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and diffuses myelination disturbances. Recent neuroimaging studies support that the incidence of PVL is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. Factors that predispose to PVL during prematurity include hypoxia, ischemia, and maternal-fetal infection. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary, but not sufficient to generate PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. Chemical mediators that may contribute to white-matter injury include reactive oxygen species glutamate, cytokines, and adenosine. As our understanding of the pathogenesis of PWMI improves, it is anticipated that new strategies for directly preventing brain injury in premature infants will develop.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, USA.
| |
Collapse
|