1
|
Hardy PB, Wang BY, Chan KM, Webber CA, Senger JLB. The use of electrical stimulation to enhance recovery following peripheral nerve injury. Muscle Nerve 2024; 70:1151-1162. [PMID: 39347555 DOI: 10.1002/mus.28262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Peripheral nerve injury is common and can have devastating consequences. In severe cases, functional recovery is often poor despite surgery. This is primarily due to the exceedingly slow rate of nerve regeneration at only 1-3 mm/day. The local environment in the distal nerve stump supportive of nerve regrowth deteriorates over time and the target end organs become atrophic. To overcome these challenges, investigations into treatments capable of accelerating nerve regrowth are of great clinical relevance and are an active area of research. One intervention that has shown great promise is perioperative electrical stimulation. Postoperative stimulation helps to expedite the Wallerian degeneration process and reduces delays caused by staggered regeneration at the site of nerve injury. By contrast, preoperative "conditioning" stimulation increases the rate of nerve regrowth along the nerve trunk. Over the past two decades, a rich body of literature has emerged that provides molecular insights into the mechanism by which electrical stimulation impacts nerve regeneration. The end result is upregulation of regeneration-associated genes in the neuronal body and accelerated transport to the axon front for regrowth. The efficacy of brief electrical stimulation on patients with peripheral nerve injuries was demonstrated in a number of randomized controlled trials on compressive, transection and traction injuries. As approved equipment to deliver this treatment is becoming available, it may be feasible to deploy this novel treatment in a wide range of clinical settings.
Collapse
Affiliation(s)
- Paige B Hardy
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bonnie Y Wang
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jenna-Lynn B Senger
- Division of Plastic & Reconstructive Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Wang JL, Huang QM, Hu DX, Zhang WJ. Therapeutic effect of exosomes derived from Schwann cells in the repair of peripheral nerve injury. Life Sci 2024; 357:123086. [PMID: 39357794 DOI: 10.1016/j.lfs.2024.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Peripheral nerve injury (PNI) can cause nerve demyelination, neuronal apoptosis, axonal atrophy, inflammatory infiltration, glial scar formation, and other pathologies that can lead to sensory and motor dysfunction and seriously affect the psychosomatic health of patients. There is currently no effective treatment method, so exploring a promising treatment method is of great significance. Several studies have revealed the therapeutic roles of Schwann cells (SCs) and their exosomes in nerve injury repair. Exosomes are extracellular nanovesicles secreted by cells that act as key molecules in intercellular communication. Progress has been made in understanding the role of exosomes derived from SCs (SC-EXOs) in peripheral nerve regeneration, including the promotion of axonal regeneration and myelin formation, anti-inflammation, vascular regeneration, neuroprotection, and neuroregulation. Therefore, in this paper, we summarize the functional characteristics of SC-EXOs and discuss their potential therapeutic effects on PNI repair as well as some existing problems and future challenges.
Collapse
Affiliation(s)
- Jia-Ling Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
3
|
Peng YY, Tang C, Wang HY, Ding Y, Yang H, Ma XM, Gao J, Li S, Long ZY, Lu XM, Wang YT. p75NTR mediated chronic restraint stress-induced depression-like behaviors in mice via hippocampal mTOR pathway. Life Sci 2024; 358:123175. [PMID: 39477145 DOI: 10.1016/j.lfs.2024.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
AIMS Major depressive disorder (MDD) is an enduring and severe mood disorder. Previous studies have indicated that p75NTR is involved in neuronal survival and death. However, the specific mechanism of p75NTR in depression remains unknown. The present study aimed to explore the role and mechanism of p75NTR in depression, and try to provide a new target for the treatment of MDD. MAIN METHODS The p75NTR knockout and overexpression mice were used to establish a mouse model of depression induced by chronic restraint stress (CRS), and the behavioral effects and potential mechanisms associated with p75NTR knockout/overexpression on CRS-induced depressive mice were investigated by animal behavior, histopathology, immunofluorescence and western blot, respectively. KEY FINDINGS The results demonstrate that p75NTR knockout/overexpression can ameliorate the depressive-like behaviors observed in CRS-induced depressive mice. Furthermore, p75NTR knockout/overexpression safeguards the tissue morphology of the hippocampus, inhibits the mTOR signaling pathway to restore autophagy, and modulates apoptosis-related proteins (Bcl-2 and Bax) to reestablish normal levels of autophagy and apoptosis in hippocampal neurons of depressed mice. Importantly, p75NTR knockout/overexpression can improve synaptic plasticity through protecting the dendritic structure and dendritic spines of hippocampal neurons, and upregulating the expression of hippocampal synaptic-related proteins (PSD95 and SYN1). SIGNIFICANCE These findings suggest that p75NTR knockout/overexpression can alleviate CRS-induced depression-like behaviors by reinstating autophagy and suppressing apoptosis in hippocampal neurons, and enhancing hippocampal synaptic plasticity via mTOR pathway. These insights may provide potential targets for clinical treatment of depression.
Collapse
Affiliation(s)
- Yu-Yuan Peng
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
4
|
Xu J, Ruan X. Schwann cell autotransplantation for the treatment of peripheral nerve injury. Life Sci 2024; 358:123129. [PMID: 39393574 DOI: 10.1016/j.lfs.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Peripheral nerve injury occurs in a relatively large proportion of trauma patients, in whom it generally results in severe functional impairment and permanent disability. At present, however, there are no effective treatments available. Studies have shown that Schwann cells play an indispensable role in removing myelin debris and guiding axonal regeneration, and transplantation using autologous Schwann cells has shown good efficacy for patients with peripheral nerve injury. In recent years, Schwann cell autologous transplantation therapy has become an area of intensive research and is anticipated to provide a new strategy for the clinical treatment of peripheral nerve injury. In this article, we review the rationale for selecting Schwann cell autotransplantation therapy and the latest progress in key aspects of cell transplantation and clinical efficacy, and also summarize the future directions of research on this therapy. All of the above provide a strong basis for the further improvement and clinical promotion of this therapy.
Collapse
Affiliation(s)
- Jialiang Xu
- China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| | - Xuelei Ruan
- Department of Neurobiology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
5
|
Gaur A, Varatharajan S, Balan Y, Taranikanti M, John NA, Umesh M, Ganji V, Medala K. Brain-derived neurotrophic factor (BDNF) and other neurotrophic factors in type 2 diabetes mellitus and their association with neuropathy. Ir J Med Sci 2024; 193:2287-2292. [PMID: 38806878 DOI: 10.1007/s11845-024-03716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with increased risk of morbidity and premature mortality due to its various complications. In an Indian study, the prevalence of diabetic peripheral neuropathy (DPN) in type 2 diabetic subjects was shown to be 29.2%. There is increasing evidence that a deficiency of nerve growth factor (NGF) in diabetes, as well as the calcitonin gene-related peptide (CGRP), may also contribute to the development of DPN. The aim of the current study was to evaluate nerve growth factor levels with neuropathy in type 2 DM. MATERIALS AND METHODS Forty healthy controls and 40 patients with type 2 DM were recruited; they were asked to report to Dept. of Physiology for initial history taking, general examination and neuropathy examination. A total of 5 mL of blood was collected for neurotrophic factor estimation as well as glycemic profile estimation. RESULTS The brain-derived neurotrophic factor (BDNF) values were significantly lower in the DM group whereas the insulin levels were also quite high in DM. The hot thresholds for both the upper limb and lower limb were greater in the DM group suggesting the impending neuropathy. Similarly, the Michigan scores were also greater in the DM group. The neuropathy parameters especially the Michigan A and B and the hot thresholds were positively correlated with duration of DM and glucose profile. CONCLUSION The neurotrophic factors especially BDNF are drastically reduced in DM patients and are negatively associated with neuropathy, and hence, BDNF can be utilized as a therapeutic target to treat and prevent neuropathy.
Collapse
Affiliation(s)
- Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.
| | - Sakthivadivel Varatharajan
- Department of General Medicine, All India Institute of Medical Sciences, Bibinagar, Telangana, 508126, India
| | - Yuvaraj Balan
- Department of Biochemistry, All India Institute of Medical Sciences, Madurai, India
| | - Madhuri Taranikanti
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| | - Nitin Ashok John
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| | - Madhusudhan Umesh
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| | - Vidya Ganji
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| | - Kalpana Medala
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| |
Collapse
|
6
|
Seo M, Hwang S, Lee TH, Nam K. Comparison of Neural Recovery Effects of Botulinum Toxin Based on Administration Timing in Sciatic Nerve-Injured Rats. Toxins (Basel) 2024; 16:387. [PMID: 39330845 PMCID: PMC11435736 DOI: 10.3390/toxins16090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the effects of the timing of administering botulinum neurotoxin A (BoNT/A) on nerve regeneration in rats. Sixty 6-week-old rats with a sciatic nerve injury were randomly divided into four groups: the immediately treated (IT) group (BoNT/A injection administered immediately post-injury), the delay-treated (DT) group (BoNT/A injection administered one week post-injury), the control group (saline administered one week post-injury), and the sham group (only skin and muscle incisions made). Nerve regeneration was assessed 3, 6, and 9 weeks post-injury using various techniques. The levels of glial fibrillary acid protein (GFAP), astroglial calcium-binding protein S100β (S100β), growth-associated protein 43 (GAP43), neurofilament 200 (NF200), and brain-derived neurotrophic factor (BDNF) in the IT and DT groups were higher. ELISA revealed the highest levels of these proteins in the IT group, followed by the DT and control groups. Toluidine blue staining revealed that the average area and myelin thickness were higher in the IT group. Electrophysiological studies revealed that the CMAP in the IT group was significantly higher than that in the control group, with the DT group exhibiting significant differences starting from week 8. The findings of the sciatic functional index analysis mirrored these results. Thus, administering BoNT/A injections immediately after a nerve injury is most effective for neural recovery. However, injections administered one week post-injury also significantly enhanced recovery. BoNT/A should be administered promptly after nerve damage; however, its administration during the non-acute phase is also beneficial.
Collapse
Affiliation(s)
| | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (M.S.); (S.H.); (T.H.L.)
| |
Collapse
|
7
|
Millesi E, Millesi F, Rechberger JS, Daniels DJ, Radtke C, Mardini S. Localized tacrolimus therapy: innovations in peripheral nerve regeneration through advanced drug delivery systems. Ther Deliv 2024; 15:743-748. [PMID: 39229814 PMCID: PMC11457664 DOI: 10.1080/20415990.2024.2392481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Elena Millesi
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Flavia Millesi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | | | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN55905,USA
| | - Christine Radtke
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Samir Mardini
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
| |
Collapse
|
8
|
Shen J, Sun Y, Liu X, Chai Y, Wang C, Xu J. Nerve Regeneration Potential of Antioxidant-Modified Black Phosphorus Quantum Dots in Peripheral Nerve Injury. ACS NANO 2024; 18:23518-23536. [PMID: 39150909 DOI: 10.1021/acsnano.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant β-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@β-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@β-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| |
Collapse
|
9
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Zhao L, Zhou Y, Duan H, Zhang Y, Ma B, Yang T, Chen J, Chen Y, Qi H. Analysis of Clinical Characteristics and Neuropeptides in Patients with Dry Eye with and without Chronic Ocular Pain after FS-LASIK. Ophthalmol Ther 2024; 13:711-723. [PMID: 38190027 PMCID: PMC10853104 DOI: 10.1007/s40123-023-00861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Chronic ocular pain, particularly prevalent in patients with dry eye disease and post-femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) surgery, presents with unclear clinical characteristics and an undefined pathogenesis. In this study, we aimed to compare clinical characteristics and tear neuropeptide concentrations in patients with dry eye disease (DED) with and without chronic ocular pain following FS-LASIK, and investigate correlations between ocular pain, clinical characteristics, and tear neuropeptide levels. METHODS Thirty-eight post-FS-LASIK patients with DED were assigned to two groups: those with chronic ocular pain and those without chronic ocular pain. Dry eye, ocular pain, and mental health-related parameters were evaluated using specific questionnaires and tests. The morphology of corneal nerves and dendritic cells (DCs) was evaluated by in vivo confocal microscopy. Function of corneal innervation was evaluated by corneal sensitivity. Concentrations of tear cytokines (interleukin [IL]-6, IL-23, IL-17A, and interferon-γ) and neuropeptides (α-melanocyte-stimulating hormone, neurotensin, β-endorphin, oxytocin, and substance P [SP]) were measured using the Luminex assay. RESULTS Most patients with chronic ocular pain experienced mild to moderate pain; the most common types included stimulated pain (provoked by wind and light), burning pain, and pressure sensation. More severe dry eye (P < 0.001), anxiety symptoms (P = 0.026), lower Schirmer I test values (P = 0.035), lower corneal nerve density (P = 0.043), and more activated DCs (P = 0.041) were observed in patients with ocular pain. Tear concentrations of SP and oxytocin were significantly higher in patients with ocular pain (P = 0.001, P = 0.021, respectively). Furthermore, significant correlations were observed among ocular pain severity, SP, and anxiety levels. CONCLUSIONS Patients with DED after FS-LASIK who have chronic ocular pain show more severe ocular and psychological discomfort and higher tear levels of neuropeptides. Furthermore, ocular pain severity is correlated with tear SP levels. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05600985.
Collapse
Affiliation(s)
- Lu Zhao
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongyu Duan
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yu Zhang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Baikai Ma
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Tingting Yang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yueguo Chen
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hong Qi
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
11
|
Iwahashi T, Suzuki K, Tanaka H, Matsuoka H, Nishimoto S, Hirai Y, Kasuya T, Shimada T, Yoshimura Y, Oka K, Murase T, Okada S. Neurotropin® accelerates peripheral nerve regeneration in a rat sciatic nerve crush injury model. J Orthop Sci 2024; 29:653-659. [PMID: 36858838 DOI: 10.1016/j.jos.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Peripheral nerve injuries are common and serious conditions. The effect of Neurotropin® (NTP), a nonprotein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, on peripheral nerve regeneration has not been fully elucidated. However, it has analgesic properties via the activation of descending pain inhibitory systems. Therefore, the current study aimed to determine the effects of NTP on peripheral nerve regeneration. METHODS We examined axonal outgrowth of dorsal root ganglion (DRG) neurons using immunocytochemistry in vitro. In addition, nerve regeneration was evaluated functionally, electrophysiologically, and histologically in a rat sciatic nerve crush injury model in vivo. Furthermore, gene expression of neurotrophic factors in the injured sciatic nerves and DRGs was evaluated. RESULTS In the dorsal root ganglion neurons in vitro, NTP promoted axonal outgrowth at a concentration of 10 mNU/mL. Moreover, the systemic administration of NTP contributed to the recovery of motor and sensory function at 2 weeks, and of sensory function, nerve conduction velocity, terminal latency, and axon-remyelination 4 weeks after sciatic nerve injury. In the gene expression assessment, insulin-like growth factor 1 and vascular endothelial growth factor expressions were increased in the injured sciatic nerve 2 days postoperatively. CONCLUSIONS Therefore, NTP might be effective in not only treating chronic pain but also promoting peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Sports Medical Science, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Itami City Hospital, Hyogo, 664-8540, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Yukio Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
13
|
You M, Xing H, Yan M, Zhang J, Chen J, Chen Y, Liu X, Zhu J. Schwann Cell-Derived Exosomes Ameliorate Paclitaxel-Induced Peripheral Neuropathy Through the miR-21-Mediated PTEN Signaling Pathway. Mol Neurobiol 2023; 60:6840-6851. [PMID: 37498480 DOI: 10.1007/s12035-023-03488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is a neurological disorder resulting from paclitaxel (PTX) treatment for cancer patients. There are currently no drugs available that can definitively prevent or treat PIPN. Exosomes are cell-secreted nanoscale vesicles that mediate communication between neurons and glial cells. We found that Schwann cell-derived exosomes (SC-EXOs) robustly improved PIPN both in vitro and in vivo. In vivo studies showed that SC-EXOs were able to alleviate PTX-induced mechanical nociceptive sensitization in rats. Pathomorphological analysis showed that SC-EXOs ameliorated PTX-induced plantar intraepidermal nerve fiber loss and dorsal root ganglion (DRG) injury. Additionally, the results of in vitro studies showed that SC-EXOs had significant protective effects on the DRG cells damaged by PTX, and did not affect the antitumor effect of PTX against Hela cells. Further, mechanism research revealed that SC-EXOs promoted axonal regeneration and protected damaged neurons by upregulating miR-21 to repress the phosphatase and tensin homolog (PTEN) pathway, which could improve PIPN. Taken together, these findings suggest that SC-EXOs ameliorate PTX-induced peripheral neuropathy via the miR-21-mediated PTEN signaling pathway, which provides a novel strategy for the treatment of PIPN.
Collapse
Affiliation(s)
- Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jie Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yang Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
de Sousa ARS, Ottestad I, Gjevestad GO, Holven KB, Ulven SM, Christensen JJ. Associations between PBMC whole genome transcriptome, muscle strength, muscle mass, and physical performance in healthy home-dwelling older women. GeroScience 2023; 45:3175-3186. [PMID: 37204640 PMCID: PMC10643614 DOI: 10.1007/s11357-023-00819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
Increasing age is accompanied by many changes, including declining functional skeletal muscle health and immune dysfunction. Peripheral blood mononuclear cells (PBMCs) are circulating cells that assemble an immune response, but their whole genome transcriptome has not been studied in the context of age-related muscle health. Consequently, this article explored associations between three muscle variables indicative of functional muscle health - maximum handgrip strength (muscle strength), appendicular skeletal muscle mass index (ASMI, muscle mass), and gait speed (physical performance) - and two groups of bioinformatics-generated PBMC gene expression features (gene expression-estimated leukocyte subset proportions and gene clusters). We analyzed cross-sectional data from 95 home-dwelling healthy women ≥ 70 years, using "cell-type identification by estimating relative subsets of RNA transcripts" (CIBERSORT) to estimate leukocyte subset proportions and "weighted correlation network analysis" (WGCNA) to generate gene clusters. Associations were studied using linear regression models and relevant gene clusters were subjected to gene set enrichment analysis using gene ontology. Gait speed and ASMI associated with CIBERSORT-estimated monocyte proportions (β = - 0.090, 95% CI = (- 0.146, - 0.034), p-value = 0.002 for gait speed, and β = - 0.206, 95% CI = (- 0.385, - 0.028), p-value = 0.024 for ASMI), and gait speed associated with CIBERSORT-estimated M2 macrophage proportions (β = - 0.026, 95% CI = (- 0.043, - 0.008), p-value = 0.004). Furthermore, maximum handgrip strength associated with nine WGCNA gene clusters, enriched in processes related to immune function and skeletal muscle cells (β in the range - 0.007 to 0.008, p-values < 0.05). These results illustrate interactions between skeletal muscle and the immune system, supporting the notion that age-related functional muscle health and the immune system are closely linked.
Collapse
Affiliation(s)
- Ana R S de Sousa
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Gyrd O Gjevestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- TINE SA, Innovation and Marketing, Postboks 113 Kalbakken, 0902, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway.
| |
Collapse
|
15
|
Guzman SD, Abu-Mahfouz A, Davis CS, Ruiz LP, Macpherson PC, Brooks SV. Decoding muscle-resident Schwann cell dynamics during neuromuscular junction remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561193. [PMID: 38370853 PMCID: PMC10871306 DOI: 10.1101/2023.10.06.561193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding neuromuscular junction (NMJ) repair mechanisms is essential for addressing degenerative neuromuscular conditions. Here, we focus on the role of muscle-resident Schwann cells in NMJ reinnervation. In young Sod1-/- mice, a model of progressive NMJ degeneration, we identified a clear NMJ 'regenerative window' that allowed us to define regulators of reinnervation and crossing Sod1-/- mice with S100GFP-tg mice permitted visualization and analysis of Schwann cells. High-resolution imaging and single-cell RNA sequencing provide a detailed analysis of Schwann cell number, morphology, and transcriptome revealing multiple subtypes, including a previously unrecognized terminal Schwann cell (tSC) population expressing a synapse promoting signature. We also discovered a novel SPP1-driven cellular interaction between myelin Schwann cells and tSCs and show that it promotes tSC proliferation and reinnervation following nerve injury in wild type mice. Our findings offer important insights into molecular regulators critical in NMJ reinnervation that are mediated through tSCs to maintain NMJ function.
Collapse
Affiliation(s)
- Steve D Guzman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ahmad Abu-Mahfouz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lloyd P Ruiz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Lewis M, David G, Jacobs D, Kuczwara P, Woessner AE, Kim JW, Quinn KP, Song Y. Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels. Mater Today Bio 2023; 22:100762. [PMID: 37600354 PMCID: PMC10433000 DOI: 10.1016/j.mtbio.2023.100762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Peripheral nerve injuries persist as a major clinical issue facing the US population and can be caused by stretch, laceration, or crush injuries. Small nerve gaps are simple to treat, and the nerve stumps can be reattached with sutures. In longer nerve gaps, traditional treatment options consist of autografts, hollow nerve guidance conduits, and, more recently, manufactured fibrous scaffolds. These manufactured scaffolds often incorporate stem cells, growth factors, and/or extracellular matrix (ECM) proteins to better mimic the native environment but can have issues with homogenous cell distribution or uniformly oriented neurite outgrowth in scaffolds without fibrous alignment. Here, we utilize a custom device to fabricate collagen I hydrogels with aligned fibers and encapsulated adipose-derived mesenchymal stem cells (ASCs) for potential use as a peripheral nerve repair graft. Initial results of our scaffold system revealed significantly less cell viability in higher collagen gel concentrations; 3 mg/mL gels showed 84.8 ± 7.3% viable cells, compared to 6 mg/mL gels viability of 76.7 ± 9.5%. Mechanical testing of the 3 mg/mL gels showed a Young's modulus of 6.5 ± 0.8 kPa nearly matching 7.45 kPa known to support Schwann cell migration. Further analysis of scaffolds coupled with stretching in vitro revealed heightened angiogenic and factor secretion, ECM deposition, fiber alignment, and dorsal root ganglia (DRG) neurite outgrowth along the axis of fiber alignment. Our platform serves as an in vitro testbed to assess neuro-regenerative potential of ASCs in aligned collagen fiber scaffolds and may provide guidance on next-generation nerve repair scaffold design.
Collapse
Affiliation(s)
- Mackenzie Lewis
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Gabriel David
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Danielle Jacobs
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Patrick Kuczwara
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
- Department of Biological & Agricultural Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Alan E. Woessner
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering; University of Arkansas, Fayetteville, AR, USA
- Materials Science & Engineering Program; University of Arkansas, Fayetteville, AR, USA
| | - Kyle P. Quinn
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Younghye Song
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
17
|
Camuzard O, Lu JCY, Abbadi SE, Chang TNJ, Chuang DCC. The Impact of Exercise on Motor Recovery after Long Nerve Grafting-Experimental Rat Study. J Reconstr Microsurg 2023; 39:508-516. [PMID: 36693393 DOI: 10.1055/s-0043-1761207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Long nerve grafting often results in unsatisfactory functional outcomes. In this study we aim to investigate the effect of swimming exercise on nerve regeneration and functional outcomes after long nerve grafting. METHODS A reversed long nerve graft was interposed between C6 and the musculocutaneous nerve in 40 rats. The rats were divided into four groups with 10 in each based on different postoperative swimming regimes for rehabilitation: group A, continuous exercise; group B, early exercise; group C, late exercise; and group D, no exercise (control group). A grooming test was assessed at 4, 8, 12, and 16 weeks postoperatively. Biceps muscle compound action potential (MCAP), muscle tetanic contraction force (MTCF), and muscle weights were assessed after 16 weeks. Histomorphometric analyses of the musculocutaneous nerves were performed to examine nerve regeneration. RESULTS The grooming test showed all groups except group D demonstrated a trend of progressive improvement over the whole course of 16 weeks. Biceps MCAP, MTCF, and muscle weights all showed significant better results in the exercise group in comparison to the group D at 16 weeks, which is especially true in groups A and B. Nerve analysis at 16 weeks, however, showed no significant differences between the exercise groups and the control group. CONCLUSIONS Swimming after long nerve grafting can significantly improve muscle functional behavior and volume. The effect is less evident on nerve regeneration. Continuous exercise and early exercise after surgery show more optimal outcomes than late or no exercise. Having a good habit with exercise in the early period is thought as the main reason. Further studies are needed to determine the optimal exercise regimen.
Collapse
Affiliation(s)
- Olivier Camuzard
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
- Department of Plastic and Reconstructive Surgery, Hôpital Pasteur 2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Johnny Chuieng-Yi Lu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Sam El Abbadi
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Tommy Nai-Jen Chang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - David Chwei-Chin Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| |
Collapse
|
18
|
Salles M, Horikawa F, Allegrini Jr S, Zangrando D, Yoshimoto M, Shinohara E. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon 2023; 9:e18304. [PMID: 37520975 PMCID: PMC10382299 DOI: 10.1016/j.heliyon.2023.e18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
There is a great effort from numerous research groups in the development of materials and therapeutic strategies for the functional recovery of patients who have suffered peripheral nerve injuries (PNI). In an article in vivo, the formation of a nerve bridge was observed, reconnecting the distal and proximal stumps, in the sciatic nerve of rats, indicating the effective participation of the biomaterial in the recovery of peripheral nerve injuries. For the current pilot study, 15 cases of multiple fractures of the mandible, with involvement of the inferior alveolar nerve (IAN) were selected and studied: JC (control cases) n = 6 with conventional treatment, and JT (treated cases) n = 9, with the use of biomimetic biomaterial. The evaluation of the return to sensitivity was measured through a self-assessment, where the patients assigned scores from 0 to 10, where zero (0) represented the complete absence of sensitivity and ten (10) the normality of the perception of local sensitivity. Patients were evaluated from the preoperative period to the 360th day. The statistical results obtained by the t-Student, Shapiro-Wilk normality and non-parametric One-Way ANOVA tests indicated statistically significant differences (p < 0.005; 0.005 e 0.5 respectively), between the two treatments, which were reflected in the clinical results observed, we also calculate the size of the effect represented by ϵ2, calculated by Cohen's d. The results indicate a great difference between the treatments performed,ϵ2 = 1.00. In the 6 cases followed up in the JC group, four remained with a significant deficit until the end of the evaluations and two indicated the remission of the lack of sensitivity in this period. In the JT group, in 28 days, all cases indicated complete remission of the lack of sensitivity with healing concentration. In one of the cases where there was a complete rupture of the mental nerve, the (score-10) was observed in 60 days. The observed results indicate the existence of a statistical significance between the groups and an important relationship when using the biomimetic biomaterial during the recovery of the perception of sensitivity in polytraumatized patients, compatible with the results observed in laboratory animals, which may indicate its clinical feasibility in the reduction of sequelae in PNI.
Collapse
Affiliation(s)
| | - F.K. Horikawa
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| | - S. Allegrini Jr
- Program in Biodentistry, Ibirapuera University (UNIB), São Paulo, SP, 04661 100, Brazil
- Católica Portuguesa University (UCP), Viseu, Portugal
| | - D. Zangrando
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
- Department of Surgery Stomatology Pathology and Radiology of the Faculty of Dentistry of Bauru, University of São Paulo (FOB-USP) Bauru, São Paulo, Brazil
| | | | - E.H. Shinohara
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| |
Collapse
|
19
|
Horníček J, Olšák P, Kolář P, Kolářová B. Perspectives of Electroacupuncture as a New Option for the Treatment of Denervated Muscles. Med Acupunct 2023; 35:107-110. [PMID: 37351450 PMCID: PMC10282816 DOI: 10.1089/acu.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Introduction Conservative treatment of peripheral nerve injuries is based on physical therapy approaches, including electrostimulation of denervated muscle. Electrostimulation retards denervation atrophy and prolongs the time window for axon reinnervation. Aim This article focuses on the potential of electroacupuncture, which combines electrostimulation with acupuncture, in the context of the latest knowledge on the mechanisms of axonal regeneration. Results and conclusions The possibilities of influencing the growth rate of the axon itself through neurotrophic factors have primarily been previously proven in rodent models. Electroacupuncture as mini-invasive electrostimulation using acupuncture needles appears to be a promising option for the treatment of peripheral nerve paresis. However, this therapy needs to be evaluated in the context of human medicine.
Collapse
Affiliation(s)
- Jiří Horníček
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Peter Olšák
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | - Petr Kolář
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Barbora Kolářová
- Rehabilitation Department, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
20
|
Liu J, Ma X, Hu X, Wen J, Zhang H, Xu J, He Y, Wang X, Guo J. Schwann cell‐specific
RhoA
knockout accelerates peripheral nerve regeneration via promoting Schwann cell dedifferentiation. Glia 2023; 71:1715-1728. [PMID: 36971019 DOI: 10.1002/glia.24365] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Our previous studies indicated that RhoA knockdown or inhibition could alleviate the proliferation, migration, and differentiation of Schwann cells. However, the role of RhoA in Schwann cells during nerve injury and repair is still unknown. Herein, we developed two lines of Schwann cells conditional RhoA knockout (cKO) mice by breeding RhoAflox / flox mice with PlpCre -ERT2 or DhhCre mice. Our results indicate that RhoA cKO in Schwann cells accelerates axonal regrowth and remyelination after sciatic nerve injury, which enhances the recovery of nerve conduction and hindlimb gait, and alleviates the amyotrophy in gastrocnemius muscle. Mechanistic studies in both in vivo and in vitro models revealed that RhoA cKO could facilitate Schwann cell dedifferentiation via JNK pathway. Schwann cell dedifferentiation subsequently promotes Wallerian degeneration by enhancing phagocytosis and myelinophagy, as well as stimulating the production of neurotrophins (NT-3, NGF, BDNF, and GDNF). These findings shed light on the role of RhoA in Schwann cells during nerve injury and repair, indicating that cell type-specific RhoA targeting could serve as a promising molecular therapeutic strategy for peripheral nerve injury.
Collapse
|
21
|
Sivanarayanan TB, Bhat IA, Sharun K, Palakkara S, Singh R, Remya, Parmar MS, Bhardwaj R, Chandra V, Munuswamy P, Kinjavdekar P, Pawde AM, Amarpal, Sharma GT. Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue Cell 2023; 82:102053. [PMID: 36907044 DOI: 10.1016/j.tice.2023.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest. After inducing sciatic nerve crush injury, different treatments consisting of PBS, Laminin, BM-MSCs + laminin, and BM-MSCS-CM + laminin were used on the day of injury in the acute injury model and after ten days of crush injury in the subacute groups. The parameters studied included: pain, total neurological score, gastrocnemius muscle weight and volume ratio, histopathology of the sciatic nerve and gastrocnemius muscle, and scanning electron microscopy (SEM). Findings indicate that BM-MSCs and BM-MSCS-CM have augmented the regenerative capacity in acute and subacute injury groups with a slightly better improvement in the subacute groups than the animals in acute injury groups. Histopathology data revealed different levels of regenerative process undergoing in the nerve. Neurological observations, gastrocnemius muscle evaluation, muscle histopathology, and the SEM results depicted better healing in animals treated with BM-MSCs and BM-MSCS-CM. With this data, it could be concluded that BM-MSCs support the healing of injured peripheral nerves, and the BM-MSCS-CM does accelerate the healing of acute and subacute peripheral nerve injuries in rabbits. However, stem cell therapy may be indicated during the subacute phase for better results.
Collapse
Affiliation(s)
- T B Sivanarayanan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Irfan Ahmad Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sangeetha Palakkara
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rashmi Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Remya
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mehtab Singh Parmar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rahul Bhardwaj
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - G Taru Sharma
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| |
Collapse
|
22
|
Karvat J, Andrade TES, Kraus SI, Beppler LM, de Jesus GDSC, Ferreira JB, da Silva MD. Drug repositioning: diacerein as a new therapeutic approach in a mice model of sciatic nerve injury. Pharmacol Rep 2023; 75:358-375. [PMID: 36809646 DOI: 10.1007/s43440-023-00461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Peripheral nerve injuries negatively impact the quality of life of patients, with no effective treatment available that accelerates sensorimotor recovery and promotes functional improvement and pain relief. The aim of this study was to evaluate the effects of diacerein (DIA) in an experimental mice model of sciatic nerve crush. METHOD In this study, male Swiss mice were used, randomly separated into six groups as follows: FO (false-operated + vehicle); FO + DIA (false-operated + diacerein 30 mg/kg); SNI (sciatic nerve injury + vehicle); SNI + DIA in doses of 3, 10 and 30 mg/kg (sciatic nerve injury + treatment with diacerein in doses of 3-30 mg/kg). DIA or vehicle was administered 24 h after the surgical procedure, intragastrically, twice a day. The lesion of the right sciatic nerve was generated by crush. RESULTS We found that the treatment of animals with DIA accelerated sensorimotor recovery of the animal. In addition, animals in the sciatic nerve injury + vehicle (SNI) group showed hopelessness, anhedonia, and lack of well-being, which were significantly inhibited by DIA treatment. The SNI group showed a reduction in the diameters of nerve fibers, axons, and myelin sheaths, while DIA treatment recovered all these parameters. In addition, the treatment of animals with DIA prevented an increase the levels of interleukin (IL)-1β and a reduction in the levels of the brain-derived growth factor (BDNF). CONCLUSIONS Treatment with DIA reduces hypersensitivity and depression like behaviors in animals. Furthermore, DIA promotes functional recovery and regulates IL-1β and BDNF concentrations.
Collapse
Affiliation(s)
- Jhenifer Karvat
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Tassiane Emanuelle Servare Andrade
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Larissa May Beppler
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Gustavo Dos Santos Catarina de Jesus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Jeane Bachi Ferreira
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Duarte da Silva
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
23
|
Khairullin AE, Grishin SN, Ziganshin AU. P2 Receptor Signaling in Motor Units in Muscular Dystrophy. Int J Mol Sci 2023; 24:1587. [PMID: 36675094 PMCID: PMC9865441 DOI: 10.3390/ijms24021587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purine signaling system is represented by purine and pyrimidine nucleotides and nucleosides that exert their effects through the adenosine, P2X and P2Y receptor families. It is known that, under physiological conditions, P2 receptors play only a minor role in modulating the functions of cells and systems; however, their role significantly increases under some pathophysiological conditions, such as stress, ischemia or hypothermia, when they can play a dominant role as a signaling molecule. The diversity of P2 receptors and their wide distribution in the body make them very attractive as a target for the pharmacological action of drugs with a new mechanism of action. The review is devoted to the involvement of P2 signaling in the development of pathologies associated with a loss of muscle mass. The contribution of adenosine triphosphate (ATP) as a signal molecule in the pathogenesis of a number of muscular dystrophies (Duchenne, Becker and limb girdle muscular dystrophy 2B) is considered. To understand the processes involving the purinergic system, the role of the ATP and P2 receptors in several models associated with skeletal muscle degradation is also discussed.
Collapse
Affiliation(s)
- Adel E. Khairullin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia
- Research Laboratory of Mechanobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey N. Grishin
- Department of Medicinal Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Ayrat U. Ziganshin
- Department of Pharmacology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
24
|
Shin HI, Bang JI, Kim GJ, Sun DI, Kim SY. Perineural Invasion Predicts Local Recurrence and Poor Survival in Laryngeal Cancer. J Clin Med 2023; 12:jcm12020449. [PMID: 36675378 PMCID: PMC9864268 DOI: 10.3390/jcm12020449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
(1) Background: Perineural invasion (PNI) in head and neck cancer is associated with a poor prognosis; however, the effect of PNI on the prognosis of laryngeal cancer remains under debate. This retrospective study aimed to investigate the effect of PNI in fresh or salvaged larynges on survival in patients who had undergone laryngectomy for squamous cell carcinoma. (2) Methods: This study enrolled 240 patients diagnosed with laryngeal cancer who had undergone open surgery at Seoul St. Mary's Hospital, Korea. The effects of PNI, other histopathologic factors, and treatment history on survival and recurrence patterns were assessed. (3) Results: PNI was observed in 30 of 240 patients (12.5%). PNI (HR: 3.05; 95% CI: 1.90-4.88; p = 0.01) was a significant predictor of poor 5-year disease-free survival. In fresh cases, preepiglottic invasion (HR: 2.37; 95% CI: 1.45-3.88; p = 0.01) and PNI (HR: 2.96; 95% CI: 1.62-2.96; p = 0.01) were negative prognostic factors for 5-year disease-free survival. In the salvage group, however, only PNI (HR: 2.74; 95% CI: 1.26-5.92; p = 0.01) was a significant predictor of disease-free survival. Further, PNI significantly influenced high local recurrence (HR: 5.02, 95% CI: 1.28-9.66; p = 0.02). (4) Conclusions: Independent of treatment history, PNI is a prognostic factor for poor survival and local recurrence in laryngeal cancer.
Collapse
|
25
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
26
|
Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM. The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury. Biomolecules 2022; 12:biom12121856. [PMID: 36551285 PMCID: PMC9775635 DOI: 10.3390/biom12121856] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNI) are common and often result in lifelong disability. The peripheral nervous system has an inherent ability to regenerate following injury, yet complete functional recovery is rare. Despite advances in the diagnosis and repair of PNIs, many patients suffer from chronic pain, and sensory and motor dysfunction. One promising surgical adjunct is the application of intraoperative electrical stimulation (ES) to peripheral nerves. ES acts through second messenger cyclic AMP to augment the intrinsic molecular pathways of regeneration. Decades of animal studies have demonstrated that 20 Hz ES delivered post-surgically accelerates axonal outgrowth and end organ reinnervation. This work has been translated clinically in a series of randomized clinical trials, which suggest that ES can be used as an efficacious therapy to improve patient outcomes following PNIs. The aim of this review is to discuss the cellular physiology and the limitations of regeneration after peripheral nerve injuries. The proposed mechanisms of ES protocols and how they facilitate nerve regeneration depending on timing of administration are outlined. Finally, future directions of research that may provide new perspectives on the optimal delivery of ES following PNI are discussed.
Collapse
|
27
|
Akamatsu M, Makino T, Morita S, Noda Y, Kariya S, Onoda T, Ando M, Kimata Y, Nishizaki K, Okano M, Oka A, Kanai K, Watanabe Y, Imanishi Y. Midline involvement and perineural invasion predict contralateral neck metastasis that affects overall and disease-free survival in locally advanced oral tongue squamous cell carcinoma. Front Oncol 2022; 12:1010252. [DOI: 10.3389/fonc.2022.1010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough patients with oral squamous cell carcinoma who develop contralateral neck metastasis (CLNM) have worse survival outcomes than those without CLNM, accurate prediction of occult CLNM in clinically negative contralateral neck (contralateral cN0) remains difficult. This study aimed to identify clinicopathological factors that could reliably predict CLNM in patients with locally advanced (clinical T3 and T4a) tongue squamous cell carcinoma (TSCC).Patients and methodsThe medical data of 32 patients with cT3–4a TSCC who underwent curative surgery between 2010 and 2017 were retrospectively analyzed. The correlation of clinicopathological variables with CLNM was examined using logistic regression analysis. The diagnostic performance of significant variables was evaluated using the area under the receiver operating characteristic curves (AUC). Overall survival (OS) and disease-free survival (DFS) were assessed using a Cox proportional hazards model.ResultsCLNM was eventually confirmed in 11 patients (34.4%). Multivariate logistic regression showed that midline involvement [odds ratio (OR) = 23.10, P = 0.017] and perineural invasion (PNI, OR = 14.96, P = 0.014) were independent predictors of CLNM. Notably, the prediction model comprising a combination of midline involvement and PNI exhibited superior diagnostic performance with an even higher OR of 80.00 (P < 0.001), accuracy of 90.3%, and AUC of 0.876. The multivariate Cox hazards model revealed independent significance of CLNM as an unfavorable prognostic factor for both OS [hazard ratio (HR) = 5.154, P = 0.031] and DFS (HR = 3.359, P = 0.038), as well as that of PNI for OS (HR = 5.623, P = 0.033).ConclusionOur findings suggest that coexisting midline involvement and PNI of the primary tumor is highly predictive of CLNM development, which independently affects both OS and DFS in patients with locally advanced TSCC. Such reliable prediction enables efficient control of CLNM by optimizing management of the contralateral cN0 neck, which will likely contribute to improved prognosis of those patients without unnecessarily compromising their quality of life.
Collapse
|
28
|
Peripheral Nerve Regeneration–Adipose-Tissue-Derived Stem Cells Differentiated by a Three-Step Protocol Promote Neurite Elongation via NGF Secretion. Cells 2022; 11:cells11182887. [PMID: 36139462 PMCID: PMC9496771 DOI: 10.3390/cells11182887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The lack of supportive Schwann cells in segmental nerve lesions seems to be one cornerstone for the problem of insufficient nerve regeneration. Lately, adipose-tissue-derived stem cells (ASCs) differentiated towards SC (Schwann cell)-like cells seem to fulfill some of the needs for ameliorated nerve recovery. In this study, three differentiation protocols were investigated for their ability to differentiate ASCs from rats into specialized SC phenotypes. The differentiated ASCs (dASCs) were compared for their expressions of neurotrophins (NGF, GDNF, BDNF), myelin markers (MBP, P0), as well as glial-marker proteins (S100, GFAP) by RT-PCR, ELISA, and Western blot. Additionally, the influence of the medium conditioned by dASCs on a neuron-like cell line was evaluated. The dASCs were highly diverse in their expression profiles. One protocol yielded relatively high expression rates of neurotrophins, whereas another protocol induced myelin-marker expression. These results were reproducible when the ASCs were differentiated on surfaces potentially used for nerve guidance conduits. The NGF secretion affected the neurite outgrowth significantly. It remains uncertain what features of these SC-like cells contribute the most to adequate functional recovery during the different phases of nerve recovery. Nevertheless, therapeutic applications should consider these diverse phenotypes as a potential approach for stem-cell-based nerve-injury treatment.
Collapse
|
29
|
Serger E, Luengo-Gutierrez L, Chadwick JS, Kong G, Zhou L, Crawford G, Danzi MC, Myridakis A, Brandis A, Bello AT, Müller F, Sanchez-Vassopoulos A, De Virgiliis F, Liddell P, Dumas ME, Strid J, Mani S, Dodd D, Di Giovanni S. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 2022; 607:585-592. [PMID: 35732737 DOI: 10.1038/s41586-022-04884-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.
Collapse
Affiliation(s)
- Elisabeth Serger
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Graduate School for Neuroscience, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Lucia Luengo-Gutierrez
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica S Chadwick
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Matt C Danzi
- Dr. John T. MacDonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander Brandis
- Targeted Metabolomics Unit, Weizmann Institute of Science, Rehovot, Israel
| | | | - Franziska Müller
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | | | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Phoebe Liddell
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Marc Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- European Genomic Institute for Diabetes, UMR1283 INSERM, UMR8199 CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylan Dodd
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
30
|
León-Andrino A, Noriega DC, Lapuente JP, Pérez-Valdecantos D, Caballero-García A, Herrero AJ, Córdova A. Biological Approach in the Treatment of External Popliteal Sciatic Nerve (Epsn) Neurological Injury: Review. J Clin Med 2022; 11:2804. [PMID: 35628928 PMCID: PMC9144828 DOI: 10.3390/jcm11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The external popliteal sciatic nerve (EPSN) is the nerve of the lower extremity most frequently affected by compressive etiology. Its superficial and sinuous anatomical course is closely related to other rigid anatomical structures and has an important dynamic neural component. Therefore, this circumstance means that this nerve is exposed to multiple causes of compressive etiology. Despite this fact, there are few publications with extensive case studies dealing with treatment. In this review, we propose to carry out a narrative review of the neuropathy of the EPSN, including an anatomical reminder, its clinical presentation and diagnosis, as well as its surgical and biological approach. The most novel aspect we propose is the review of the possible role of biological factors in the reversal of this situation.
Collapse
Affiliation(s)
- Alejandro León-Andrino
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
| | - David C. Noriega
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan P. Lapuente
- SCO (Scientific Chief Officer) Laboratorio de Biología Molecular y Celular R4T, University Hospital of Fuenlabrada, 28942 Fuenlabrada, Spain;
| | - Daniel Pérez-Valdecantos
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Azael J. Herrero
- Department of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| |
Collapse
|
31
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
32
|
Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol 2022; 354:114069. [DOI: 10.1016/j.expneurol.2022.114069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
|
33
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
34
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
35
|
DHI Increases the Proliferation and Migration of Schwann Cells Through the PI3K/AKT Pathway and the Expression of CXCL12 and GDNF to Promote Facial Nerve Function Repair. Neurochem Res 2022; 47:1329-1340. [PMID: 35080688 DOI: 10.1007/s11064-022-03532-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
The facial nerve is one of the vulnerable nerves in otolaryngology. Repair and recovery of facial nerve injury have a high priority in clinical practice. The proliferation and migration of Schwann cells are considered of great significance in the process of nerve injury repair. Danhong injection (DHI), as a common drug for cardiovascular and cerebrovascular diseases, has been fully certified in neuroprotection research, but its role in facial nerve injury is still not clear. Our study found that DHI can promote the proliferation and migration of RSC96 cells, a Schwann cell line, and this effect is related to the activation of the PI3K/AKT pathway. LY294002, an inhibitor of PI3K, inhibits the proliferation and migration of RSC96 cells. Further studies have found that DHI can also promote the expression of CXCL12 and GDNF at gene and protein levels, and CXCL12 is, while GDNF is not, PI3K/AKT pathway-dependent. Animal experiments also confirmed that DHI could promote CXCL12 and GDNF expression and promote facial nerve function recovery and myelin regeneration. In conclusion, our in vitro and in vivo experiments demonstrated that DHI could promote the proliferation and migration of Schwann cells through the PI3K/AKT pathway and increase the expression of CXCL12 and GDNF to promote facial nerve function repair.
Collapse
|
36
|
Jin N, Sha W, Gao L. Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Front Cell Dev Biol 2021; 9:741368. [PMID: 34966736 PMCID: PMC8710684 DOI: 10.3389/fcell.2021.741368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration that cause vision loss and affect people's daily lives. Various therapies have been proposed, among which stem cell therapy (SCT) holds great promise for the treatment of RDDs. Microglia are immune cells in the retina that have two activation phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an important role in the pathological progression of RDDs, especially in terms of retinal inflammation. Recent studies have extensively investigated the therapeutic potential of stem cell therapy in treating RDDs, including the immunomodulatory effects targeting microglia. In this review, we substantially summarized the characteristics of RDDs and microglia, discussed the microglial changes and phenotypic transformation of M1 microglia to M2 microglia after SCT, and proposed future directions for SCT in treating RDDs.
Collapse
Affiliation(s)
- Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Weiwei Sha
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
37
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
38
|
Karagyaur M, Dzhauari S, Basalova N, Aleksandrushkina N, Sagaradze G, Danilova N, Malkov P, Popov V, Skryabina M, Efimenko A, Tkachuk V. MSC Secretome as a Promising Tool for Neuroprotection and Neuroregeneration in a Model of Intracerebral Hemorrhage. Pharmaceutics 2021; 13:2031. [PMID: 34959314 PMCID: PMC8707464 DOI: 10.3390/pharmaceutics13122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are considered to be critical contributors to injured tissue repair and regeneration, and MSC-based therapeutic approaches have been applied to many peripheral and central neurologic disorders. It has been demonstrated that the beneficial effects of MSC are mainly mediated by the components of their secretome. In the current study, we have explored the neuroprotective potential of the MSC secretome in a rat model of intracerebral hemorrhage and shown that a 10-fold concentrated secretome of human MSC and its combination with the brain-derived neurotrophic factor (BDNF) provided a better survival and neurological outcome of rats within 14 days of intracerebral hemorrhage compared to the negative (non-treated) and positive (BDNF) control groups. We found that it was due to the ability of MSC secretome to stimulate neuron survival under conditions of glutamate-induced neurotoxicity. However, the lesion volume did not shrink in these rats, and this also correlated with prominent microglia activation. We hypothesize that this could be caused by the species-specificity of the used MSC secretome and provide evidence to confirm this. Thus, we have found that allogenic rat MSC secretome was more effective than xenogenic human MSC secretome in the rat intracerebral hemorrhage model: it reduced the volume of the lesion and promoted excellent survival and neurological outcome of the treated rats.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Natalia Aleksandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
| | - Natalia Danilova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Pavel Malkov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Vladimir Popov
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave, 119192 Moscow, Russia; (N.B.); (N.A.); (G.S.); (V.P.); (A.E.); (V.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave, 119192 Moscow, Russia; (S.D.); (N.D.); (P.M.); (M.S.)
| |
Collapse
|
39
|
Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang K, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. J Nanobiotechnology 2021; 19:373. [PMID: 34789266 PMCID: PMC8600922 DOI: 10.1186/s12951-021-01123-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Uncontrollable inflammation and nerve cell apoptosis are the most destructive pathological response after spinal cord injury (SCI). So, inflammation suppression combined with neuroprotection is one of the most promising strategies to treat SCI. Engineered extracellular vesicles with anti-inflammatory and neuroprotective properties are promising candidates for implementing these strategies for the treatment of SCI. Results By combining nerve growth factor (NGF) and curcumin (Cur), we prepared stable engineered extracellular vesicles of approximately 120 nm from primary M2 macrophages with anti-inflammatory and neuroprotective properties (Cur@EVs−cl−NGF). Notably, NGF was coupled with EVs by matrix metalloproteinase 9 (MMP9)-a cleavable linker to release at the injured site accurately. Through targeted experiments, we found that these extracellular vesicles could actively and effectively accumulate at the injured site of SCI mice, which greatly improved the bioavailability of the drugs. Subsequently, Cur@EVs−cl−NGF reached the injured site and could effectively inhibit the uncontrollable inflammatory response to protect the spinal cord from secondary damage; in addition, Cur@EVs−cl−NGF could release NGF into the microenvironment in time to exert a neuroprotective effect against nerve cell damage. Conclusions A series of in vivo and in vitro experiments showed that the engineered extracellular vesicles significantly improved the microenvironment after injury and promoted the recovery of motor function after SCI. We provide a new method for inflammation suppression combined with neuroprotective strategies to treat SCI. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01123-9.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Zhe Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Kaihua Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China. .,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| |
Collapse
|
40
|
Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Mol Biol Rep 2021; 48:8097-8110. [PMID: 34731366 DOI: 10.1007/s11033-021-06755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Myelin is a lipid-rich nerve cover that consists of glial cell's plasmalemma layers and accelerates signal conduction. Axon-myelin contact is a source for many developmental and regenerative signals of myelination. Intra- or extracellular factors including both enhancers and inhibitors are other factors affecting the myelination process. Myelin damages are observed in several congenital and hereditary diseases, physicochemical conditions, infections, or traumatic insults, and remyelination is known as an intrinsic response to injuries. Here we discuss some molecular events and conditions involved in de- and remyelination and compare the phenomena of remyelination in CNS and PNS. We have explained applying some of these molecular events in myelin restoration. Finally, the current and upcoming treatment strategies for myelin restoration are explained in three groups of immunotherapy, endogenous regeneration enhancement, and cell therapy to give a better insight for finding the more effective rehabilitation strategies considering the underlying molecular events of a lesion formation and its current condition.
Collapse
|
41
|
Sohn EJ, Nam YK, Park HT. Involvement of the miR-363-5p/P2RX4 Axis in Regulating Schwann Cell Phenotype after Nerve Injury. Int J Mol Sci 2021; 22:ijms222111601. [PMID: 34769029 PMCID: PMC8584002 DOI: 10.3390/ijms222111601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023] Open
Abstract
Although microRNAs (miRNAs or miRs) have been studied in the peripheral nervous system, their function in Schwann cells remains elusive. In this study, we performed a microRNA array analysis of cyclic adenosine monophosphate (cAMP)-induced differentiated primary Schwann cells. KEGG pathway enrichment analysis of the target genes showed that upregulated miRNAs (mR212-5p, miR335, miR20b-5p, miR146b-3p, and miR363-5p) were related to the calcium signaling pathway, regulation of actin cytoskeleton, retrograde endocannabinoid signaling, and central carbon metabolism in cancer. Several key factors, such as purinergic receptors (P2X), guanine nucleotide-binding protein G(olf) subunit alpha (GNAL), P2RX5, P2RX3, platelet-derived growth factor receptor alpha (PDGFRA), and inositol 1,4,5-trisphosphate receptor type 2 (ITPR2; calcium signaling pathway) are potential targets of miRNAs regulating cAMP. Our analysis revealed that miRNAs were differentially expressed in cAMP-treated Schwann cells; miRNA363-5p was upregulated and directly targeted the P2X purinoceptor 4 (P2RX4)-UTR, reducing the luciferase activity of P2RX4. The expression of miRNA363-5p was inhibited and the expression of P2RX4 was upregulated in sciatic nerve injury. In contrast, miRNA363-5p expression was upregulated and P2RX4 expression was downregulated during postnatal development. Of note, a P2RX4 antagonist counteracted myelin degradation after nerve injury and increased pERK and c-Jun expression. Interestingly, a P2RX4 antagonist increased the levels of miRNA363-5p. This study suggests that a double-negative feedback loop between miRNA363-5p and P2RX4 contributes to the dedifferentiation and migration of Schwann cells after nerve injury.
Collapse
Affiliation(s)
- Eun-Jung Sohn
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 602-714, Korea; (Y.-K.N.); (H.-T.P.)
- School of Medicine, Pusan National University, Yangsan 50612, Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-051-510-8433; Fax: +82-051-247-3318
| | - Yun-Kyeong Nam
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 602-714, Korea; (Y.-K.N.); (H.-T.P.)
| | - Hwan-Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 602-714, Korea; (Y.-K.N.); (H.-T.P.)
| |
Collapse
|
42
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
43
|
Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res 2021; 17:748-753. [PMID: 34472460 PMCID: PMC8530131 DOI: 10.4103/1673-5374.322446] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries commonly occur due to trauma, like a traffic accident. Peripheral nerves get severed, causing motor neuron death and potential muscle atrophy. The current golden standard to treat peripheral nerve lesions, especially lesions with large (≥ 3 cm) nerve gaps, is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur. If not tended early, degeneration of motor neurons and loss of axon regeneration can occur, leading to loss of function. Although surgical procedures exist, patients often do not fully recover, and quality of life deteriorates. Peripheral nerves have limited regeneration, and it is usually mediated by Schwann cells and neurotrophic factors, like glial cell line-derived neurotrophic factor, as seen in Wallerian degeneration. Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth. Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy, sciatic nerve crush, and compression, thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries. Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries. In this review, we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor, the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries, delivery systems, and complementary treatments (electrical muscle stimulation and exercise). Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients’ quality of life.
Collapse
Affiliation(s)
| | | | | | - John M Spitsbergen
- Biological Sciences Department, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
44
|
Razavi S, Jahromi M, Vatankhah E, Seyedebrahimi R. Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration. BMC Neurosci 2021; 22:50. [PMID: 34384370 PMCID: PMC8359623 DOI: 10.1186/s12868-021-00655-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background Fibrin as an extracellular matrix feature like biocompatibility, creates a favorable environment for proliferation and migration of cells and it can act as a reservoir for storage and release of growth factors in tissue engineering. Methods In this study, the inner surface of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibrous conduit was biofunctionalized with laminin containing brain derived neurotrophic factor (BDNF) and gold nanoparticles in chitosan nanoparticle. The rats were randomly divided into five groups, including autograft group as the positive control, PLGA conduit coated by laminin and filled with DMEM/F12, PLGA conduit coated by laminin and filled with rat-adipose derived stem cells (r-ADSCs), PLGA conduit coated by laminin containing gold-chitosan nanoparticles (AuNPs-CNPs), BDNF-chitosan nanoparticles (BDNF-CNPs) and filled with r-ADSCs or filled with r-ADSCs suspended in fibrin matrix, and they were implanted into a 10 mm rat sciatic nerve gap. Eventually, axonal regeneration and functional recovery were assessed after 12 weeks. Results After 3 months post-surgery period, the results showed that in the PLGA conduit filled with r-ADSCs without fibrin matrix group, positive effects were obtained as compared to other implanted groups by increasing the sciatic functional index significantly (p < 0.05). In addition, the diameter nerve fibers had a significant difference mean in the PLGA conduit coated by laminin and conduit filled with r-ADSCs in fibrin matrix groups relative to the autograft group (p < 0.001). However, G-ratio and amplitude (AMP) results showed that fibrin matrix might have beneficial effects on nerve regeneration but, immunohistochemistry and real-time RT-PCR outcomes indicated that the implanted conduit which filled with r-ADSCs, with or without BDNF-CNPs and AuNPs-CNPs had significantly higher expression of S100 and MBP markers than other conduit implanted groups (p < 0.05). Conclusions It seems, in this study differential effects of fibrin matrix, could be interfered it with other factors thereby and further studies are required to determine the distinctive effects of fibrin matrix combination with other exogenous factors in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maliheh Jahromi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Biological Systems, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Shang Z, Li C, Liu X, Xu M, Zhang X, Li X, Barnstable CJ, Zhao S, Tombran-Tink J. PEDF Gene Deletion Disrupts Corneal Innervation and Ocular Surface Function. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34132748 PMCID: PMC8212434 DOI: 10.1167/iovs.62.7.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The cornea is richly innervated by the trigeminal ganglion (TG) and its function supported by secretions from the adjacent lacrimal (LG) and meibomian glands (MG). In this study we examined how pigment epithelium–derived factor (PEDF) gene deletion affects the cornea structure and function. Methods We used PEDF hemizygous and homozygous knockout mice to study effects of PEDF deficiency on corneal innervation assessed by beta tubulin staining, mRNA expression of trophic factors, and PEDF receptors by adjacent supporting glands, corneal sensitivity measured using a Cochet-Bonnet esthesiometer, and tear production using phenol red cotton thread wetting. Results Loss of PEDF was accompanied by reduced corneal innervation and sensitivity, increased corneal surface injury and tear production, thinning of the corneal stroma and loss of stromal cells. PEDF mRNA was expressed in the cornea and its supporting tissues, the TG, LG, and MG. Deletion of one or both PEDF alleles resulted in decreased expression of essential trophic support in the TG, LG, and MG including nerve growth factor, brain-derived neurotrophic growth factor, and GDNF with significantly increased levels of NT-3 in the LG and decreased EGF expression in the cornea. Decreased transcription of the putative PEDF receptors, adipose triglyceride lipase, lipoprotein receptor–related protein 6, laminin receptor, PLXDC1, and PLXDC2 was also evident in the TG, LG and MG with the first three showing increased levels in corneas of the Pedf+/− and Pedf−/− mice compared to wildtype controls. Constitutive inactivation of ERK1/2 and Akt was pronounced in the TG and cornea, although their protein levels were dramatically increased in Pedf−/− mice. Conclusions This study highlights an essential role for PEDF in corneal structure and function and confirms the reported rescue of exogenous PEDF treatment in corneal pathologies. The pleiotropic effects of PEDF deletion on multiple trophic factors, receptors and signaling molecules are strong indications that PEDF is a key coordinator of molecular mechanisms that maintain corneal function and could be exploited in therapeutic options for several ocular surface diseases.
Collapse
Affiliation(s)
- Zhenying Shang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chenxi Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuemei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Colin J Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States.,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States.,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
47
|
Brain derived neurotrophic factor mediates accelerated recovery of regenerative electrical stimulation in an animal model of stress urinary incontinence. Exp Neurol 2021; 343:113781. [PMID: 34102241 DOI: 10.1016/j.expneurol.2021.113781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Stress urinary incontinence (SUI) is prevalent among older women and can result from insufficient regeneration of the pudendal nerve (PN). Electrical stimulation (ES) of the PN upregulates brain derived neurotrophic factor (BDNF) and accelerates regeneration. Using tyrosine kinase B (TrkB) to reduce the availability of free BDNF, the aim of this study was to determine if BDNF is necessary for accelerated recovery via ES in a model of SUI. METHODS Our SUI model consists of Female Sprague-Dawley rats, whose PNs were crushed bilaterally twice for 30 s, followed by insertion of a modified Foley catheter into the vagina with balloon inflation for 4 h. These rats were divided into 4 groups: 1) Sham PN crush and sham vaginal distension without electrode implantation and with saline treatment (sham injury); 2) SUI with sham stimulation and saline treatment (SUI); 3) SUI and ES with saline treatment (SUI&ES); and 4) SUI and ES with TrkB treatment (SUI&ES&TrkB). Animals underwent ES or sham stimulation four times a week for two weeks. Four weeks after injury, animals underwent functional testing consisting of leak point pressure (LPP) with simultaneous external urethral sphincter (EUS) electromyography (EMG) and pudendal nerve recordings. Data was analyzed using ANOVA with Holm-Sidak posthoc test (p < 0.05). EUS and PN specimen were sectioned and stained to semi-quantitatively evaluate morphology, regeneration, and reinnervation. RESULTS LPP and EUS EMG firing rate were significantly increased in the sham injury and SUI&ES groups compared to the SUI and SUI&ES&TrkB groups. EUS of SUI rats showed few innervated neuromuscular junctions compared to sham injured rats, while both treatment groups showed an increase in reinnervated neuromuscular junctions. CONCLUSION ES accelerates functional recovery via a BDNF-mediated pathway in a model of SUI. These findings suggest ES could be used as a potential regenerative therapy for women with SUI.
Collapse
|
48
|
Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JDA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021; 12:303. [PMID: 34051869 PMCID: PMC8164252 DOI: 10.1186/s13287-021-02315-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Ana Livia Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Marcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Janaina de Andréa Dernowsek
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Marjorie Golim
- Hemocenter division of Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Mathues Bertanha
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
50
|
Khairullin AE, Efimova DV, Markosyan VA, Grishin SN, Teplov AY, Ziganshin AU. The Effect of Acute Unilateral Denervation Injury on Purinergic Signaling in the Cholinergic Synapse. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|