1
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Zhang T, Zhang F, Zhang Y, Li H, Zhu G, Weng T, Huang C, Wang P, He Y, Hu J, Ge G. The roles of serine hydrolases and serum albumin in alisol B 23-acetate hydrolysis in humans. Front Pharmacol 2023; 14:1160665. [PMID: 37089921 PMCID: PMC10117764 DOI: 10.3389/fphar.2023.1160665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: Alisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (Rhizoma Alismatis), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. Methods: The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. Results: AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis via its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. Discussion: This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxin Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Taotao Weng
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Hu
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| | - Guangbo Ge
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| |
Collapse
|
3
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:6440159. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
4
|
Human carboxylesterase 1A plays a predominant role in the hydrolytic activation of remdesivir in humans. Chem Biol Interact 2021; 351:109744. [PMID: 34774545 DOI: 10.1016/j.cbi.2021.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022]
Abstract
Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.
Collapse
|
5
|
Duman-Özdamar ZE, Binay B. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects. Protein J 2021; 40:367-376. [DOI: 10.1007/s10930-021-09968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|
6
|
Dobbs JM, Jenkins ML, Burke JE. Escherichia coli and Sf9 Contaminant Databases to Increase Efficiency of Tandem Mass Spectrometry Peptide Identification in Structural Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2202-2209. [PMID: 32869988 DOI: 10.1021/jasms.0c00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Filtering of nonspecifically binding contaminant proteins from affinity purification mass spectrometry (AP-MS) data is a well-established strategy to improve statistical confidence in identified proteins. The CRAPome (contaminant repository for affinity purification) describes the contaminating background content present in many purification strategies. However, full contaminant lists for nickel-nitrilotriacetic acid (NiNTA) and glutathione S-transferase (GST) affinity matrices are lacking. Similarly, no Spodoptera frugiperda (Sf9) contaminants are available, and only the FLAG-purified contaminants are described for Escherichia coli. For MS experiments that use recombinant protein, such as structural mass spectrometry experiments (hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking, and radical foot-printing), failing to include these contaminants in the search database during the initial tandem MS (MS/MS) identification stage can result in complications in peptide identification. We have created contaminant FASTA databases for Sf9 and E. coli NiNTA or GST purification strategies and show that the use of these databases can effectively improve HDX-MS protein coverage, fragment count, and confidence in peptide identification. This approach provides a robust strategy toward the design of contaminant databases for any purification approach that will expand the complexity of systems able to be interrogated by HDX-MS.
Collapse
Affiliation(s)
- Joseph M Dobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
7
|
Improved linalool production in Saccharomyces cerevisiae by combining directed evolution of linalool synthase and overexpression of the complete mevalonate pathway. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Zhang C, Ma Y, Miao H, Tang X, Xu B, Wu Q, Mu Y, Huang Z. Transcriptomic Analysis of Pichia pastoris ( Komagataella phaffii) GS115 During Heterologous Protein Production Using a High-Cell-Density Fed-Batch Cultivation Strategy. Front Microbiol 2020; 11:463. [PMID: 32265887 PMCID: PMC7098997 DOI: 10.3389/fmicb.2020.00463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Pichia pastoris (Komagataella phaffii) is a methylotrophic yeast that is widely used in industry as a host system for heterologous protein expression. Heterologous gene expression is typically facilitated by strongly inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters. However, protein production is usually accomplished by a fed-batch induction process, which is known to negatively affect cell physiology, resulting in limited protein yields and quality. To assess how yields of exogenous proteins can be increased and to further understand the physiological response of P. pastoris to the carbon conversion of glycerol and methanol, as well as the continuous induction of methanol, we analyzed recombinant protein production in a 10,000-L fed-batch culture. Furthermore, we investigated gene expression during the yeast cell culture phase, glycerol feed phase, glycerol-methanol mixture feed (GM) phase, and at different time points following methanol induction using RNA-Seq. We report that the addition of the GM phase may help to alleviate the adverse effects of methanol addition (alone) on P. pastoris cells. Secondly, enhanced upregulation of the mitogen-activated protein kinase (MAPK) signaling pathway was observed in P. pastoris following methanol induction. The MAPK signaling pathway may be related to P. pastoris cell growth and may regulate the alcohol oxidase1 (AOX1) promoter via regulatory factors activated by methanol-mediated stimulation. Thirdly, the unfolded protein response (UPR) and ER-associated degradation (ERAD) pathways were not significantly upregulated during the methanol induction period. These results imply that the presence of unfolded or misfolded phytase protein did not represent a serious problem in our study. Finally, the upregulation of the autophagy pathway during the methanol induction phase may be related to the degradation of damaged peroxisomes but not to the production of phytase. This work describes the metabolic characteristics of P. pastoris during heterologous protein production under high-cell-density fed-batch cultivation. We believe that the results of this study will aid further in-depth studies of P. pastoris heterologous protein expression, regulation, and secretory mechanisms.
Collapse
Affiliation(s)
- Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Yu Ma
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
9
|
Rezaie E, Amani J, Bidmeshki Pour A, Mahmoodzadeh Hosseini H. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; High in vitro anti-cancer potency. Eur J Pharmacol 2020; 870:172912. [PMID: 31926992 DOI: 10.1016/j.ejphar.2020.172912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Immunotoxin therapy is one of the immunotherapy strategies providing a new, effective and high potency treatment against various cancers. Breast cancer is the most common cancer among women in many countries. The EPH receptors are a large part of tyrosine kinase receptors family and play an effective role in tumor development and angiogenesis. Among EPH receptors, EPHA2 is more commonly well-known and widely expressed in many cancers like breast cancer. In this study, we evaluated the specification of a designed immunotoxin formed by EPHA2-specific scfv linked with PE38KDEL on EPHA2-overexpressing breast cancer cell line. This new scfv-based recombinant immunotoxin was studied in terms of features such as binding potency, cytotoxicity effects, apoptosis induction ability, and internalization. The flow cytometry results showed that the immunotoxin can significantly (approximately 99%) bind to EPHA2-overexpressing breast cancer cell line (MDA-MB-231) in a low concentration (2.5 ng/ul) while cannot significantly bind to the normal cell line (HEK-293) or even EPHA2-very low expressing cell line (MCF-7). Using the MTT assay and Annexin V/Propidium iodide (PI) double staining method by flow cytometry, we observed significant killing and apoptosis induction of the MDA-MB-231 cells at different concentrations. Immunotoxin tracking by confocal microscopy at 2 h and 6 h revealed a massive presence of immunotoxin in the cytoplasm. Finally, given the in vitro results, it seems that this immunotoxin is competent enough to serve as a good candidate for in vivo studies to further explore the possibility of breast cancer treatment.
Collapse
Affiliation(s)
- Ehsan Rezaie
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran; Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hatfield MJ, Binder RJ, Gannon R, Fratt EM, Bowling J, Potter PM. Potent, Irreversible Inhibition of Human Carboxylesterases by Tanshinone Anhydrides Isolated from Salvia miltiorrhiza ("Danshen"). JOURNAL OF NATURAL PRODUCTS 2018; 81:2410-2418. [PMID: 30351923 PMCID: PMC6263802 DOI: 10.1021/acs.jnatprod.8b00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip M. Potter
- Corresponding author. Philip M. Potter, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States, Tel: 901-595-6045, Fax: 901-595-4293,
| |
Collapse
|
11
|
Bracke A, Hoogewijs D, Dewilde S. Exploring three different expression systems for recombinant expression of globins: Escherichia coli, Pichia pastoris and Spodoptera frugiperda. Anal Biochem 2017; 543:62-70. [PMID: 29203135 DOI: 10.1016/j.ab.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Globins are among the best investigated proteins in biological and medical sciences and represent a prime tool for the study of the evolution of genes and the structure-function relationship of proteins. Here, we explore the recombinant expression of globins in three different expression systems: Escherichia coli, Pichia pastoris and the baculovirus infected Spodoptera frugiperda. We expressed two different human globin types in these three expression systems: I) the well-characterized neuroglobin and II) the uncharacterized, circular permutated globin domain of the large chimeric globin androglobin. It is clear from the literature that E.coli is the most used expression system for expression and purification of recombinant globins. However, the major disadvantage of E. coli is the formation of insoluble aggregates. We experienced that, for more complex multi-domain globins, like the chimeric globin androglobin, it is recommended to switch to a higher eukaryotic expression system.
Collapse
Affiliation(s)
- An Bracke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Chemin du Musée 5, CH 1700 Fribourg, Switzerland
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.
| |
Collapse
|
12
|
Bae JH, Kim IH, Lee KT, Hou CT, Kim HR. Molecular cloning and characterization of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Hatfield MJ, Chen J, Fratt EM, Chi L, Bollinger JC, Binder RJ, Bowling J, Hyatt JL, Scarborough J, Jeffries C, Potter PM. Selective Inhibitors of Human Liver Carboxylesterase Based on a β-Lapachone Scaffold: Novel Reagents for Reaction Profiling. J Med Chem 2017; 60:1568-1579. [PMID: 28112927 DOI: 10.1021/acs.jmedchem.6b01849] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboxylesterases (CEs) are ubiquitous enzymes that are responsible for the metabolism of xenobiotics, including drugs such as irinotecan and oseltamivir. Inhibition of CEs significantly modulates the efficacy of such agents. We report here that β-lapachone is a potent, reversible CE inhibitor with Ki values in the nanomolar range. A series of amino and phenoxy analogues have been synthesized, and although the former are very poor inhibitors, the latter compounds are highly effective in modulating CE activity. Our data demonstrate that tautomerism of the amino derivatives to the imino forms likely accounts for their loss in biological activity. A series of N-methylated amino derivatives, which are unable to undergo such tautomerism, were equal in potency to the phenoxy analogues and demonstrated selectivity for the liver enzyme hCE1. These specific inhibitors, which are active in cell culture models, will be exceptionally useful reagents for reaction profiling of esterified drugs in complex biological samples.
Collapse
Affiliation(s)
- M Jason Hatfield
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Jingwen Chen
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Ellie M Fratt
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Liying Chi
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - John C Bollinger
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Randall J Binder
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - John Bowling
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Janice L Hyatt
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Jerrod Scarborough
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Cynthia Jeffries
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, ‡Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| |
Collapse
|
14
|
Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-β-1,3(4)-glucanase. Fungal Biol 2017; 121:61-68. [DOI: 10.1016/j.funbio.2016.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022]
|
15
|
Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance. AAPS JOURNAL 2016; 18:1391-1405. [PMID: 27495117 DOI: 10.1208/s12248-016-9962-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023]
Abstract
Over the years, significant progress has been made in reducing metabolic instability due to cytochrome P450-mediated oxidation. High-throughput metabolic stability screening has enabled the advancement of compounds with little to no oxidative metabolism. Furthermore, high lipophilicity and low aqueous solubility of presently pursued chemotypes reduces the probability of renal excretion. As such, these low microsomal turnover compounds are often substrates for non-CYP-mediated metabolism. UGTs, esterases, and aldehyde oxidase are major enzymes involved in catalyzing such metabolism. Hepatocytes provide an excellent tool to identify such pathways including elucidation of major metabolites. To predict human PK parameters for P450-mediated metabolism, in vitro-in vivo extrapolation using hepatic microsomes, hepatocytes, and intestinal microsomes has been actively investigated. However, such methods have not been sufficiently evaluated for non-P450 enzymes. In addition to the involvement of the liver, extrahepatic enzymes (intestine, kidney, lung) are also likely to contribute to these pathways. While there has been considerable progress in predicting metabolic pathways and clearance primarily mediated by the liver, progress in characterizing extrahepatic metabolism and prediction of clearance has been slow. Well-characterized in vitro systems or in vivo animal models to assess drug-drug interaction potential and intersubject variability due to polymorphism are not available. Here we focus on the utility of appropriate in vitro studies to characterize non-CYP-mediated metabolism and to understand the enzymes involved followed by pharmacokinetic studies in the appropriately characterized surrogate species. The review will highlight progress made in establishing in vitro-in vivo correlation, predicting human clearance and avoiding costly clinical failures when non-CYP-mediated metabolic pathways are predominant.
Collapse
Affiliation(s)
- Upendra A Argikar
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Matthew Hutzler
- Q2 Solutions, Bioanalytical and ADME Labs, Indianapolis, Indiana, USA
| | - Punit H Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA.
| |
Collapse
|
16
|
Arena de Souza V, Scott DJ, Nettleship JE, Rahman N, Charlton MH, Walsh MA, Owens RJ. Comparison of the Structure and Activity of Glycosylated and Aglycosylated Human Carboxylesterase 1. PLoS One 2015; 10:e0143919. [PMID: 26657071 PMCID: PMC4676782 DOI: 10.1371/journal.pone.0143919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme.
Collapse
Affiliation(s)
- Victoria Arena de Souza
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - David J. Scott
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
| | - Joanne E. Nettleship
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Nahid Rahman
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Michael H. Charlton
- Chroma Therapeutics Ltd., 93 Innovation Drive Milton Park, Abingdon, United Kingdom
| | - Martin A. Walsh
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (MAW); (RJO)
| | - Raymond J. Owens
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- * E-mail: (MAW); (RJO)
| |
Collapse
|
17
|
Alves M, Lamego J, Bandeiras T, Castro R, Tomás H, Coroadinha AS, Costa J, Simplício AL. Human carboxylesterase 2: Studies on the role of glycosylation for enzymatic activity. Biochem Biophys Rep 2015; 5:105-110. [PMID: 28955811 PMCID: PMC5598387 DOI: 10.1016/j.bbrep.2015.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
Human carboxylesterase 2 (hCES2) is a glycoprotein involved in the metabolism of drugs and several environmental xenobiotics, whose crystallization has been proved to be a challenging task. This limitation could partly be due to glycosylation heterogeneity and has delayed the disclosure of the 3D structure of hCES2 which would be of upmost relevance for the development of new substrates and inhibitors. The present work evaluated the involvement of glycans in hCES2 activity and thermo stability in an attempt to find alternative active forms of the enzyme that might be adequate for structure elucidation. Partial or non-glycosylated forms of a secreted form of hCES2 have been obtained by three approaches: (i) enzymatic deglycosylation with peptide N-glycosidase F; (ii) incubation with the inhibitor tunicamycin; ii) site directed mutagenesis of each or both N-glycosylation sites. Deglycosylated protein did not show a detectable decrease in enzyme activity. On the other hand, tunicamycin led to decreased levels of secreted hCES2 but the enzyme was still active. In agreement, mutation of each and both N-glycosylation sites led to decreased levels of secreted active hCES2. However, the thermostability of the glycosylation mutants was decreased. The results indicated that glycans are involved, to some extent in protein folding in vivo, however, removal of glycans does not abrogate the activity of secreted hCES2.
Collapse
Affiliation(s)
- Márcia Alves
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal.,Instituto de Tecnologia Quiímica e Biológica, 2780-157 Oeiras, Portugal
| | - Joana Lamego
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal.,Instituto de Tecnologia Quiímica e Biológica, 2780-157 Oeiras, Portugal
| | - Tiago Bandeiras
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Rute Castro
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Hélio Tomás
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Ana Sofia Coroadinha
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal.,Instituto de Tecnologia Quiímica e Biológica, 2780-157 Oeiras, Portugal
| | - Júlia Costa
- Instituto de Tecnologia Quiímica e Biológica, 2780-157 Oeiras, Portugal
| | - Ana Luisa Simplício
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal.,Instituto de Tecnologia Quiímica e Biológica, 2780-157 Oeiras, Portugal
| |
Collapse
|
18
|
Izawa N, Kudo M, Nakamura Y, Mizukoshi H, Kitada T, Sone T. Production of aroma compounds from whey using Wickerhamomyces pijperi. AMB Express 2015; 5:23. [PMID: 25897405 PMCID: PMC4397261 DOI: 10.1186/s13568-015-0108-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022] Open
Abstract
The production of aroma compounds by the microbial fermentation of whey was studied. Seven strains of the yeast Wickerhamomyces pijperi were used for the fermentation of glucose-added whey (whey-g). Twelve aroma compounds (isobutanol, isoamyl alcohol, 2-phenylethanol, acetaldehyde, ethyl acetate, propyl acetate, isobutyl acetate, isoamyl acetate, ethyl butyrate, ethyl propionate, ethyl hexanoate and ethyl benzoate) were identified in the fermented broth using headspace gas chromatography mass spectrometry analysis. The major components were ethyl acetate (several tens to hundreds ppm), acetaldehyde (several tens ppm) and isoamyl alcohol (about 10 ppm). The strong fruity odor of ethyl benzoate (about 1 ppm) was detected in the broth of W. pijperi YIT 8095 and YIT 12779. The balance of aroma compounds produced was varied depending on the media used, and ethyl benzoate was only produced when using whey-g. The variation in the production of the aroma compounds over time using W. pijperi YIT 12779 at various culture temperatures (from 15–30°C) was also studied. From the results we propose that W. pijperi could be used as a novel microorganism for production of aroma compounds from whey.
Collapse
|
19
|
Boonyuen U, Promnares K, Junkree S, Day NPJ, Imwong M. Efficient in vitro refolding and functional characterization of recombinant human liver carboxylesterase (CES1) expressed in E. coli. Protein Expr Purif 2014; 107:68-75. [PMID: 25462813 PMCID: PMC4294421 DOI: 10.1016/j.pep.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/16/2022]
Abstract
Expression of recombinant human carboxylesterase I in E.coli is mainly insoluble. Refolding using a combination of 1% glycerol and 2 mM β-mercaptoethanol in Tris–HCl, pH 7.5 significantly improved solubility. Purified recombinant human CES1 is functionally active and stable. We provided efficient method to produce large amount and catalytically active CES1.
Human liver carboxylesterase 1 (CES1) plays a critical role in the hydrolysis of various ester- and amide-containing molecules, including active metabolites, drugs and prodrugs. However, it has been problematic to express recombinant CES1 in bacterial expression systems due to low solubility, with the CES1 protein being mainly expressed in inclusion bodies, accompanied by insufficient purity issues. In this study, we report an efficient in vitro method for refolding recombinant CES1 from inclusion bodies. A one-step purification with an immobilized-metal affinity column was utilized to purify His-tagged recombinant CES1. Conveniently, both denaturant and imidazole can be removed while the enzyme is refolded via buffer exchange, a dilution method. We show that the refolding of recombinant CES1 was successful in Tris–HCl at pH 7.5 containing a combination of 1% glycerol and 2 mM β-mercaptoethanol, whereas a mixture of other additives (trehalose, sorbitol and sucrose) and β-mercaptoethanol failed to recover a functional protein. His-tagged recombinant CES1 retains its biological activity after refolding and can be used directly without removing the fusion tag. Altogether, our results provide an alternative method for obtaining a substantial amount of functionally active protein, which is advantageous for further investigations such as structural and functional studies.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Kamoltip Promnares
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand.
| | - Suwapat Junkree
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Nichloas P J Day
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, Oxford, United Kingdom.
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. Int J Food Microbiol 2014; 182-183:1-8. [PMID: 24854386 DOI: 10.1016/j.ijfoodmicro.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 11/23/2022]
Abstract
The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline serine protease could be developed as a postharvest treatment with antimicrobial activity for fruit undergoing a short storage period.
Collapse
|
21
|
Metz MZ, Gutova M, Lacey SF, Abramyants Y, Vo T, Gilchrist M, Tirughana R, Ghoda LY, Barish ME, Brown CE, Najbauer J, Potter PM, Portnow J, Synold TW, Aboody KS. Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med 2013; 2:983-92. [PMID: 24167321 DOI: 10.5966/sctm.2012-0177] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CPT-11 (irinotecan) has been investigated as a treatment for malignant brain tumors. However, limitations of CPT-11 therapy include low levels of the drug entering brain tumor sites and systemic toxicities associated with higher doses. Neural stem cells (NSCs) offer a novel way to overcome these obstacles because of their inherent tumor tropism and ability to cross the blood-brain barrier, which enables them to selectively target brain tumor sites. Carboxylesterases (CEs) are enzymes that can convert the prodrug CPT-11 (irinotecan) to its active metabolite SN-38, a potent topoisomerase I inhibitor. We have adenovirally transduced an established clonal human NSC line (HB1.F3.CD) to express a rabbit carboxylesterase (rCE) or a modified human CE (hCE1m6), which are more effective at converting CPT-11 to SN-38 than endogenous human CE. We hypothesized that NSC-mediated CE/CPT-11 therapy would allow tumor-localized production of SN-38 and significantly increase the therapeutic efficacy of irinotecan. Here, we report that transduced NSCs transiently expressed high levels of active CE enzymes, retained their tumor-tropic properties, and mediated an increase in the cytotoxicity of CPT-11 toward glioma cells. CE-expressing NSCs (NSC.CEs), whether administered intracranially or intravenously, delivered CE to orthotopic human glioma xenografts in mice. NSC-delivered CE catalyzed conversion of CPT-11 to SN-38 locally at tumor sites. These studies demonstrate the feasibility of NSC-mediated delivery of CE to glioma and lay the foundation for translational studies of this therapeutic paradigm to improve clinical outcome and quality of life in patients with malignant brain tumors.
Collapse
|
22
|
Wang R, Borazjani A, Matthews AT, Mangum LC, Edelmann MJ, Ross MK. Identification of palmitoyl protein thioesterase 1 in human THP1 monocytes and macrophages and characterization of unique biochemical activities for this enzyme. Biochemistry 2013; 52:7559-74. [PMID: 24083319 DOI: 10.1021/bi401138s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The profiles of serine hydrolases in human and mouse macrophages are similar yet different. For instance, human macrophages express high levels of carboxylesterase 1 (CES1), whereas mouse macrophages have minimal amounts of the orthologous murine CES1. On the other hand, macrophages from both species exhibit limited expression of the canonical 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, MAGL. Our previous study showed CES1 was partly responsible for the hydrolysis of 2-AG (50%) and prostaglandin glyceryl esters (PG-Gs) (80-95%) in human THP1 monocytes and macrophages. However, MAGL and other endocannabinoid hydrolases, FAAH, ABHD6, and ABHD12, did not have a role because of limited expression or no expression. Thus, another enzyme was hypothesized to be responsible for the remaining 2-AG hydrolysis activity following chemical inhibition and immunodepletion of CES1 (previous study) or CES1 gene knockdown (this study). Here we identified two candidate serine hydrolases in THP1 cell lysates by activity-based protein profiling (ABPP)-MUDPIT and Western blotting: cathepsin G and palmitoyl protein thioesterase 1 (PPT1). Both proteins exhibited electrophoretic properties similar to those of a serine hydrolase in THP1 cells detected by gel-based ABPP at 31-32 kDa; however, only PPT1 exhibited lipolytic activity and hydrolyzed 2-AG in vitro. Interestingly, PPT1 was strongly expressed in THP1 cells but was significantly less reactive than cathepsin G toward the activity-based probe, fluorophosphonate-biotin. KIAA1363, another serine hydrolase, was also identified in THP1 cells but did not have significant lipolytic activity. On the basis of chemoproteomic profiling, immunodepletion studies, and chemical inhibitor profiles, we estimated that PPT1 contributed 32-40% of 2-AG hydrolysis activity in the THP1 cell line. In addition, pure recombinant PPT1 catalyzed the hydrolysis of 2-AG, PGE2-G, and PGF2α-G, although the catalytic efficiency of hydrolysis of 2-AG by PPT1 was ~10-fold lower than that of CES1. PPT1 was also insensitive to several chemical inhibitors that potently inhibit CES1, such as organophosphate poisons and JZL184. This is the first report to document the expression of PPT1 in a human monocyte and macrophage cell line and to show PPT1 can hydrolyze the natural substrates 2-AG and PG-Gs. These findings suggest that PPT1 may participate in endocannabinoid metabolism within specific cellular contexts and highlights the functional redundancy often exhibited by enzymes involved in lipid metabolism.
Collapse
Affiliation(s)
- Ran Wang
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University , University, Mississippi 39762, United States
| | | | | | | | | | | |
Collapse
|
23
|
Cushman I, Cushman SM, Potter PM, Casey PJ. Control of RhoA methylation by carboxylesterase I. J Biol Chem 2013; 288:19177-83. [PMID: 23658012 DOI: 10.1074/jbc.m113.467407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of proteins that play key roles in cell signaling are post-translationally modified by the prenylation pathway. The final step in this pathway is methylation of the carboxyl terminus of the prenylated protein by isoprenylcysteine carboxylmethyltransferase. Due to the impact of methylation on Rho function, we sought to determine if the process was reversible and hence could control Rho function in a dynamic fashion. Elevating isoprenylcysteine carboxylmethyltransferase activity in cells has profound effects on MDA-MB-231 cell morphology, implying the presence of a pool of unmethylated prenyl proteins in these cells under normal conditions. Using a knockdown approach, we identified a specific esterase, carboxylesterase 1, whose function had a clear impact not only on the methylation status of RhoA but also RhoA activation and cell morphology. These data provide compelling evidence that C-terminal modification of prenyl proteins, rather than being purely a constitutive process, can serve as a point of regulation of function for this important class of protein.
Collapse
Affiliation(s)
- Ian Cushman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
24
|
Hatfield MJ, Tsurkan LG, Hyatt JL, Edwards CC, Lemoff A, Jeffries C, Yan B, Potter PM. Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza ("Danshen"). JOURNAL OF NATURAL PRODUCTS 2013; 76:36-44. [PMID: 23286284 PMCID: PMC3556224 DOI: 10.1021/np300628a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The roots of Salvia miltiorrhiza ("Danshen") are used in traditional Chinese medicine for the treatment of numerous ailments including cardiovascular disease, hypertension, and ischemic stroke. Extracts of S. miltiorrhiza roots in the formulation "Compound Danshen Dripping Pill" are undergoing clinical trials in the United States. To date, the active components of this material have not been conclusively identified. We have determined that S. miltiorrhiza roots contain potent human carboxylesterase (CE) inhibitors, due to the presence of tanshinones. K(i) values in the nM range were determined for inhibition of both the liver and intestinal CEs. As CEs hydrolyze clinically used drugs, the ability of tanshinones and S. miltiorrhiza root extracts to modulate the metabolism of the anticancer prodrug irinotecan (CPT-11) was assessed. Our results indicate that marked inhibition of human CEs occurs following incubation with both pure compounds and crude material and that drug hydrolysis is significantly reduced. Consequently, a reduction in the cytotoxicity of irinotecan is observed following dosing with either purified tanshinones or S. miltiorrhiza root extracts. It is concluded that remedies containing tanshinones should be avoided when individuals are taking esterified agents and that patients should be warned of the potential drug-drug interaction that may occur with this material.
Collapse
|
25
|
Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chem Biol Interact 2012; 203:226-30. [PMID: 23123248 DOI: 10.1016/j.cbi.2012.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022]
Abstract
Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors.
Collapse
|
26
|
Loandos MDH, Muro AC, Villecco MB, Masman MF, Luiten PG, Andujar SA, Suvire FD, Enriz RD. Catalytic and Molecular Properties of Rabbit Liver Carboxylesterase Acting on 1,8-Cineole Derivatives. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rabbit liver carboxylesterase (rCE) was evaluated as the catalyst for the enantioselective hydrolysis of (±)-3-endo-acetyloxy-1,8-cineole [(±)-4], which yields (1S,3S,4R)-(+)-3-acetyloxy-1,8-cineole [(+)-4] and (1R,3R,4S)-(-)-3-hydroxy-1,8-cineole [(-)-3]. Enantioselective asymmetrization of meso-3,5-diacetoxy-1,8-cineol (5) gives (1S,3S,4R,5R)-(-)-3-acetyloxy-5-hydroxy-1,8-cineole (6), with high enantioselectivity. rCE has been chosen to perform both experiments and molecular modeling simulations. Docking simulations combined with molecular dynamics calculations were used to study rCE-catalyzed enantioselective hydrolysis of cineol derivatives. Both compounds were found to bind with their acetyl groups stabilized by hydrogen bond interactions between their oxygen atoms and Ser221.
Collapse
Affiliation(s)
- María del H. Loandos
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, S. M. de Tucumán, T4000INI. Argentina
| | - Ana C. Muro
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, S. M. de Tucumán, T4000INI. Argentina
| | - Margarita B. Villecco
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, S. M. de Tucumán, T4000INI. Argentina
| | - Marcelo F. Masman
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 917, San Luis 5700. Argentina
| | - Paul G.M. Luiten
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sebastian A. Andujar
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 917, San Luis 5700. Argentina
- IMIBIO-SL. Instituto Multidisciplinario de Investigaciones Biológicas, San Luis CONICET
| | - Fernando D. Suvire
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 917, San Luis 5700. Argentina
| | - Ricardo D. Enriz
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 917, San Luis 5700. Argentina
- IMIBIO-SL. Instituto Multidisciplinario de Investigaciones Biológicas, San Luis CONICET
| |
Collapse
|
27
|
Crow JA, Bittles V, Borazjani A, Potter PM, Ross MK. Covalent inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by the carbamates JZL184 and URB597. Biochem Pharmacol 2012; 84:1215-22. [PMID: 22943979 DOI: 10.1016/j.bcp.2012.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Carboxylesterase type 1 (CES1) and CES2 are serine hydrolases located in the liver and small intestine. CES1 and CES2 actively participate in the metabolism of several pharmaceuticals. Recently, carbamate compounds were developed to inhibit members of the serine hydrolase family via covalent modification of the active site serine. URB597 and JZL184 inhibit fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively; however, carboxylesterases in liver have been identified as a major off-target. We report the kinetic rate constants for inhibition of human recombinant CES1 and CES2 by URB597 and JZL184. Bimolecular rate constants (k(inact)/K(i)) for inhibition of CES1 by JZL184 and URB597 were similar [3.9 (±0.2) × 10(3) M(-1) s(-1) and 4.5 (±1.3) × 10(3) M(-1) s(-1), respectively]. However, k(inact)/K(i) for inhibition of CES2 by JZL184 and URB597 were significantly different [2.3 (±1.3) × 10(2) M(-1) s(-1) and 3.9 (±1.0) × 10(3) M(-1) s(-1), respectively]. Rates of inhibition of CES1 and CES2 by URB597 were similar; however, CES1 and MAGL were more potently inhibited by JZL184 than CES2. We also determined kinetic constants for spontaneous reactivation of CES1 carbamoylated by either JZL184 or URB597 and CES1 diethylphosphorylated by paraoxon. The reactivation rate was significantly slower (4.5×) for CES1 inhibited by JZL184 than CES1 inhibited by URB597. Half-life of reactivation for CES1 carbamoylated by JZL184 was 49 ± 15 h, which is faster than carboxylesterase turnover in HepG2 cells. Together, the results define the kinetics of inhibition for a class of drugs that target hydrolytic enzymes involved in drug and lipid metabolism.
Collapse
Affiliation(s)
- J Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | |
Collapse
|
28
|
Larsen A, Gonzalez ET, Serena MS, Echeverría MG, Mortola E. Expression of p24 gag Protein of Bovine Leukemia Virus in Insect Cells and Its Use in Immunodetection of the Disease. Mol Biotechnol 2012; 54:475-83. [DOI: 10.1007/s12033-012-9587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Ross MK, Borazjani A, Wang R, Crow JA, Xie S. Examination of the carboxylesterase phenotype in human liver. Arch Biochem Biophys 2012; 522:44-56. [PMID: 22525521 PMCID: PMC3569858 DOI: 10.1016/j.abb.2012.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Carboxylesterases (CES) metabolize esters. Two CES isoforms are expressed in human liver (CES1 and CES2) and liver extracts are used in reaction phenotyping studies to discern interindividual metabolic variation. We tested the hypothesis that an individual's CES phenotype can be characterized by reporter substrates/probes that interrogate native CES1 and CES2 activities in liver and immunoblotting methods. We obtained 25 livers and found that CES1 is the main hydrolytic enzyme. Moreover, although CES1 protein levels were similar, we observed large interindividual variation in bioresmethrin hydrolysis rates (17-fold), a pyrethroid metabolized by CES1 but not CES2. Bioresmethrin hydrolysis rates did not correlate with CES1 protein levels. In contrast, procaine hydrolysis rates, a drug metabolized by CES2 but not CES1, were much less variant (3-fold). Using activity-based fluorophosphonate probes (FP-biotin), which covalently reacts with active serine hydrolases, CES1 protein was the most active enzyme in the livers. Finally, using bioorthogonal probes and click chemistry methodology, the half-life of CES 1 and 2 in cultured HepG2 cells was estimated at 96 h. The cause of the differential CES1 activities is unknown, but the underlying factors will be important to understand because several carboxylic acid ester drugs and environmental toxicants are metabolized by this enzyme.
Collapse
Affiliation(s)
- Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, United States.
| | | | | | | | | |
Collapse
|
30
|
Carboxylesterase 2 production and characterization in human cells: new insights into enzyme oligomerization and activity. Appl Microbiol Biotechnol 2012; 97:1161-73. [DOI: 10.1007/s00253-012-3994-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
31
|
Xie S, Borazjani A, Hatfield MJ, Edwards CC, Potter PM, Ross MK. Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2. Chem Res Toxicol 2012; 23:1890-904. [PMID: 21049984 DOI: 10.1021/tx1002194] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carboxylesterases (CES) have important roles in pesticide and drug metabolism and contribute to the clearance of ester-containing xenobiotics in mammals. Tissues with the highest levels of CES expression are the liver and small intestine. In addition to xenobiotics, CES also harness their broad substrate specificity to hydrolyze endobiotics, such as cholesteryl esters and triacylglycerols. Here, we determined if two human CES isoforms, CES1 and CES2, hydrolyze the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide (AEA), and two prostaglandin glyceryl esters (PG-Gs), which are formed by COX-mediated oxygenation of 2AG. We show that recombinant CES1 and CES2 efficiently hydrolyze 2AG to arachidonic acid (AA) but not amide-containing AEA. Steady-state kinetic parameters for CES1- and CES2-mediated 2AG hydrolysis were, respectively, kcat, 59 and 43 min(-1); Km, 49 and 46 μM; and kcat/Km, 1.2 and 0.93 μM(-1) min(-1). kcat/Km values are comparable to published values for rat monoacylglycerol lipase (MAGL)-catalyzed 2AG hydrolysis. Furthermore, we show that CES1 and CES2 also efficiently hydrolyze PGE2-G and PGF2α-G. In addition, when cultured human THP1 macrophages were treated with exogenous 2AG or PG-G (10 μM, 1 h), significant quantities of AA or PGs were detected in the culture medium; however, the ability of macrophages to metabolize these compounds was inhibited (60-80%) following treatment with paraoxon, the toxic metabolite of the insecticide parathion. Incubation of THP1 cell lysates with small-molecule inhibitors targeting CES1 (thieno[3,2-e][1]benzothiophene-4,5-dione or JZL184) significantly reduced lipid glyceryl ester hydrolase activities (40-50% for 2AG and 80-95% for PG-Gs). Immunodepletion of CES1 also markedly reduced 2AG and PG-G hydrolase activities. These results suggested that CES1 is in part responsible for the hydrolysis of 2AG and PG-Gs in THP1 cells, although it did not rule out a role for other hydrolases, especially with regard to 2AG metabolism since a substantial portion of its hydrolysis was not inactivated by the inhibitors. An enzyme (Mr 31-32 kDa) of unknown function was detected by serine hydrolase activity profiling of THP1 cells and may be a candidate. Finally, the amounts of in situ generated 2AG and PG-Gs in macrophages were enhanced by treating the cells with bioactive metabolites of OP insecticides. Collectively, the results suggest that in addition to MAGL and fatty-acid amide hydrolase (FAAH), which have both been documented to terminate endocannabinoid signaling, CES may also have a role. Furthermore, since PG-Gs have been shown to possess biological activities in their own right, CES may represent an important enzyme class that regulates their in vivo levels.
Collapse
Affiliation(s)
- Shuqi Xie
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, Mississippi 39762, USA
| | | | | | | | | | | |
Collapse
|
32
|
Crow JA, Bittles V, Herring KL, Borazjani A, Potter PM, Ross MK. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon. Toxicol Appl Pharmacol 2011; 258:145-50. [PMID: 22100607 DOI: 10.1016/j.taap.2011.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/22/2011] [Accepted: 10/26/2011] [Indexed: 11/24/2022]
Abstract
Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC(50) values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon>paraoxon>methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k(inact)/K(I)) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC(50) values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon>paraoxon>methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2 respectively. Together, the results define the kinetics of inhibition of three important hydrolytic enzymes by activated metabolites of widely used agrochemicals.
Collapse
Affiliation(s)
- J Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
33
|
Borazjani A, Edelmann MJ, Hardin KL, Herring KL, Crow JA, Ross MK. Catabolism of 4-hydroxy-2-trans-nonenal by THP1 monocytes/macrophages and inactivation of carboxylesterases by this lipid electrophile. Chem Biol Interact 2011; 194:1-12. [PMID: 21878322 PMCID: PMC3186858 DOI: 10.1016/j.cbi.2011.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 01/15/2023]
Abstract
Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50μM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line.
Collapse
Affiliation(s)
- Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Mariola J. Edelmann
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experimental Station, Mississippi State University
| | - Katelyn L. Hardin
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Katye L. Herring
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - J. Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| |
Collapse
|
34
|
Parkinson EI, Jason Hatfield M, Tsurkan L, Hyatt JL, Edwards CC, Hicks LD, Yan B, Potter PM. Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones. Bioorg Med Chem 2011; 19:4635-43. [PMID: 21733699 DOI: 10.1016/j.bmc.2011.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Carboxylesterases (CE) are ubiquitous enzymes found in both human and animal tissues and are responsible for the metabolism of xenobiotics. This includes numerous natural products, as well as a many clinically used drugs. Hence, the activity of these agents is likely dependent upon the levels and location of CE expression. We have recently identified benzil is a potent inhibitor of mammalian CEs, and in this study, we have assessed the ability of analogues of this compound to inhibit these enzymes. Three different classes of molecules were assayed: one containing different atoms vicinal to the carbonyl carbon atom and the benzene ring [PhXC(O)C(O)XPh, where X=CH₂, CHBr, N, S, or O]; a second containing a panel of alkyl 1,2-diones demonstrating increasing alkyl chain length; and a third consisting of a series of 1-phenyl-2-alkyl-1,2-diones. In general, with the former series of molecules, heteroatoms resulted in either loss of inhibitory potency (when X=N), or conversion of the compounds into substrates for the enzymes (when X=S or O). However, the inclusion of a brominated methylene atom resulted in potent CE inhibition. Subsequent analysis with the alkyl diones [RC(O)C(O)R, where R ranged from CH₃ to C₈H₁₇] and 1-phenyl-2-alkyl-1,2-diones [PhC(O)C(O)R where R ranged from CH₃ to C₆H₁₃], demonstrated that the potency of enzyme inhibition directly correlated with the hydrophobicity (clogP) of the molecules. We conclude from these studies that that the inhibitory power of these 1,2-dione derivatives depends primarily upon the hydrophobicity of the R group, but also on the electrophilicity of the carbonyl group.
Collapse
Affiliation(s)
- Elizabeth I Parkinson
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barros MCES, Galasso TGCM, Chaib AJM, Degallier N, Nagata T, Ribeiro BM. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera. Virol J 2011; 8:261. [PMID: 21619598 PMCID: PMC3118360 DOI: 10.1186/1743-422x-8-261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. RESULTS Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. CONCLUSIONS The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.
Collapse
Affiliation(s)
- Maria C E S Barros
- Cell Biology Department, University of Brasília, Brasília, DF, CEP 70910-970, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
INTRODUCTION Carboxylesterases play major roles in the hydrolysis of numerous therapeutically active compounds. This is, in part, due to the prevalence of the ester moiety in these small molecules. However, the impact these enzymes may play on drug stability and pharmacokinetics is rarely considered prior to molecule development. Therefore, the application of selective inhibitors of this class of proteins may have utility in modulating the metabolism, distribution and toxicity of agents that are subjected to enzyme hydrolysis. AREAS COVERED This review details the development of all such compounds dating back to 1986, but principally focuses on the very recent identification of selective human carboxylesterases inhibitors. EXPERT OPINION The implementation of carboxylesterase inhibitors may significantly revolutionize drug discovery. Such molecules may allow for improved efficacy of compounds inactivated by this class of enzymes and/or reduce the toxicity of agents that are activated by these proteins. Furthermore, since lack of carboxylesterase activity appears to have no obvious biological consequence, these compounds could be applied in combination with virtually any esterified drug. Therefore, inhibitors of these proteins may have utility in altering drug hydrolysis and distribution in vivo. The characteristics, chemical and biological properties and potential uses of such agents are discussed here.
Collapse
Affiliation(s)
- M Jason Hatfield
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
37
|
Edwards JS, Kumbhar A, Roberts A, Hemmert AC, Edwards CC, Potter PM, Redinbo MR. Immobilization of active human carboxylesterase 1 in biomimetic silica nanoparticles. Biotechnol Prog 2011; 27:863-9. [PMID: 21509954 DOI: 10.1002/btpr.604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/26/2011] [Indexed: 11/12/2022]
Abstract
The encapsulation of proteins in biomimetic silica has recently been shown to successfully maintain enzymes in their active state. Organophosphate (OP) compounds are used as pesticides as well as potent chemical warfare nerve agents. Because these toxicants are life threatening, we sought to generate biomimetic silicas capable of responding to OPs. Here, we present the silica encapsulation of human drug metabolism enzyme carboxylesterase 1 (hCE1) in the presence of a range of catalysts. hCE1 was successfully encapsulated into silica particles when lysozyme or the peptide R5 were used as catalysts; in contrast, polyethyleneimine, a catalyst used to encapuslate other enzymes, did not facilitate hCE1 entrapment. hCE1 silica particles in a column chromatography format respond to the presence of the OP pesticides paraoxon and dimethyl-p-nitrophenyl phosphate in solution. These results may lead to novel approaches to detect OP pesticides or other weaponized agents that bind hCE1.
Collapse
Affiliation(s)
- Jonathan S Edwards
- Dept. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hemmert AC, Otto TC, Chica RA, Wierdl M, Edwards JS, Lewis SL, Edwards CC, Tsurkan L, Cadieux CL, Kasten SA, Cashman JR, Mayo SL, Potter PM, Cerasoli DM, Redinbo MR. Nerve agent hydrolysis activity designed into a human drug metabolism enzyme. PLoS One 2011; 6:e17441. [PMID: 21445272 PMCID: PMC3060870 DOI: 10.1371/journal.pone.0017441] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/02/2011] [Indexed: 12/04/2022] Open
Abstract
Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.
Collapse
Affiliation(s)
- Andrew C. Hemmert
- Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tamara C. Otto
- United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Roberto A. Chica
- Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America
| | - Monika Wierdl
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jonathan S. Edwards
- Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven L. Lewis
- Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carol C. Edwards
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Lyudmila Tsurkan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - C. Linn Cadieux
- United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Shane A. Kasten
- United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - John R. Cashman
- Human BioMolecular Research Institute, San Diego, California, United States of America
| | - Stephen L. Mayo
- Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America
| | - Philip M. Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Douglas M. Cerasoli
- United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Matthew R. Redinbo
- Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hatfield MJ, Tsurkan L, Hyatt JL, Yu X, Edwards CC, Hicks LD, Wadkins RM, Potter PM. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br J Pharmacol 2010; 160:1916-28. [PMID: 20649590 DOI: 10.1111/j.1476-5381.2010.00700.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Carboxylesterases (CEs) metabolize a wide range of xenobiotic substrates including heroin, cocaine, meperidine and the anticancer agent CPT-11. In this study, we have purified to homogeneity human liver and intestinal CEs and compared their ability with hydrolyse heroin, cocaine and CPT-11. EXPERIMENTAL APPROACH The hydrolysis of heroin and cocaine by recombinant human CEs was evaluated and the kinetic parameters determined. In addition, microsomal samples prepared from these tissues were subjected to chromatographic separation, and substrate hydrolysis and amounts of different CEs were determined. KEY RESULTS In contrast to previous reports, cocaine was not hydrolysed by the human liver CE, hCE1 (CES1), either as highly active recombinant protein or as CEs isolated from human liver or intestinal extracts. These results correlated well with computer-assisted molecular modelling studies that suggested that hydrolysis of cocaine by hCE1 (CES1), would be unlikely to occur. However, cocaine, heroin and CPT-11 were all substrates for the intestinal CE, hiCE (CES2), as determined using both the recombinant protein and the tissue fractions. Again, these data were in agreement with the modelling results. CONCLUSIONS AND IMPLICATIONS These results indicate that the human liver CE is unlikely to play a role in the metabolism of cocaine and that hydrolysis of this substrate by this class of enzymes is via the human intestinal protein hiCE (CES2). In addition, because no enzyme inhibition is observed at high cocaine concentrations, potentially this route of hydrolysis is important in individuals who overdose on this agent.
Collapse
Affiliation(s)
- M J Hatfield
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem Pharmacol 2010; 81:24-31. [PMID: 20833148 DOI: 10.1016/j.bcp.2010.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022]
Abstract
The activation of the anticancer prodrug CPT-11, to its active metabolite SN-38, is primarily mediated by carboxylesterases (CE). In humans, three CEs have been identified, of which human liver CE (hCE1; CES1) and human intestinal CE (hiCE; CES2) demonstrate significant ability to hydrolyze the drug. However, while the kinetic parameters of CPT-11 hydrolysis have been measured, the actual contribution of each enzyme to activate the drug in biological samples has not been addressed. Hence, we have used a combination of specific CE inhibition and conventional chromatographic techniques to determine the amounts, and hydrolytic activity, of CEs present within human liver, kidney, intestinal and lung specimens. These studies confirm that hiCE demonstrates the most efficient kinetic parameters for CPT-11 activation, however, due to the high levels of hCE1 that are expressed in liver, the latter enzyme can contribute up to 50% of the total of drug hydrolysis in this tissue. Conversely, in human duodenum, jejunum, ileum and kidney, where hCE1 expression is very low, greater than 99% of the conversion of CPT-11 to SN-38 was mediated by hiCE. Furthermore, analysis of lung microsomal extracts indicated that CPT-11 activation was more proficient in samples obtained from smokers. Overall, our studies demonstrate that hCE1 plays a significant role in CPT-11 hydrolysis even though it is up to 100-fold less efficient at drug activation than hiCE, and that drug activation in the intestine and kidney are likely major contributors to SN-38 production in vivo.
Collapse
|
41
|
Hemmert AC, Otto TC, Wierdl M, Edwards CC, Fleming CD, MacDonald M, Cashman JR, Potter PM, Cerasoli DM, Redinbo MR. Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin. Mol Pharmacol 2010; 77:508-16. [PMID: 20051531 DOI: 10.1124/mol.109.062356] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex with the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P(R) enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P(S) isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P(S) isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.
Collapse
Affiliation(s)
- Andrew C Hemmert
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Crow JA, Herring KL, Xie S, Borazjani A, Potter PM, Ross MK. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:31-41. [PMID: 19761868 PMCID: PMC2787731 DOI: 10.1016/j.bbalip.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/27/2009] [Accepted: 09/06/2009] [Indexed: 11/24/2022]
Abstract
Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC(50)=8.1 microM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (K(iapp)=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (K(iapp)=1.7 microM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo.
Collapse
Affiliation(s)
- J. Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Katye L. Herring
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Shuqi Xie
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Philip M. Potter
- Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| |
Collapse
|
43
|
Expression of the human soluble epoxide hydrolase in Escherichia coli by auto-induction for the study of high-throughput inhibition assays. Protein Expr Purif 2009; 69:34-8. [PMID: 19782755 DOI: 10.1016/j.pep.2009.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 11/24/2022]
Abstract
Soluble epoxide hydrolase (sEH) is a key enzyme involved in the metabolism of epoxy fatty acid mediators such as epoxyeicosatrienoic acids with emerging roles in the regulations of hypertension and inflammation. Inhibitors of human sEH (hsEH) are effective drug candidates for the treatment of cardiovascular diseases. Preparation of hsEH for enzyme inhibition studies has been carried out by using baculovirus expression system. We herein explored the feasibility of expression of hsEH in Escherichia coli cells for the study of high-throughput screening assays of enzyme inhibitors, because the bacterial expression system is easier to handle and more cost-effective than the baculovirus expression system. The functional target enzyme was successfully produced in prokaryotic expression system by an auto-induction method and exhibited comparable enzyme activity to that yielded in baculovirus expression system. The bacterial-hsEH showed similar sensitivity to the baculovirus-hsEH against six reported inhibitors. Overalls indicate that bacterial expression of hsEH employed in the present study is useful for preparing enzymatically active hsEH, leading to effective performance of high-throughput screening assay of hsEH inhibitors and to rapid identification of novel drug candidates for the treatment of cardiovascular diseases.
Collapse
|
44
|
Zhang L, Liu Q, Zhou Y, Zhang Y. Baculo-expression and enzymatic characterization of CES7 esterase. Acta Biochim Biophys Sin (Shanghai) 2009; 41:731-6. [PMID: 19727521 DOI: 10.1093/abbs/gmp061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The male reproductive tracts in different species are characterized by similar patterns of male-dependent overexpression of carboxylesterases. This phenomenon indicates male sex-associated functions of these enzymes for spermatogenesis, sperm maturation, and sperm use. Recently, a novel epididymis-specific gene named Ces7 was cloned and characterized, which belongs to the carboxylesterase family. To study the functions of CES7 in sperm maturation and storage, CES7 recombinant protein was expressed in baculovirus system. The recombinant protein had carboxylesterase activity hydrolyzing cholesterol ester and choline ester. CES7 as carboxylesterase might be involved in ester hydrolysis, sperm maturation, and storage in male reproductive tract.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
45
|
Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM, Potter PM. Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem 2009; 52:3742-52. [PMID: 19534556 DOI: 10.1021/jm9001296] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CPT-11 is an antitumor prodrug that is hydrolyzed by carboxylesterases (CE) to yield SN-38, a potent topoisomerase I poison. However, the dose limiting toxicity delays diarrhea that is thought to arise, in part, from activation of the prodrug by a human intestinal CE (hiCE). Therefore, we have sought to identify selective inhibitors of hiCE that may have utility in modulating drug toxicity. We have evaluated one such class of molecules (benzene sulfonamides) and developed QSAR models for inhibition of this protein. Using these predictive models, we have synthesized a panel of fluorene analogues that are selective for hiCE, demonstrating no cross reactivity to the human liver CE, hCE1, or toward human cholinesterases, and have K(i) values as low as 14 nM. These compounds prevented hiCE-mediated hydrolysis of the drug and the potency of enzyme inhibition correlated with the clogP of the molecules. These studies will allow the development and application of hiCE-specific inhibitors designed to selectively modulate drug hydrolysis in vivo.
Collapse
Affiliation(s)
- Latorya D Hicks
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Knudsen L, Wucherpfennig K, Mackay RM, Townsend P, Mühlfeld C, Richter J, Hawgood S, Reid K, Clark H, Ochs M. A Recombinant Fragment of Human Surfactant Protein D Lacking the Short Collagen-Like Stalk Fails to Correct Morphological Alterations in Lungs of SP-D Deficient Mice. Anat Rec (Hoboken) 2009; 292:183-9. [DOI: 10.1002/ar.20830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Sato R, Matsumoto T, Hidaka N, Imai Y, Abe K, Takahashi S, Yamada RH, Kera Y. Cloning and expression of carp acetylcholinesterase gene in Pichia pastoris and characterization of the recombinant enzyme. Protein Expr Purif 2008; 64:205-12. [PMID: 19121395 DOI: 10.1016/j.pep.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
The gene encoding acetylcholinesterase (AChE) was cloned from common carp muscle tissue. The full-length cDNA was 2368 bp that contains a coding region of 1902 bp, corresponding to a protein of 634 amino acids. The deduced amino acid sequence showed a significant homology with those of ichthyic AChEs and several common features among them, including T peptide encoded by exon T in the C-terminus. Three yeast expression vectors were constructed and introduced into the yeast Pichia pastoris. The transformant harboring carp AChE gene lacking exon T most effectively produced AChE activity extracellularly. The replacement of the native signal sequence with the yeast alpha-factor prepro signal sequence rather decreased the production. A decrease in cultivation temperature from 30 to 15 degrees C increased the activity production 32.8-fold. The purified recombinant AChE lacking T peptide, eluted as a single peak with a molecular mass of about 230 kDa on the gel filtration chromatography, exhibited the specific activity of 4970 U/mg. On the SDS-PAGE, three proteins with molecular masses of 73, 54, and 22 kDa were observed. These proteins were N-glycosylated, and their N-terminal sequence showed that the latter two were produced from the former probably by proteolytic cleavage at the C-terminal region. Thus, the recombinant AChE is homotrimer of three identical subunits with 73 kDa. The optimal temperature and pH of the recombinant were comparable to those of the native enzyme purified previously, but the values of kinetic parameters and the sensitivities to substrate inhibition and inhibitors were considerably different between them.
Collapse
Affiliation(s)
- Ryohei Sato
- Laboratory of Environmental Biochemistry, Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hatfield JM, Wierdl M, Wadkins RM, Potter PM. Modifications of human carboxylesterase for improved prodrug activation. Expert Opin Drug Metab Toxicol 2008; 4:1153-65. [PMID: 18721110 DOI: 10.1517/17425255.4.9.1153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Carboxylesterases (CEs) are ubiquitous enzymes responsible for the hydrolysis of numerous clinically useful drugs. As ester moieties are frequently included in molecules to improve their water solubility and bioavailability, de facto they become substrates for CEs. OBJECTIVE In this review, we describe the properties of human CEs with regard to their ability to activate anticancer prodrugs and demonstrate how structure-based design can be used to modulate substrate specificity and to increase efficiency of hydrolysis. METHODS A specific example using CPT-11 and a human liver CE is discussed. However, these techniques can be applied to other enzymes and their associated prodrugs. RESULTS Structure-guided mutagenesis of CEs can be employed to alter substrate specificity and generate novel enzymes that are efficacious at anticancer prodrug activation.
Collapse
Affiliation(s)
- Jason M Hatfield
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
49
|
Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:643-54. [PMID: 18762277 PMCID: PMC2574903 DOI: 10.1016/j.bbalip.2008.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/24/2008] [Accepted: 07/24/2008] [Indexed: 11/15/2022]
Abstract
Cholesteryl esters are hydrolyzed by cholesteryl ester hydrolase (CEH) yielding free cholesterol for export from macrophages. Hence, CEH has an important regulatory role in macrophage reverse cholesterol transport (RCT). CEH and human carboxylesterase 1 (CES1) appear to be the same enzyme. CES1 is inhibited by oxons, the bioactive metabolites of organophosphate (OP) pesticides. Here, we show that CES1 protein is robustly expressed in human THP-1 monocytes/macrophages and its biochemical activity inhibited following treatment of cell lysates and intact cells with chlorpyrifos oxon, paraoxon, or methyl paraoxon (with nanomolar IC(50) values) or after immunodepletion of CES1 protein. CES1 protein expression in cells is unaffected by a 24-h paraoxon treatment, suggesting that the reduced hydrolytic activity is due to covalent inhibition of CES1 by oxons and not down-regulation of expression. Most significantly, treatment of cholesterol-loaded macrophages with either paraoxon (a non-specific CES inhibitor) or benzil (a specific CES inhibitor) caused enhanced retention of intracellular cholesteryl esters and a "foamy" phenotype, consistent with reduced cholesteryl ester mobilization. Thus, exposure to OP pesticides, which results in the inhibition of CES1, may also inhibit macrophage RCT, an important process in the regression of atherosclerosis.
Collapse
Affiliation(s)
- J. Allen Crow
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - Brandy L. Middleton
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - M. Jason Hatfield
- Department of Molecular Pharmacology St. Jude Children’s Research Hospital 332 North Lauderdale Memphis, TN 38105, USA
| | - Philip M. Potter
- Department of Molecular Pharmacology St. Jude Children’s Research Hospital 332 North Lauderdale Memphis, TN 38105, USA
| | - Matthew K. Ross
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| |
Collapse
|
50
|
Wierdl M, Tsurkan L, Hyatt JL, Edwards CC, Hatfield MJ, Morton CL, Houghton PJ, Danks MK, Redinbo MR, Potter PM. An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Cancer Gene Ther 2008; 15:183-92. [PMID: 18188187 DOI: 10.1038/sj.cgt.7701112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CPT-11 is a potent antitumor agent that is activated by carboxylesterases (CE) and intracellular expression of CEs that can activate the drug results in increased cytotoxicity to the drug. As activation of CPT-11 (irinotecan-7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) by human CEs is relatively inefficient, we have developed enzyme/prodrug therapy approaches based on the CE/CPT-11 combination using a rabbit liver CE (rCE). However, the in vivo application of this technology may be hampered by the development of an immune response to rCE. Therefore, we have developed a mutant human CE (hCE1m6), based on the human liver CE hCE1, that can activate CPT-11 approximately 70-fold more efficiently than the wild-type protein and can be expressed at high levels in mammalian cells. Indeed, adenoviral-mediated delivery of hCE1m6 with human tumor cells resulted in up to a 670-fold reduction in the IC(50) value for CPT-11, as compared to cells transduced with vector control virus. Furthermore, xenograft studies with human tumors expressing hCE1m6 confirm the ability of this enzyme to activate CPT-11 in vivo and induce antitumor activity. We propose that this enzyme should likely be less immunogenic than rCE and would be suitable for the in vivo application of CE/CPT-11 enzyme/prodrug therapy.
Collapse
Affiliation(s)
- M Wierdl
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|