1
|
Koppin A, Chase L. Lysine 473 Regulates the Progression of SLC7A11, the Cystine/Glutamate Exchanger, through the Secretory Pathway. Int J Mol Sci 2024; 25:10271. [PMID: 39408599 PMCID: PMC11476549 DOI: 10.3390/ijms251910271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
System xc-, the cystine/glutamate exchanger, is a membrane transporter that plays a critical role in the antioxidant response of cells. Recent work has shown that System xc- localizes to the plasma membrane during oxidative stress, allowing for increased activity to support the production of glutathione. In this study, we used site-directed mutagenesis to examine the role of C-terminal lysine residues (K422, K472, and K473) of xCT (SLC7A11) in regulating System xc-. We observed that K473R exhibits loss of transporter activity and membrane localization and is 7.5 kD lower in molecular weight, suggesting that K473 regulates System xc- trafficking and is modified under basal conditions. After ruling out ubiquitination and neddylation, we demonstrated that unlike WT xCT, K473R lacks N- and O-glycosylation and is sequestered in the endoplasmic reticulum. Next, we demonstrated that K473Q, a constitutively acetylated lysine mimic, also exhibits loss of transporter activity, decreased membrane expression, and a 4 kD decrease in molecular weight; however, it is N- and O-glycosylated and localized to the endoplasmic reticulum and Golgi. These results suggest that acetylation and deacetylation of K473 in the endoplasmic reticulum and Golgi, respectively, serve to regulate the progression of the transporter through the biosynthetic pathway.
Collapse
Affiliation(s)
- Anna Koppin
- Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA;
| | - Leah Chase
- Neuroscience Program, Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA
| |
Collapse
|
2
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Rudolf R, Bogomolovas J, Strack S, Choi KR, Khan MM, Wagner A, Brohm K, Hanashima A, Gasch A, Labeit D, Labeit S. Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1663-1674. [PMID: 22956146 PMCID: PMC3776120 DOI: 10.1007/s11357-012-9468-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Muscle atrophy is a process of muscle wasting induced under a series of catabolic stress conditions, such as denervation, disuse, cancer cachexia, heart and renal failure, AIDS, and aging. Neuromuscular junctions (NMJs), the synapses between motor neurons and muscle fibers undergo major changes in atrophying muscles, ranging from mild morphological alterations to complete disintegration. In this study, we hypothesized that remodeling of NMJs and muscle atrophy could be linked together. To test this, we examined if a major atrophy-promoting E3 ubiquitin ligase, MuRF1, is involved in the maintenance of NMJs. Immunofluorescence revealed that MuRF1 is highly enriched close to the NMJ. Affinity precipitation and in vivo imaging showed that MuRF1 interacts in endocytic structures with both, acetylcholine receptor, the primary postsynaptic protein of the NMJ, as well as with Bif-1, an autophagy- and endocytosis-regulating factor. In vivo imaging, radio labeling, and weighing approaches demonstrated that metabolic destabilization of acetylcholine receptors and muscle atrophy induced by denervation were significantly rescued in MuRF1-KO animals. Notably, interaction with Bif-1, and the rescue of AChR lifetime and muscle atrophy were specific to MuRF1 but not MuRF2. Our data demonstrate an involvement of MuRF1 in membrane protein-turnover, including the degradation of AChRs at the NMJ under atrophying conditions where MuRF1 also interacts and associates with Bif-1.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim, Windeckstrasse 110, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Julius Bogomolovas
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Siegfried Strack
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kyeong-Rok Choi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Muzamil Majid Khan
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anika Wagner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kathrin Brohm
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Akira Hanashima
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Alexander Gasch
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Dittmar Labeit
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| | - Siegfried Labeit
- Department for Integrative Pathophysiology, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Changeux JP. The concept of allosteric interaction and its consequences for the chemistry of the brain. J Biol Chem 2013; 288:26969-26986. [PMID: 23878193 DOI: 10.1074/jbc.x113.503375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Throughout this Reflections article, I have tried to follow up on the genesis in the 1960s and subsequent evolution of the concept of allosteric interaction and to examine its consequences within the past decades, essentially in the field of the neuroscience. The main conclusion is that allosteric mechanisms built on similar structural principles operate in bacterial regulatory enzymes, gene repressors (and the related nuclear receptors), rhodopsin, G-protein-coupled receptors, neurotransmitter receptors, ion channels, and so on from prokaryotes up to the human brain yet with important features of their own. Thus, future research on these basic cybernetic sensors is expected to develop in two major directions: at the elementary level, toward the atomic structure and molecular dynamics of the conformational changes involved in signal recognition and transduction, but also at a higher level of organization, the contribution of allosteric mechanisms to the modulation of brain functions.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collège de France, 75005 Paris and the Institut Pasteur, 75724 Paris Cedex 15, France.
| |
Collapse
|
5
|
Röder IV, Petersen Y, Choi KR, Witzemann V, Hammer JA, Rudolf R. Role of Myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS One 2008; 3:e3871. [PMID: 19057648 PMCID: PMC2587709 DOI: 10.1371/journal.pone.0003871] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/10/2008] [Indexed: 01/07/2023] Open
Abstract
Background Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ). Methodology/Principal Findings Dilute lethal mice showed a good correlation between the propensity for seizures, and fragmentation and size reduction of NMJs. In an aneural C2C12 myoblast cell culture, expression of a dominant-negative fragment of myosin Va led to the accumulation of punctate structures containing the NMJ marker protein, rapsyn-GFP, in perinuclear clusters. In mouse hindlimb muscle, endogenous myosin Va co-precipitated with surface-exposed or internalised acetylcholine receptors and was markedly enriched in close proximity to the NMJ upon immunofluorescence. In vivo microscopy of exogenous full length myosin Va as well as a cargo-binding fragment of myosin Va showed localisation to the NMJ in wildtype mouse muscles. Furthermore, local interference with myosin Va function in live wildtype mouse muscles led to fragmentation and size reduction of NMJs, exclusion of rapsyn-GFP from NMJs, reduced persistence of acetylcholine receptors in NMJs and an increased amount of punctate structures bearing internalised NMJ proteins. Conclusions/Significance In summary, our data show a crucial role of myosin Va for the plasticity of live vertebrate neuromuscular junctions and suggest its involvement in the recycling of internalised acetylcholine receptors back to the postsynaptic membrane.
Collapse
Affiliation(s)
- Ira Verena Röder
- Institute of Toxicology and Genetics, Research Center Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Yvonne Petersen
- Institute of Toxicology and Genetics, Research Center Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Kyeong Rok Choi
- Institute of Toxicology and Genetics, Research Center Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Veit Witzemann
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - John A. Hammer
- Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Research Center Karlsruhe, Eggenstein-Leopoldshafen, Germany
- * E-mail:
| |
Collapse
|
6
|
Hanus C, Ehlers MD. Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 2008; 9:1437-45. [PMID: 18532987 DOI: 10.1111/j.1600-0854.2008.00775.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The large size and geometric complexity of neuronal dendrites necessitate specialized mechanisms to both deliver postsynaptic cargo over extended distances and regulate dendritic composition on a submicron scale. Despite the fundamental importance of membrane trafficking in dendrite growth, synapse formation and plasticity, the organelles and cellular rules governing postsynaptic trafficking are only now emerging. Here we review what is currently known about dendritic secretory organelles and their role in the development, maintenance and plasticity of postsynaptic compartments.
Collapse
Affiliation(s)
- Cyril Hanus
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
7
|
Sherry DM, Mitchell R, Standifer KM, du Plessis B. Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. BMC Neurosci 2006; 7:54. [PMID: 16839421 PMCID: PMC1555595 DOI: 10.1186/1471-2202-7-54] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/13/2006] [Indexed: 01/02/2023] Open
Abstract
Background Syntaxins 1 through 4 are SNAP receptor (SNARE) proteins that mediate vesicular trafficking to the plasma membrane. In retina, syntaxins 1 and 3 are expressed at conventional and ribbon synapses, respectively, suggesting that synaptic trafficking functions differ among syntaxin isoforms. To better understand syntaxins in synaptic signaling and trafficking, we further examined the cell- and synapse-specific expression of syntaxins 1 through 4 in the mouse retina by immunolabeling and confocal microscopy. Results Each isoform was expressed in the retina and showed a unique distribution in the synaptic layers of the retina, with little or no colocalization of isoforms. Syntaxin 1 was present in amacrine cell bodies and processes and conventional presynaptic terminals in the inner plexiform layer (IPL). Syntaxin 2 was present in amacrine cells and their processes in the IPL, but showed little colocalization with syntaxin 1 or other presynaptic markers. Syntaxin 3 was found in glutamatergic photoreceptor and bipolar cell ribbon synapses, but was absent from putative conventional glutamatergic amacrine cell synapses. Syntaxin 4 was localized to horizontal cell processes in the ribbon synaptic complexes of photoreceptor terminals and in puncta in the IPL that contacted dopaminergic and CD15-positive amacrine cells. Syntaxins 2 and 4 often were apposed to synaptic active zones labeled for bassoon. Conclusion These results indicate that each syntaxin isoform has unique, non-redundant functions in synaptic signaling and trafficking. Syntaxins 1 and 3 mediate presynaptic transmitter release from conventional and ribbon synapses, respectively. Syntaxins 2 and 4 are not presynaptic and likely mediate post-synaptic trafficking.
Collapse
Affiliation(s)
- David M Sherry
- University of Houston, College of Optometry, Houston, TX 77204, USA
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Robert Mitchell
- University of Houston, College of Optometry, Houston, TX 77204, USA
| | - Kelly M Standifer
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Brad du Plessis
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
8
|
Hutcheon B, Fritschy JM, Poulter MO. Organization of GABA receptor alpha-subunit clustering in the developing rat neocortex and hippocampus. Eur J Neurosci 2004; 19:2475-87. [PMID: 15128401 DOI: 10.1111/j.0953-816x.2004.03349.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We compared the expression and co-expression of alpha1, alpha2, alpha3, and alpha5-subunit protein clusters of the gamma-aminobutyric acid (GABA)(A) receptor in the neocortex and hippocampus of rat at postnatal days (PND) 5-10 and 30-40 in order to understand how inhibitory receptors reorganize during brain maturation. The size, intensity, density and pattern of co-localization of fluorescently tagged subunit clusters were determined in deconvolved digital images using a novel 2D cross-correlational analysis. The cross-correlation analysis allowed an unbiased identification of GABA(A) receptor subunit clusters based on staining intensity. Cluster size increased through development; only the alpha2 clusters in dentate gyrus (DG) decreased in size. alpha5-subunit cluster density either increased or decreased with maturation depending on the brain region. For the other subunits, the cluster density remained rather constant, with noted exceptions (increase in alpha2 clusters in cortical layer 5 but a decrease of alpha3 clusters in hilus). The co-localization of alpha1-subunit with the others was unique and not correlated to overall changes in subunit abundance between developmental époques. So, although alpha2-subunit expression went up in the DG, the clusters became less co-localized with alpha1. In contrast, alpha5-subunit clusters became more co-localized with alpha1 as the alpha5-subunit expression declined in cortex and CA1. The co-localization of alpha3 with alpha1 also became greater in layer 6. In the adult brain not all clustering was associated with synapses, as many alpha-subunit clusters did not co-localize with synaptophysin. Overall, these data indicate that the regulation of GABA(A) receptor clustering is both synaptic and extrasynaptic, presumably reflecting complex cellular trafficking mechanisms.
Collapse
Affiliation(s)
- B Hutcheon
- Department of Psychology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | |
Collapse
|
9
|
Hanus C, Vannier C, Triller A. Intracellular association of glycine receptor with gephyrin increases its plasma membrane accumulation rate. J Neurosci 2004; 24:1119-28. [PMID: 14762130 PMCID: PMC6793588 DOI: 10.1523/jneurosci.4380-03.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gephyrin, a tubulin-binding protein, is the core of inhibitory postsynaptic scaffolds stabilizing glycine receptors (GlyRs) and/or GABA(A) receptors. Previous ultrastructural studies in vivo and in vitro have reported a localization of gephyrin to intracellular cisternas during development or after glycinergic denervation (Seitanidou et al., 1992; Colin et al., 1996, 1998). These data were compatible with a traffic of this cytoplasmic, but membrane-associated, protein together with membrane proteins such as GlyR after exocytosis and/or endocytosis pathways. We have now investigated the consequences of a GlyR-gephyrin interaction on the localization and the dynamics of these two molecules in African green monkey kidney cells (COS-7) cells and in neurons transfected with green fluorescent protein-tagged-gephyrin and myc-tagged GlyR alpha1 subunits. In these experiments, myc-tagged GlyR alpha1 contained, or did not contain, the gephyrin-binding sequence (betagb) of the GlyR beta subunit. We report here that GlyR-gephyrin interaction localizes gephyrin to GlyR-containing organelles. Videomicroscopy and nocodazole treatment indicate that the movements of these vesicles are microtubule dependent. Expressing GlyR alpha1 with a thrombin cleavage site between the myc-tag and the N terminal of the GlyR alpha1 subunit (Rosenberg et al., 2001) allowed monitoring of newly inserted receptors in the cell surface. Using temperature changes to block GlyR in, and then release it from, the trans-Golgi network, we show that gephyrin accelerates the accumulation of GlyR at the cell surface. Therefore, our data strongly suggest that some GlyR clusters are associated with gephyrin on their way to the cell surface and that this association increases the accumulation of GlyR at the plasma membrane.
Collapse
Affiliation(s)
- Cyril Hanus
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 75005 Paris, France
| | | | | |
Collapse
|
10
|
Bélanger G, Stocksley MA, Vandromme M, Schaeffer L, Furic L, DesGroseillers L, Jasmin BJ. Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. J Neurochem 2003; 86:669-77. [PMID: 12859680 DOI: 10.1046/j.1471-4159.2003.01883.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staufen is an RNA-binding protein, first identified for its role in oogenesis and CNS development in Drosophila. Two mammalian homologs of Staufen have been identified and shown to bind double-stranded RNA and tubulin, and to function in the somatodendritic transport of mRNA in neurons. Here, we examined whether Staufen proteins are expressed in skeletal muscle in relation to the neuromuscular junction. Immunofluorescence experiments revealed that Staufen1 (Stau1) and Staufen2 (Stau2) accumulate preferentially within the postsynaptic sarcoplasm of muscle fibers as well as at newly formed ectopic synapses. Western blot analyses showed that the levels of Stau1 and Stau2 are greater in slow muscles than in fast-twitch muscles. Muscle denervation induced a significant increase in the expression of Stau1 and Stau2 in the extrasynaptic compartment of both fast and slow muscles. Consistent with these observations, we also demonstrated that expression of Stau1 and Stau2 is increased during myogenic differentiation and that treatment of myotubes with agrin and neuregulin induces a further increase in the expression of both Staufen proteins. We propose that Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction.
Collapse
MESH Headings
- Agrin/pharmacology
- Animals
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Mice
- Mice, Inbred C57BL
- Muscle Denervation
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Neuregulins/pharmacology
- Neuromuscular Junction/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/biosynthesis
Collapse
Affiliation(s)
- Guy Bélanger
- Department of Cellular and Molecular Medicine, and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|