1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Vásquez-Londoño CA, Howes MJR, Costa GM, Arboleda G, Rojas-Cardozo MA. Scutellaria incarnata Vent. root extract and isolated phenylethanoid glycosides are neuroprotective against C 2-ceramide toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116218. [PMID: 36738946 DOI: 10.1016/j.jep.2023.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuronal death is a central process in neurodegenerative diseases and represents a therapeutic challenge for their prevention and treatment. Scutellaria incarnata Vent. roots are used traditionally in Colombia for central nervous system conditions including those affecting cognitive functions, but their chemistry and neuroprotective action remain to be explored to understand the scientific basis for their medicinal uses. In this study, S. incarnata roots are investigated to assess whether they have neuroprotective effects that could provide some explanation for their traditional use in neurodegenerative diseases. AIM OF THE STUDY To evaluate the neuroprotective effect of S. incarnata roots and its chemical constituents against C2-ceramide-induced cell death in Cath.-a-differentiated (CAD) cells. MATERIALS AND METHODS S. incarnata root ethanol extract was fractionated and compounds were isolated by column chromatography; their structures were elucidated by nuclear magnetic resonance spectroscopy, mass spectrometry and infrared spectroscopy. The cytotoxic and neuroprotective effects against C2-ceramide of S. incarnata root extract, fractions and isolated compounds were assessed in CAD cells. RESULTS S. incarnata root extract and its n-butanol fraction were not cytotoxic but showed neuroprotective effects against C2-ceramide toxicity in CAD cells. The phenylethanoid glycosides incarnatoside (isolated for the first time) and stachysoside C (12.5, 25 and 50 μg/mL) from S. incarnata roots also protected CAD cells against C2-ceramide without inducing cytotoxic effects. CONCLUSION The observed neuroprotective effects of S. incarnata root extract and isolated phenylethanoid glycosides in CAD cells provide an ethnopharmacological basis for the traditional use of this species in Colombia for central nervous system disorders.
Collapse
Affiliation(s)
- Carlos A Vásquez-Londoño
- Universidad Nacional de Colombia-Sede Bogotá, Faculty of Sciences, Department of Pharmacy, GIFFUN, Bogotá, 111321, Colombia.
| | | | - Geison M Costa
- Pontificia Universidad Javeriana, Faculty of Sciences, Department of Pharmacy, Bogotá, 110231, Colombia
| | - Gonzalo Arboleda
- Universidad Nacional de Colombia-Sede Bogotá, Faculty of Medicine, Department of Pathology - Genetic Institute, Bogotá, 111231, Colombia
| | - Maritza A Rojas-Cardozo
- Universidad Nacional de Colombia-Sede Bogotá, Faculty of Sciences, Department of Pharmacy, GIFFUN, Bogotá, 111321, Colombia.
| |
Collapse
|
3
|
Pfister C, Forstmeier C, Biedermann J, Schermuly J, Demmel F, Wolf P, Kaspers B, Brischwein M. Estimation of dynamic metabolic activity in micro-tissue cultures from sensor recordings with an FEM model. Med Biol Eng Comput 2015; 54:763-72. [PMID: 26296800 DOI: 10.1007/s11517-015-1367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
We estimated the dynamic cell metabolic activity and the distribution of the pH value and oxygen concentration in tissue samples cultured in vitro by using real-time sensor records and a numerical simulation of the underlying reaction-diffusion processes. As an experimental tissue model, we used chicken spleen slices. A finite element method model representing the biochemical processes and including the relevant sensor data was set up. By fitting the calculated results to the measured data, we derived the spatiotemporal values of the pH value, the oxygen concentration and the absolute metabolic activity (extracellular acidification and oxygen uptake rate) of the samples. Notably, the location of the samples in relation to the sensors has a great influence on the detectable metabolic rates. The long-term vitality of the tissue samples strongly depends on their size. We further discuss the benefits and limitations of the model.
Collapse
Affiliation(s)
- Cornelia Pfister
- Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstr. 90/N3, 80333, Munich, Germany. .,HP Medizintechnik GmbH, Bruckmannring 19, 85764, Oberschleißheim, Germany.
| | - Christian Forstmeier
- Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstr. 90/N3, 80333, Munich, Germany
| | - Johannes Biedermann
- Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstr. 90/N3, 80333, Munich, Germany
| | - Julia Schermuly
- Institut für Tierphysiologie, Veterinärstr. 13, 80539, Munich, Germany
| | - Franz Demmel
- Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstr. 90/N3, 80333, Munich, Germany.,HP Medizintechnik GmbH, Bruckmannring 19, 85764, Oberschleißheim, Germany
| | - Peter Wolf
- HP Medizintechnik GmbH, Bruckmannring 19, 85764, Oberschleißheim, Germany
| | - Bernd Kaspers
- Institut für Tierphysiologie, Veterinärstr. 13, 80539, Munich, Germany
| | - Martin Brischwein
- Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstr. 90/N3, 80333, Munich, Germany
| |
Collapse
|
4
|
Jaramillo-Gómez J, Niño A, Arboleda H, Arboleda G. Overexpression of DJ-1 protects against C2-ceramide-induced neuronal death through activation of the PI3K/AKT pathway and inhibition of autophagy. Neurosci Lett 2015. [PMID: 26222260 DOI: 10.1016/j.neulet.2015.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. It is characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Early-onset familial forms of PD are associated with mutations in several genes, including parkin, pink1 and dj-1. DJ-1 encodes a protein whose neuroprotective function has not been completely clarified yet. We aim to understand the neuroprotective mechanisms of DJ-1, in particular, DJ-1's involvement in the regulation of the PI3K/PTEN/AKT/mTOR pathway and neuronal autophagy in a neurotoxic context induced by C2-ceramide, by using CAD cells, a murine cathecolaminergic cell line. We demonstrated that C2-ceramide induces CAD cell death associated with decreased phosphorylation of PTEN at Ser380, AKT at Ser473, and mTOR at Ser2448; and increased of autophagic flux (increased LC3-II and autophagosome formation). Additionally, we showed that overexpression of DJ-1 protects against C2-ceramide-induced neuronal death and it is not associated with change in the phosphorylation of mTOR at Ser2448. In conclusion, these data suggest that DJ-1 reinforces the PI3K/AKT survival pathway and inhibits autophagy, probably by a mechanism independent from mTOR.
Collapse
Affiliation(s)
- Jenny Jaramillo-Gómez
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrea Niño
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Neuroscience and Cell Death Group, Faculty of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
5
|
Silencing of PINK1 inhibits insulin-like growth factor-1-mediated receptor activation and neuronal survival. J Mol Neurosci 2014; 56:188-97. [PMID: 25534921 DOI: 10.1007/s12031-014-0479-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
The etiology of Parkinson's disease remains unknown. Mutations in PINK1 have provided an understanding of the molecular mechanisms of this pathology. PINK1 and Parkin are important in the dismissal of dysfunctional mitochondria. However, the role of PINK1 in the control of neuronal survival pathways is not clear. To determine the role of PINK1 in the control of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway mediated by insulin-like grow factor type 1 (IGF-1), we use a model of mesencephalic neurons (CAD cells), which were transfected with lentiviral PINK1 shRNA or control shRNA constructs. Silencing of PINK1 was determined by RT-PCR and immunoblotting; cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays; proteins of the PI3K/Akt signaling pathway were tested by immunoblotting and IGF-1 receptor, and mitochondria were examined using fluorescence microscopy. PINK1 shRNA-transfected cells showed a reduction in cell survival compared to control shRNA cells. Exposure to IGF-1 induced a rapid and high increase in the phosphorylation level of IGF-1 receptor in control shRNA-transfected cells; however, silencing of PINK1 decreases phosphorylation level of IGF-1 receptor and downstream target proteins such as Akt, GSK3-beta, IRS-1, and hexokinase. Our results further suggest that PINK1 may be regulating the PI3K/Akt neuronal survival pathway through tyrosine kinase receptors such as IGF-1 receptor.
Collapse
|
6
|
PINK1 Overexpression Protects Against C2-ceramide-Induced CAD Cell Death Through the PI3K/AKT Pathway. J Mol Neurosci 2012; 47:582-94. [DOI: 10.1007/s12031-011-9687-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
7
|
Kim EM, Shin EJ, Choi JH, Son HJ, Park IS, Joh TH, Hwang O. Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase-12 during endoplasmic reticulum stress. J Biol Chem 2010; 285:16444-52. [PMID: 20368330 PMCID: PMC2878010 DOI: 10.1074/jbc.m109.093799] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/07/2010] [Indexed: 12/22/2022] Open
Abstract
Although endoplasmic reticulum (ER) stress-induced apoptosis has been associated with pathogenesis of neurodegenerative diseases, the cellular components involved have not been well delineated. The present study shows that matrix metalloproteinase (MMP)-3 plays a role in the ER stress-induced apoptosis. ER stress induced by brefeldin A (BFA) or tunicamycin (TM) increases gene expression of MMP-3, selectively among various MMP subtypes, and the active form of MMP-3 (actMMP-3) in the brain-derived CATH.a cells. Pharmacological inhibition of enzyme activity, small interference RNA-mediated gene knockdown, and gene knock-out of MMP-3 all provide protection against ER stress. MMP-3 acts downstream of caspase-12, because both pharmacological inhibition and gene knockdown of caspase-12 attenuate the actMMP-3 increase, but inhibition and knock-out of MMP-3 do not alter caspase-12. Furthermore, independently of the increase in the protein level, the catalytic activity of MMP-3 enzyme can be increased via lowering of its endogenous inhibitor protein TIMP-1. Caspase-12 causes liberation of MMP-3 enzyme activity by degrading TIMP-1 that is already bound to actMMP-3. TIMP-1 is decreased in response to ER stress, and TIMP-1 overexpression leads to cell protection and a decrease in MMP-3 activity. Taken together, actMMP-3 protein level and catalytic activity are increased following caspase-12 activation during ER stress, and this in turn plays a role in the downstream apoptotic signaling in neuronal cells. MMP-3 and TIMP-1 may therefore serve as cellular targets for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Mee Kim
- From the Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine and
| | - Eun-Jung Shin
- From the Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine and
| | - Ji Hyun Choi
- From the Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine and
| | - Hyo Jin Son
- From the Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine and
| | - Il-Seon Park
- the Research Center for Proteineous Materials and Department of Bio-Materials Engineering, School of Medicine, Chosun University, Gwangju 501-759, Korea, and
| | - Tong H. Joh
- the Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Onyou Hwang
- From the Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine and
- Center for Brain Research, Asan Institute for Life Science, Seoul 138-736, Korea
| |
Collapse
|
8
|
Arboleda G, Morales LC, Benítez B, Arboleda H. Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. ACTA ACUST UNITED AC 2008; 59:333-46. [PMID: 18996148 DOI: 10.1016/j.brainresrev.2008.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 12/14/2022]
Abstract
The present review explores the role of ceramides in neuronal apoptosis, as well as the recent discovery of the signaling pathways involved in this process placing particular emphasis on the correlation between cellular metabolism and neuronal death. Endogenous levels of ceramides are increased following various pro-apoptotic stimuli which have been identified as potential causes of chronic and acute neurodegenerative diseases. Ceramides induce changes in multiple enzymes and cell signaling components. The early inhibition of the neuronal survival pathway regulated by phosphatidil-inositol-3-kinase/protein kinase B or AKT mediated by ceramide may be a relevant early event in the decision of neuronal survival/death. It may perturb several molecular and metabolic functions. In particular it might decrease glycolysis through rapid modulation of hexokinase activity. This would in turn generate limited amounts of mitochondrial substrates leading to mitochondrial dysfunction and neuronal apoptosis. Subtle and early metabolic alterations caused by inhibition of the PI3K/AKT pathway mediated by ceramide may potentially work with genes associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Together they may be determinant steps in downstream events leading to neuronal apoptosis. Therefore, reinforcement of the PI3K/AKT pathway could constitute an important neuroprotective strategy.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Grupo de Neurociencias, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | |
Collapse
|
9
|
Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM. Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci 2007; 25:3030-8. [PMID: 17561816 DOI: 10.1111/j.1460-9568.2007.05557.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ceramide is a lipid second-messenger generated in response to stimuli associated with neurodegeneration that induces apoptosis, a mechanism underlying neuronal death in Parkinson's disease. We tested the hypothesis that insulin-like growth factor-1 (IGF-1) could mediate a metabolic response in CAD cells, a dopaminergic cell line of mesencephalic origin that differentiate into a neuronal-like phenotype upon serum removal, extend processes resembling neurites, synthesize abundant dopamine and noradrenaline and express the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine beta-hydroxylase, and that this process was phosphatidylinositol 3-kinase (PI 3-K)-Akt-dependent and could be inhibited by C(2)-ceramide. The metabolic response was evaluated as real-time changes in extracellular acidification rate (ECAR) using microphysiometry. The IGF-1-induced ECAR response was associated with increased glycolysis, determined by increased NAD(P)H reduction, elevated hexokinase activity and Akt phosphorylation. C(2)-ceramide inhibited all these changes in a dose-dependent manner, and was specific, as it was not induced by the inactive C(2)-ceramide analogue C(2)-dihydroceramide. Inhibition of the upstream kinase, PI 3-K, also inhibited Akt phosphorylation and the metabolic response to IGF-1, similar to C(2)-ceramide. Decreased mitochondrial membrane potential occurred after loss of Akt phosphorylation. These results show that IGF-1 can rapidly modulate neuronal metabolism through PI 3-K-Akt and that early metabolic inhibition induced by C(2)-ceramide involves blockade of the PI 3-K-Akt pathway, and may compromise the first step of glycolysis. This may represent a new early event in the C(2)-ceramide-induced cell death pathway that could coordinate subsequent changes in mitochondria and commitment of neurons to apoptosis.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Arboleda G, Waters C, Gibson R. Inhibition of caspases but not of calpains temporarily protect against C2-ceramide-induced death of CAD cells. Neurosci Lett 2007; 421:245-9. [PMID: 17573191 DOI: 10.1016/j.neulet.2007.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/26/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
Evidence has implicated apoptosis as a mechanism underlying cell death in diverse neurodegenerative diseases including Parkinson's disease (PD). Endogenous agents such as TNF-alpha, INF-gamma, IL-1beta and others stress signals activate the sphingomyelin pathway increasing ceramide levels. Ceramide triggers apoptotic pathways while inhibiting survival signalling, and is involved in the regulation of intracellular Ca(2+) homeostasis and compartmentalisation. The contribution of caspases in neuronal apoptosis has been highlighted by the increased survival exerted by caspase inhibition, but the involvement of calpains during neuronal apoptosis and the potential benefit of their inhibition is still controversial. In the present paper, we have analysed the contribution of caspases and calpains to cell death of CAD cells, a catecholaminergic cell line of mesencephalic origin, following C2-ceramide exposure. Ceramide caused CAD cell death by a dose and time dependant mechanism. 25microM of C2-ceramide caused apoptosis. Analysis of activation of caspases and calpains by differential cleavage of alpha-fodrin showed that although calpains are activated before caspases following C2-ceramide exposure, only caspase inhibition increased cell survival. These results demonstrate the activation of caspases and calpains in C2-ceramide-induced cell death, and support the role of caspase inhibition as a neuroprotective strategy and a plausible therapeutic approach to decrease catecholaminergic cell death.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
11
|
Muresan Z, Muresan V. Neuritic deposits of amyloid-beta peptide in a subpopulation of central nervous system-derived neuronal cells. Mol Cell Biol 2006; 26:4982-97. [PMID: 16782885 PMCID: PMC1489158 DOI: 10.1128/mcb.00371-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/04/2006] [Accepted: 04/18/2006] [Indexed: 11/20/2022] Open
Abstract
Our goal is to understand the pathogenesis of amyloid-beta (Abeta) deposition in the Alzheimer's disease (AD) brain. We established a cell culture system where central nervous system-derived neuronal cells (CAD cells) produce and accumulate within their processes large amounts of Abeta peptide, similar to what is believed to occur in brain neurons, in the initial phases of AD. Using this system, we show that accumulation of Abeta begins within neurites, prior to any detectable signs of neurodegeneration or abnormal vesicular transport. Neuritic accumulation of Abeta is restricted to a small population of neighboring cells that express normal levels of amyloid-beta precursor protein (APP) but show redistribution of BACE1 to the processes, where it colocalizes with Abeta and markers of late endosomes. Consistently, cells that accumulate Abeta appear in isolated islets, suggesting their clonal origin from a few cells that show a propensity to accumulate Abeta. These results suggest that Abeta accumulation is initiated in a small number of neurons by intracellular determinants that alter APP metabolism and lead to Abeta deposition and neurodegeneration. CAD cells appear to recapitulate the biochemical processes leading to Abeta deposition, thus providing an experimental in vitro system for studying the molecular pathobiology of AD.
Collapse
Affiliation(s)
- Zoia Muresan
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | |
Collapse
|