1
|
Spezia MC, Dy CJ, Brogan DM. The Physiologic Basis of Molecular Therapeutics for Peripheral Nerve Injury: A Primer. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:676-680. [PMID: 39381384 PMCID: PMC11456656 DOI: 10.1016/j.jhsg.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries affect a significant number of patients who experience trauma affecting the hand and upper extremity. Improving unsatisfactory outcomes from repair of these injuries remains a clinical challenge despite advancements in microsurgical repair. Imperfections of the nerve regeneration process, including imprecise reinnervation, distal axon degradation, and muscular atrophy, complicate the repair process. However, the capacity for peripheral nerves to regenerate offers an avenue for therapeutic advancement. Regeneration is a temporally and spatially dynamic process coordinated by Schwann cells and neurons among other cell types. Neurotrophic factors are a primary means of controlling cell growth and differentiation in the repair setting. Sustained axon survival and regrowth and consequently functional outcomes of nerve repair in animal models are improved by the administration of neurotrophic factors, including glial cell-derived neurotrophic factor, nerve growth factor, sterile alpha and TIR motif containing 1, and erythropoietin. Targeted and sustained delivery of neurotrophic factors through gelatin-based nerve conduits, multiluminal conduits, and hydrogels have been shown to enhance the innate roles of these factors to promote expedient and accurate peripheral nerve regeneration in animal models. These delivery methods may help address the practical limitations to clinical use of neurotrophic factors, including systemic side effects and the need for carefully timed, precisely localized release schedules. In addition, tacrolimus has also improved peripheral nerve regrowth in animal models and has recently shown promise in addressing human disease. Ultimately, this realm of adjunct pharmacotherapies provides ample promise to improve patient outcomes and advance the field of peripheral nerve repair.
Collapse
Affiliation(s)
- Marie C. Spezia
- University of Missouri-Columbia School of Medicine, Columbia, MO
- The Institute of Clinical and Translational Sciences and Clinical Research Training Center, Washington University, St. Louis, MO
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Tuffaha S, Lee EB. Growth Factors to Enhance Nerve Regeneration: Approaching Clinical Translation. Hand Clin 2024; 40:399-408. [PMID: 38972684 DOI: 10.1016/j.hcl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.
Collapse
Affiliation(s)
- Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Erica B Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
3
|
Horvat S, Kos J, Pišlar A. Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker. Cell Biosci 2024; 14:61. [PMID: 38735971 PMCID: PMC11089681 DOI: 10.1186/s13578-024-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ1-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Selena Horvat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Krishnan MA, Alimi OA, Pan T, Kuss M, Korade Z, Hu G, Liu B, Duan B. Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics 2024; 16:102. [PMID: 38258111 PMCID: PMC10818718 DOI: 10.3390/pharmaceutics16010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies.
Collapse
Affiliation(s)
- Mena Asha Krishnan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Olawale A. Alimi
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tianshu Pan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
6
|
Wang Z, Zhang D, Yi XZ, Zhao Y, Yu A. Effects of regenerative peripheral nerve interface on dorsal root ganglia neurons following peripheral axotomy. Front Neurosci 2022; 16:914344. [PMID: 36161173 PMCID: PMC9489947 DOI: 10.3389/fnins.2022.914344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long-term delayed reconstruction of injured peripheral nerves always results in poor recovery. One important reason is retrograde cell death among injured sensory neurons of dorsal root ganglia (DRG). A regenerative peripheral nerve interface (RPNI) was capable of generating new synaptogenesis between the proximal nerve stump and free muscle graft. Meanwhile, sensory receptors within the skeletal muscle can also be readily reinnervated by donor sensory axons, which allows the target muscles to become sources of sensory information for function reconstruction. To date, the effect of RPNI on injured sensory neurons is still unclear. Here, we aim to investigate the potential neuroprotective role of RPNI on sensory DRG neurons after sciatic axotomy in adult rats. Materials and methods The sciatic nerves of sixty rats were transected. The rats were randomly divided into three groups following this nerve injury: no treatment (control group, n = 20), nerve stump implantation inside a fully innervated muscle (NSM group, n = 20), or nerve stump implantation inside a free muscle graft (RPNI group, n = 20). At 8 weeks post-axotomy, ipsilateral L4 and L5 DRGs were harvested in each group. Toluidine blue staining was employed to quantify the neuronal densities in DRGs. The neuronal apoptosis index was quantified with TUNEL assay. Western blotting was applied to measure the expressions of Bax, Bcl-2, and neurotrophins (NTs) in ipsilateral DRGs. Results There were significantly higher densities of neurons in ipsilateral DRGs of RPNI group than NSM and control groups at 8 weeks post-axotomy (p < 0.01). Meanwhile, neuronal apoptosis index and the expressions of pro-apoptotic Bax within the ipsilateral DRGs were significantly lower in the RPNI group than those in the control and NSM groups (p < 0.05), while the opposite result was observed in the expression of pro-survival Bcl-2. Furthermore, the expressions of NGF, NT-3, BDNF, and GDNF were also upregulated in the ipsilateral DRGs in the RPNI group (p < 0.01). Conclusion The present results demonstrate that RPNI could prevent neuronal loss after peripheral axotomy. And the neuroprotection effect has a relationship with the upregulation of NTs in DRGs, such as NGF, NT-3, BDNF, and GDNF. These findings provide an effective therapy for neuroprotection in the delayed repair of the peripheral nerve injury.
Collapse
|
7
|
Yadav A, Ramasamy TS, Lin SC, Chen SH, Lu J, Liu YH, Lu FI, Hsueh YY, Lin SP, Wu CC. Autologous Platelet-Rich Growth Factor Reduces M1 Macrophages and Modulates Inflammatory Microenvironments to Promote Sciatic Nerve Regeneration. Biomedicines 2022; 10:biomedicines10081991. [PMID: 36009539 PMCID: PMC9406033 DOI: 10.3390/biomedicines10081991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The failure of peripheral nerve regeneration is often associated with the inability to generate a permissive molecular and cellular microenvironment for nerve repair. Autologous therapies, such as platelet-rich plasma (PRP) or its derivative platelet-rich growth factors (PRGF), may improve peripheral nerve regeneration via unknown mechanistic roles and actions in macrophage polarization. In the current study, we hypothesize that excessive and prolonged inflammation might result in the failure of pro-inflammatory M1 macrophage transit to anti-inflammatory M2 macrophages in large nerve defects. PRGF was used in vitro at the time the unpolarized macrophages (M0) macrophages were induced to M1 macrophages to observe if PRGF altered the secretion of cytokines and resulted in a phenotypic change. PRGF was also employed in the nerve conduit of a rat sciatic nerve transection model to identify alterations in macrophages that might influence excessive inflammation and nerve regeneration. PRGF administration reduced the mRNA expression of tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and IL-6 in M0 macrophages. Increased CD206 substantiated the shift of pro-inflammatory cytokines to the M2 regenerative macrophage. Administration of PRGF in the nerve conduit after rat sciatic nerve transection promoted nerve regeneration by improving nerve gross morphology and its targeted gastrocnemius muscle mass. The regenerative markers were increased for regrown axons (protein gene product, PGP9.5), Schwann cells (S100β), and myelin basic protein (MBP) after 6 weeks of injury. The decreased expression of TNFα, IL-1β, IL-6, and CD68+ M1 macrophages indicated that the inflammatory microenvironments were reduced in the PRGF-treated nerve tissue. The increase in RECA-positive cells suggested the PRGF also promoted angiogenesis during nerve regeneration. Taken together, these results indicate the potential role and clinical implication of autologous PRGF in regulating inflammatory microenvironments via macrophage polarization after nerve transection.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sheng-Che Lin
- Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 709, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5327); Fax: +886-6-209-3007
| |
Collapse
|
8
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
9
|
Protective Effects of a synthetic glycosaminoglycan mimetic (OTR4132) in a rat immunotoxic lesion model of septohippocampal cholinergic degeneration. Glycoconj J 2022; 39:107-130. [PMID: 35254602 PMCID: PMC8979900 DOI: 10.1007/s10719-022-10047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Collapse
|
10
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
11
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
|
13
|
Hung TH, Liu YC, Wu CH, Chen CC, Chao H, Yang FY, Chen SF. Antenatal low-intensity pulsed ultrasound reduces neurobehavioral deficits and brain injury following dexamethasone-induced intrauterine growth restriction. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2021; 31:e12968. [PMID: 33960564 PMCID: PMC8549022 DOI: 10.1111/bpa.12968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Intrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and IUGR survivors are at increased risk of neurodevelopmental deficits. No effective interventions are currently available to improve the structure and function of the IUGR brain before birth. This study investigated the protective effects of low‐intensity pulsed ultrasound (LIPUS) on postnatal neurodevelopmental outcomes and brain injury using a rat model of IUGR induced by maternal exposure to dexamethasone (DEX). Pregnant rats were treated with DEX (200 μg/kg, s.c.) and LIPUS daily from gestational day (GD) 14 to 19. Behavioral assessments were performed on the IUGR offspring to examine neurological function. Neuropathology, levels of neurotrophic factors, and CaMKII‐Akt‐related molecules were assessed in the IUGR brain, and expression of glucose and amino acid transporters and neurotrophic factors were examined in the placenta. Maternal LIPUS treatment increased fetal weight, fetal liver weight, and placental weight following IUGR. LIPUS treatment also increased neuronal number and myelin protein expression in the IUGR brain, and attenuated neurodevelopmental deficits at postnatal day (PND) 18. However, the number of oligodendrocytes or microglia was not affected. These changes were associated with the upregulation of brain‐derived neurotrophic factor (BDNF) and placental growth factor (PlGF) protein expression, and enhancement of neuronal CaMKII and Akt activation in the IUGR brain at PND 1. Additionally, LIPUS treatment promoted glucose transporter (GLUT) 1 production and BDNF expression in the placenta, but had no effects on GLUT3 or amino acid transporter expression. Our findings suggest that antenatal LIPUS treatment may reduce IUGR‐induced brain injury via enhancing cerebral BDNF/CaMKII/Akt signaling. These data provide new evidence that LIPUS stimulation could be considered for antenatal neuroprotective therapy in IUGR.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Cheng Liu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan.,Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hsien Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
14
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
Affiliation(s)
- Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo-Hui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Wang
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China
| | - Xiao-Kun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Wen W, Wang Y, Li H, Xu H, Xu M, Frank JA, Ma M, Luo J. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Regulates Neurite Outgrowth Through the Activation of Akt/mTOR and Erk/mTOR Signaling Pathways. Front Mol Neurosci 2020; 13:560020. [PMID: 33071755 PMCID: PMC7541815 DOI: 10.3389/fnmol.2020.560020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Neurite outgrowth is essential for brain development and the recovery of brain injury and neurodegenerative diseases. In this study, we examined the role of the neurotrophic factor MANF in regulating neurite outgrowth. We generated MANF knockout (KO) neuro2a (N2a) cell lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and demonstrated that MANF KO N2a cells failed to grow neurites in response to RA stimulation. Using MANF siRNA, this finding was confirmed in human SH-SY5Y neuronal cell line. Nevertheless, MANF overexpression by adenovirus transduction or addition of MANF into culture media facilitated the growth of longer neurites in RA-treated N2a cells. MANF deficiency resulted in inhibition of Akt, Erk, mTOR, and P70S6, and impaired protein synthesis. MANF overexpression on the other hand facilitated the growth of longer neurites by activating Akt, Erk, mTOR, and P70S6. Pharmacological blockade of Akt, Erk or mTOR eliminated the promoting effect of MANF on neurite outgrowth. These findings suggest that MANF positively regulated neurite outgrowth by activating Akt/mTOR and Erk/mTOR signaling pathways.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Zhou LN, Wang JC, Zilundu PLM, Wang YQ, Guo WP, Zhang SX, Luo H, Zhou JH, Deng RD, Chen DF. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res Ther 2020; 11:153. [PMID: 32272974 PMCID: PMC7147018 DOI: 10.1186/s13287-020-01661-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background To date, it has repeatedly been demonstrated that infusing bone marrow-derived stem cells (BMSCs) into acellular nerve scaffolds can promote and support axon regeneration through a peripheral nerve defect. However, harvesting BMSCs is an invasive and painful process fraught with a low cellular yield. Methods In pursuit of alternative stem cell sources, we isolated stem cells from the inguinal subcutaneous adipose tissue of adult Sprague–Dawley rats (adipose-derived stem cells, ADSCs). We used a co-culture system that allows isolated adult mesenchymal stem cells (MSCs) and Schwann cells (SCs) to grow in the same culture medium but without direct cellular contact. We verified SC phenotype in vitro by cell marker analysis and used red fluorescent protein-tagged ADSCs to detect their fate after being injected into a chemically extracted acellular nerve allograft (CEANA). To compare the regenerative effects of CEANA containing either BMSCs or ADSCs with an autograft and CEANA only on the sciatic nerve defect in vivo, we performed histological and functional assessments up to 16 weeks after grafting. Results In vitro, we observed reciprocal beneficial effects of ADSCs and SCs in the ADSC–SC co-culture system. Moreover, ADSCs were able to survive in CEANA for 5 days after in vitro implantation. Sixteen weeks after grafting, all results consistently showed that CEANA infused with BMSCs or ADSCs enhanced injured sciatic nerve repair compared to the acellular CEANA-only treatment. Furthermore, their beneficial effects on sciatic injury regeneration were comparable as histological and functional parameters evaluated showed no statistically significant differences. However, the autograft group was roundly superior to both the BMSC- or ADSC-loaded CEANA groups. Conclusion The results of the present study show that ADSCs are a viable alternative stem cell source for treating sciatic nerve injury in lieu of BMSCs.
Collapse
Affiliation(s)
- Li Na Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| | - Jia Chuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Ya Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen Ping Guo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Sai Xia Zhang
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Hui Luo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Jian Hong Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ru Dong Deng
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Dong Feng Chen
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
18
|
Gokoffski KK, Peng M, Alas B, Lam P. Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. Curr Opin Neurol 2020; 33:93-105. [PMID: 31809331 PMCID: PMC8153234 DOI: 10.1097/wco.0000000000000777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Optic neuropathies refer to a collection of diseases in which retinal ganglion cells (RGCs), the specialized neuron of the retina whose axons make up the optic nerve, are selectively damaged. Blindness secondary to optic neuropathies is irreversible as RGCs do not have the capacity for self-renewal and have a limited capacity for self-repair. Numerous strategies are being developed to either prevent further RGC degeneration or replace the cells that have degenerated. In this review, we aim to discuss known limitations to regeneration in central nervous system (CNS), followed by a discussion of previous, current, and future strategies for optic nerve neuroprotection as well as approaches for neuro-regeneration, with an emphasis on developments in the past two years. RECENT FINDINGS Neuro-regeneration in the CNS is limited by both intrinsic and extrinsic factors. Environmental barriers to axon regeneration can be divided into two major categories: failure to clear myelin and formation of glial scar. Although inflammatory scars block axon growth past the site of injury, inflammation also provides important signals that activate reparative and regenerative pathways in RGCs. Neuroprotection with neurotrophins as monotherapy is not effective at preventing RGC degeneration likely secondary to rapid clearance of growth factors. Novel approaches involve exploiting different technologies to provide sustained delivery of neurotrophins. Other approaches include application of anti-apoptosis molecules and anti-axon retraction molecules. Although stem cells are becoming a viable option for generating RGCs for cell-replacement-based strategies, there are still many critical barriers to overcome before they can be used in clinical practice. Adjuvant treatments, such as application of electrical fields, scaffolds, and magnetic field stimulation, may be useful in helping transplanted RGCs extend axons in the proper orientation and assist with new synapse formation. SUMMARY Different optic neuropathies will benefit from neuro-protective versus neuro-regenerative approaches. Developing clinically effective treatments for optic nerve disease will require a collaborative approach that not only employs neurotrophic factors but also incorporates signals that promote axonogenesis, direct axon growth towards intended targets, and promote appropriate synaptogenesis.
Collapse
Affiliation(s)
- Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
19
|
Kang Y, Liu Y, Liu Z, Ren S, Xiong H, Chen J, Duscher D, Machens HG, Liu W, Guo G, Zhan P, Chen H, Chen Z. Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach. Cytotherapy 2019; 21:987-1003. [PMID: 31351800 DOI: 10.1016/j.jcyt.2019.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Tissue engineering technology is a promising therapeutic strategy in peripheral nerve injury. Schwann cells (SCs) are deemed to be a vital component of cell-based nerve regeneration therapies. Many methods for producing SC-like cells derived from adipose-derived stromal cells (ADSCs) have been explored, but their phenotypic and functional characteristics remain unsatisfactory. METHODS We investigated whether human ADSCs can be induced to differentiate into mature and stable SC-like cells with the addition of insulin, progestero``ne and glucocorticoids. The phenotypic and functional characteristics of new differentiated ADSCs (modified SC-like cells) were evaluated by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunocytochemistry in vitro. Cells loaded into collagen sponge biomaterials were implanted around transected sciatic nerves with a 10-mm gap in vivo. The axon regrowth and functional recovery of the regenerated nerves were assessed by immunohistochemistry and Walking footprint analysis. RESULTS After differentiation induction, the modified SC-like cells showed significantly up-regulated levels of S100B and P0 and enhanced proliferative and migratory capacities. In addition, the modified SC-like cells showed increased secretion of neurotrophic factors, and their functional characteristics were maintained for more than 3 weeks after removing the induction reagents. The modified SC-like cells exhibited significantly enhanced axon regrowth, myelination and functional recovery after sciatic nerve injury. CONCLUSIONS Overall, the results suggest that this modified induction method can induce human ADSCs to differentiate into cells with the molecular and functional properties of mature SCs and increase the promotion of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar (MRI), Technische Universität München (TUM), Ismaninger Straße 22 81675, München, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar (MRI), Technische Universität München (TUM), Ismaninger Straße 22 81675, München, Germany
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongrui Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
20
|
Barrera Villa Zevallos H, Markham R, Manconi F. The nervous system and genomics in endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2018. [DOI: 10.1177/2284026518813487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometriosis is a gynaecological disease that occurs in approximately 10% to 15% of women of reproductive age and up to 47% of infertile women. The presence of implants of endometrial-like glands and stroma outside the uterus, characteristic of this disease, induce a wide variety of symptoms, mainly pelvic pain and infertility. Women suffering from this condition experience great distress, which significantly affects their quality of life. Numerous studies attempting to decipher the pathogenic mechanisms of endometriosis have been conducted around the world, yet its aetiology still remains unknown. It is widely believed that in women with endometriosis, the endometrium has characteristic features that allow the formation of implants once fragments have entered the peritoneal cavity through retrograde menstruation. Furthermore, a strong genetic tendency to develop the disease has been reported among patients and first-degree relatives. Thanks to the recent technological advances achieved in genomics and bioinformatics, a number of studies have had the potential to analyse several aspects of the pathogenesis of endometriosis from a genetic perspective. Due to the recent identification of nerve fibres in the endometrium of women with endometriosis, research on the neurogenesis of the disease has increased in the past few years. However, the genetic aspects of nerve growth in endometriosis have not been analysed in depth and further research providing important insights into the mechanisms that mediate pain in affected patients has the potential to contribute substantially to the future management of the condition.
Collapse
Affiliation(s)
| | - Robert Markham
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Sydney, NSW, Australia
| | - Frank Manconi
- Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Simonato M. Neurotrophic factors and status epilepticus. Epilepsia 2018; 59 Suppl 2:87-91. [DOI: 10.1111/epi.14501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Michele Simonato
- Department of Medical Sciences; University of Ferrara; Ferrara Italy
- Division of Neuroscience; University Vita-Salute San Raffaele; Milan Italy
| |
Collapse
|
22
|
Abstract
BACKGROUND Peripheral nerve injuries remain a major clinical concern, as they often lead to chronic disability and significant health care expenditures. Despite advancements in microsurgical techniques to enhance nerve repair, biological approaches are needed to augment nerve regeneration and improve functional outcomes after injury. METHODS Presented herein is a review of the current literature on state-of-the-art techniques to enhance functional recovery for patients with nerve injury. Four categories are considered: (1) electroceuticals, (2) nerve guidance conduits, (3) fat grafting, and (4) optogenetics. Significant study results are highlighted, focusing on histologic and functional outcome measures. RESULTS This review documents the current state of the literature. Advancements in neuronal stimulation, tissue engineering, and cell-based therapies demonstrate promise with regard to augmenting nerve regeneration and appropriate rehabilitation. CONCLUSIONS The future of treating peripheral nerve injury will include multimodality use of electroconductive conduits, fat grafting, neuronal stimulation, and optogenetics. Further clinical investigation is needed to confirm the efficacy of these technologies on peripheral nerve recovery in humans, and how best to implement this treatment for a diverse population of nerve-injured patients.
Collapse
|
23
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
24
|
Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal. Cell Death Dis 2018; 9:163. [PMID: 29416029 PMCID: PMC5833339 DOI: 10.1038/s41419-017-0260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
Cerebral ischemia causes severe cell death or injury including axon breakdown or retraction in the brain. Axon regeneration is crucial for the functional recovery of injured neurons or brains after ischemia/reperfusion (I/R); however, this process has been proved extremely difficult in adult brains and there is still no effective therapy for it. Here we reported that neuroglobin (Ngb), a novel oxygen-binding or sensor protein existing predominantly in neurons or brains, functions as a driving factor for axon regeneration during I/R. Ngb was upregulated and accumulated in growth cones of ischemic neurons in primary cultures, rat, and human brains, correlating positively to the elevation of axon-regeneration markers GAP43, neurofilament-200, and Tau-1. Ngb overexpression promoted while Ngb knockdown suppressed axon regeneration as well as GAP43 expression in neurons during oxygen-glucose deprivation/reoxygenation (OGD/Re). By using specific pharmacological inhibitors, we identified p38 MAPK as the major downstream player of Ngb-induced axon regeneration during OGD/Re. Mechanistically, Ngb directly bound to and activated p38 in neurons upon OGD/Re. Serial truncation and point mutation of Ngb revealed that the 7-105 aa fragment of Ngb was required and the oxygen-binding site (His64) of Ngb was the major regulatory site for its p38 interaction/activation. Finally, administration of exogenous TAT-Ngb peptides significantly enhanced axon regeneration in cultured neurons upon OGD/Re. Taken together, Ngb promotes axon regeneration via O2-Ngb-p38-GAP43 signaling during I/R. This novel mechanism suggests potential therapeutic applications of Ngb for ischemic stroke and other related axonopathy.
Collapse
|
25
|
Ystrom E, Gustavson K, Brandlistuen RE, Knudsen GP, Magnus P, Susser E, Davey Smith G, Stoltenberg C, Surén P, Håberg SE, Hornig M, Lipkin WI, Nordeng H, Reichborn-Kjennerud T. Prenatal Exposure to Acetaminophen and Risk of ADHD. Pediatrics 2017; 140:peds.2016-3840. [PMID: 29084830 PMCID: PMC5654387 DOI: 10.1542/peds.2016-3840] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To estimate the association between maternal use of acetaminophen during pregnancy and of paternal use before pregnancy with attention-deficit/hyperactivity disorder (ADHD) in offspring while adjusting for familial risk for ADHD and indications of acetaminophen use. METHODS Diagnoses were obtained from the Norwegian Patient Registry for 112 973 offspring from the Norwegian Mother and Child Cohort Study, including 2246 with ADHD. We estimated hazard ratios (HRs) for an ADHD diagnosis by using Cox proportional hazard models. RESULTS After adjusting for maternal use of acetaminophen before pregnancy, familial risk for ADHD, and indications of acetaminophen use, we observed a modest association between any prenatal maternal use of acetaminophen in 1 (HR = 1.07; 95% confidence interval [CI] 0.96-1.19), 2 (HR = 1.22; 95% CI 1.07-1.38), and 3 trimesters (HR = 1.27; 95% CI 0.99-1.63). The HR for more than 29 days of maternal acetaminophen use was 2.20 (95% CI 1.50-3.24). Use for <8 days was negatively associated with ADHD (HR = 0.90; 95% CI 0.81-1.00). Acetaminophen use for fever and infections for 22 to 28 days was associated with ADHD (HR = 6.15; 95% CI 1.71-22.05). Paternal and maternal use of acetaminophen were similarly associated with ADHD. CONCLUSIONS Short-term maternal use of acetaminophen during pregnancy was negatively associated with ADHD in offspring. Long-term maternal use of acetaminophen during pregnancy was substantially associated with ADHD even after adjusting for indications of use, familial risk of ADHD, and other potential confounders.
Collapse
Affiliation(s)
- Eivind Ystrom
- Norwegian Institute of Public Health, Oslo, Norway; .,Section of Health, Developmental, and Personality Psychology, Department of Psychology.,PharmacoEpidemiology and Drug Safety Research Group, School of Pharmacy, and
| | - Kristin Gustavson
- Norwegian Institute of Public Health, Oslo, Norway;,Section of Health, Developmental, and Personality Psychology, Department of Psychology
| | | | | | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway;,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ezra Susser
- Mailman School of Public Health, Columbia University, New York, New York;,New York State Psychiatric Institute, New York, New York
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; and
| | - Camilla Stoltenberg
- Norwegian Institute of Public Health, Oslo, Norway;,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Pål Surén
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Mady Hornig
- Mailman School of Public Health, Columbia University, New York, New York
| | - W. Ian Lipkin
- Mailman School of Public Health, Columbia University, New York, New York
| | - Hedvig Nordeng
- Norwegian Institute of Public Health, Oslo, Norway;,PharmacoEpidemiology and Drug Safety Research Group, School of Pharmacy, and
| | - Ted Reichborn-Kjennerud
- Norwegian Institute of Public Health, Oslo, Norway;,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells. Int J Mol Sci 2017; 18:ijms18010098. [PMID: 28067793 PMCID: PMC5297732 DOI: 10.3390/ijms18010098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 01/06/2023] Open
Abstract
Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.
Collapse
|
27
|
Guo Y, Ma Y, Pan YL, Zheng SY, Wang JW, Huang GC. Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury. Neural Regen Res 2017; 12:1519-1528. [PMID: 29089999 PMCID: PMC5649474 DOI: 10.4103/1673-5374.215264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chinese medicine compound, Jisuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spinal cord injury. However, the mechanism remains unclear. Thus, we established a rat model of acute spinal cord injury using a modified version of Allen's method. Jisuikang (50, 25, and 12.5 g/kg/d) and prednisolone were administered 30 minutes after anesthesia. Basso, Beattie, and Bresnahan locomotor scale scores and the oblique board test showed improved motor function recovery in the prednisone group and moderate-dose Jisuikang group compared with the other groups at 3-7 days post-injury. The rats in the moderate-dose Jisuikang group recovered best at 14 days post-injury. Hematoxylin-eosin staining and transmission electron microscopy showed that the survival rate of neurons in treatment groups increased after 3-7 days of administration. Further, the structure of neurons and glial cells was more distinct, especially in prednisolone and moderate-dose Jisuikang groups. Western blot assay and immunohistochemistry showed that expression of brain-derived neurotrophic factor (BDNF) in injured segments was maintained at a high level after 7-14 days of treatment. In contrast, expression of nerve growth factor (NGF) was down-regulated at 7 days after spinal cord injury. Real-time fluorescence quantitative polymerase chain reaction showed that expression of BDNF and NGF mRNA was induced in injured segments by prednisolone and Jisuikang. At 3-7 days after injury, the effect of prednisolone was greater, while 14 days after injury, the effect of moderate-dose Jisuikang was greater. These results confirm that Jisuikang can upregulate BDNF and NGF expression for a prolonged period after spinal cord injury and promote repair of acute spinal cord injury, with its effect being similar to prednisolone.
Collapse
Affiliation(s)
- Yang Guo
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yong Ma
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.,Department of Traumatology & Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ya-Lan Pan
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Su-Yang Zheng
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jian-Wei Wang
- Department of Traumatology & Orthopedics, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
| | - Gui-Cheng Huang
- Institute of Traumatology & Orthopedics and Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Ko HR, Kwon IS, Hwang I, Jin EJ, Shin JH, Brennan-Minnella AM, Swanson R, Cho SW, Lee KH, Ahn JY. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. eLife 2016; 5. [PMID: 27938661 PMCID: PMC5153247 DOI: 10.7554/elife.20799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/28/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI:http://dx.doi.org/10.7554/eLife.20799.001
Collapse
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Il-Sun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joo-Ho Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Angela M Brennan-Minnella
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Raymond Swanson
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, United States
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hoon Lee
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
29
|
Pius-Sadowska E, Kawa MP, Kłos P, Rogińska D, Rudnicki M, Boehlke M, Waloszczyk P, Machaliński B. Alteration of Selected Neurotrophic Factors and their Receptor Expression in Mouse Brain Response to Whole-Brain Irradiation. Radiat Res 2016; 186:489-507. [DOI: 10.1667/rr14457.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int J Mol Sci 2016; 17:ijms17091584. [PMID: 27657046 PMCID: PMC5037849 DOI: 10.3390/ijms17091584] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
31
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
32
|
Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development. Neurochem Res 2016; 41:2086-96. [DOI: 10.1007/s11064-016-1921-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
|
33
|
Ginsenoside-Rd Promotes Neurite Outgrowth of PC12 Cells through MAPK/ERK- and PI3K/AKT-Dependent Pathways. Int J Mol Sci 2016; 17:ijms17020177. [PMID: 26840295 PMCID: PMC4783911 DOI: 10.3390/ijms17020177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/12/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways.
Collapse
|
34
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
35
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
36
|
Lin CY, Huang WJ, Li K, Swanson R, Cheung B, Lin VW, Lee YS. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells. J Neural Eng 2015; 12:026013. [PMID: 25769013 DOI: 10.1088/1741-2560/12/2/026013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. APPROACH To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). MAIN RESULTS We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. SIGNIFICANCE These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Gan L, Qian M, Shi K, Chen G, Gu Y, Du W, Zhu G. Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice. Neural Regen Res 2015; 9:1979-84. [PMID: 25598780 PMCID: PMC4283280 DOI: 10.4103/1673-5374.145379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administration of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin significantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve fibers, and increased the cross-sectional area of target muscle cells. Furthermore, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our findings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
Collapse
Affiliation(s)
- Lin Gan
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Minquan Qian
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Keqin Shi
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Gang Chen
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Yanglin Gu
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Wei Du
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Guoxing Zhu
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
38
|
Secq V, Leca J, Bressy C, Guillaumond F, Skrobuk P, Nigri J, Lac S, Lavaut MN, Bui TT, Thakur AK, Callizot N, Steinschneider R, Berthezene P, Dusetti N, Ouaissi M, Moutardier V, Calvo E, Bousquet C, Garcia S, Bidaut G, Vasseur S, Iovanna JL, Tomasini R. Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling. Cell Death Dis 2015; 6:e1592. [PMID: 25590802 PMCID: PMC4669755 DOI: 10.1038/cddis.2014.557] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as 'SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that 'CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/proliferation by modulating N-cadherin/β-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain.
Collapse
Affiliation(s)
- V Secq
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
- Department of Pathology, Hospital North/Mediterranean University, Marseille, France
| | - J Leca
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - C Bressy
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - F Guillaumond
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - P Skrobuk
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - J Nigri
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - S Lac
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - M-N Lavaut
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
- Department of Pathology, Hospital North/Mediterranean University, Marseille, France
| | - T-t Bui
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - A K Thakur
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - N Callizot
- Neuronexperts, Medical North Faculty, Marseille, France
| | | | - P Berthezene
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - N Dusetti
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - M Ouaissi
- Aix-Marseille University, INSERM, CRO2, UMR 911, Marseille 13385, France
| | - V Moutardier
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - E Calvo
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center, Quebec City, QCue, Canada
| | - C Bousquet
- INSERM UMR 1037, CRCT, University Toulouse III, Toulouse, France
| | - S Garcia
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
- Department of Pathology, Hospital North/Mediterranean University, Marseille, France
| | - G Bidaut
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - S Vasseur
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - J L Iovanna
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| | - R Tomasini
- CRCM, Cellular Stress, INSERM, U1068, Parc scientifique de Luminy, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, CNRS, UMR7258, Marseille 13009, France
| |
Collapse
|
39
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
40
|
Hansebout CR, Su C, Reddy K, Zhang D, Jiang C, Rathbone MP, Jiang S. Enteric glia mediate neuronal outgrowth through release of neurotrophic factors. Neural Regen Res 2014; 7:2165-75. [PMID: 25538736 PMCID: PMC4268714 DOI: 10.3969/j.issn.1673-5374.2012.028.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/24/2012] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia mediate these beneficial effects are unknown. Neurotrophic factors can promote neuronal differentiation, survival and neurite extension. We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors. In the present study, we demonstrated that primary enteric glia cells release nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250, 100 and 50 pg/mL of culture medium respectively after 48 hours. The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth. We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons. Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis, the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors. Therefore, enteric glia secrete nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.
Collapse
Affiliation(s)
- Christopher R Hansebout
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Caixin Su
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Kiran Reddy
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Donald Zhang
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Cleveland Clinic Spine Institute, Cleveland, OH 44195, USA
| | - Cai Jiang
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Department of Medicine (Neurology, Neurobiochemistry), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Michel P Rathbone
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Department of Medicine (Neurology, Neurobiochemistry), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Shucui Jiang
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
41
|
Chen BY, Zheng MH, Chen Y, Du YL, Sun XL, Zhang X, Duan L, Gao F, Liang L, Qin HY, Luo ZJ, Han H. Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice. Mol Neurobiol 2014; 52:1378-1390. [PMID: 25344316 DOI: 10.1007/s12035-014-8934-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/09/2014] [Indexed: 12/28/2022]
Abstract
The outcome of spinal cord injury (SCI) is determined by both neural cell-intrinsic survival pathways and tissue microenvironment-derived signals. Macrophages dominating the inflammatory responses in SCI possess both destructive and reparative potentials, according to their activation status. Notch signaling is involved in both cell survival and macrophage-mediated inflammation, but a comprehensive role of Notch signaling in SCI has been elusive. In this study, we compared the effects of general Notch blockade by a pharmaceutical γ-secretase inhibitor (GSI) and myeloid-specific Notch signal disruption by recombination signal binding protein Jκ (RBP-J) knockout on SCI. The administration of Notch signal inhibitor GSI resulted in worsened hind limb locomotion and exacerbated inflammation. However, mice lacking RBP-J, the critical transcription factor mediating signals from all four mammalian Notch receptors, in myeloid lineage displayed promoted functional recovery, attenuated glial scar formation, improved neuronal survival and axon regrowth, and mitigated inflammatory response after SCI. These benefits were accompanied by enhanced AKT activation in the lesion area after SCI. These findings demonstrate that abrogating Notch signal in myeloid cells ameliorates inflammation response post-SCI and promotes functional recovery, but general pharmaceutical Notch interception has opposite effects. Therefore, clinical intervention of Notch signaling in SCI needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.
Collapse
Affiliation(s)
- Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China.
| | - Yan Chen
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Yan-Ling Du
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Xiao-Long Sun
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Li Duan
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Fang Gao
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China
| | - Zhuo-Jing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China.
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le West Street #169, Xi'an, 710032, China.
| |
Collapse
|
42
|
Leng Z, He X, Li H, Wang D, Cao K. Olfactory ensheathing cell transplantation for spinal cord injury: An 18-year bibliometric analysis based on the Web of Science. Neural Regen Res 2014; 8:1286-96. [PMID: 25206423 PMCID: PMC4107648 DOI: 10.3969/j.issn.1673-5374.2013.14.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Olfactory ensheathing cell (OEC) transplantation is a promising new approach for the treatment of spinal cord injury (SCI), and an increasing number of scientific publications are devoted to this treatment strategy. This bibliometric analysis was conducted to assess global research trends in OEC transplantation for SCI. DATA SOURCE All of the data in this study originate from the Web of Science maintained by the Institute for Scientific Information, USA, and includes SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED and IC. The Institute for Scientific Information's Web of Science was searched using the keywords "olfactory ensheathing cells" or "OECs" or "olfactory ensheathing glia" or "OEG" or "olfactory ensheathing glial cells" or "OEGs" and "spinal cord injury" or "SCI" or "spinal injury" or "spinal transection" for literature published from January 1898 to May 2012. DATA SELECTION Original articles, reviews, proceedings papers and meeting abstracts, book chapters and editorial materials on OEC transplantation for SCI were included. Simultaneously, unpublished literature and literature for which manual information retrieval was required were excluded. MAIN OUTCOME MEASURES ALL SELECTED LITERATURES ADDRESSING OEC TRANSPLANTATION FOR SCI WERE EVALUATED IN THE FOLLOWING ASPECTS: publication year, document type, language, author, institution, times cited, Web of Science category, core source title, countries/territories and funding agency. RESULTS In the Web of Science published by the Institute for Scientific Information, the earliest literature record was in April, 1995. Four hundred and fourteen publications addressing OEC transplantation for SCI were added to the data library in the past 18 years, with an annually increasing trend. Of 415 records, 405 publications were in English. Two hundred and fifty-nine articles ranked first in the distribution of document type, followed by 141 reviews. Thirty articles and 20 reviews, cited more than 55 times by the date the publication data were downloaded by us, can be regarded as the most classical references. The journal Experimental Neurology published the most literature (32 records), followed by Glia. The United States had the most literature, followed by China. In addition, Yale University was the most productive institution in the world, while The Second Military Medical University contributed the most in China. The journal Experimental Neurology published the most OEC transplantation literature in the United States, while Neural Regeneration Research published the most in China. CONCLUSION This analysis provides insight into the current state and trends in OEC transplantation for SCI research. Furthermore, we anticipate that this analysis will help encourage international cooperation and teamwork on OEC transplantation for SCI to facilitate the development of more effective treatments for SCI.
Collapse
Affiliation(s)
- Zikuan Leng
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Kai Cao
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
43
|
Lee K, Kouzaki K, Ochi E, Kobayashi K, Tsutaki A, Hiranuma K, Kami K, Nakazato K. Eccentric contractions of gastrocnemius muscle-induced nerve damage in rats. Muscle Nerve 2014; 50:87-94. [DOI: 10.1002/mus.24120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/10/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Kihyuk Lee
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Eisuke Ochi
- Laboratory of Health and Sports Sciences; Center for Liberal Arts, Meiji Gakuin University; Yokohama Japan
| | - Koji Kobayashi
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Kenji Hiranuma
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Katsuya Kami
- Department of Anatomy and Neurobiology; Graduate School of Medicine, Wakayama Medical University; Wakayama Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| |
Collapse
|
44
|
Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 2014; 116:1-12. [DOI: 10.1016/j.pneurobio.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
|
45
|
Day JS, O'Neill E, Cawley C, Aretz NK, Kilroy D, Gibney SM, Harkin A, Connor TJ. Noradrenaline acting on astrocytic β2-adrenoceptors induces neurite outgrowth in primary cortical neurons. Neuropharmacology 2014; 77:234-48. [DOI: 10.1016/j.neuropharm.2013.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
46
|
Aharoni R. New findings and old controversies in the research of multiple sclerosis and its model experimental autoimmune encephalomyelitis. Expert Rev Clin Immunol 2014; 9:423-40. [DOI: 10.1586/eci.13.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Viberg H, Eriksson P, Gordh T, Fredriksson A. Paracetamol (Acetaminophen) Administration During Neonatal Brain Development Affects Cognitive Function and Alters Its Analgesic and Anxiolytic Response in Adult Male Mice. Toxicol Sci 2013; 138:139-47. [DOI: 10.1093/toxsci/kft329] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Siddique R, Thakor N. Investigation of nerve injury through microfluidic devices. J R Soc Interface 2013; 11:20130676. [PMID: 24227311 DOI: 10.1098/rsif.2013.0676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic injuries, both in the central nervous system (CNS) and peripheral nervous system (PNS), can potentially lead to irreversible damage resulting in permanent loss of function. Investigating the complex dynamics involved in these processes may elucidate the biological mechanisms of both nerve degeneration and regeneration, and may potentially lead to the development of new therapies for recovery. A scientific overview on the biological foundations of nerve injury is presented. Differences between nerve regeneration in the central and PNS are discussed. Advances in microtechnology over the past several years have led to the development of invaluable tools that now facilitate investigation of neurobiology at the cellular scale. Microfluidic devices are explored as a means to study nerve injury at the necessary simplification of the cellular level, including those devices aimed at both chemical and physical injury, as well as those that recreate the post-injury environment.
Collapse
Affiliation(s)
- Rezina Siddique
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, , Baltimore, MD, USA
| | | |
Collapse
|
49
|
Lee I, Viberg H. A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology 2013; 37:190-6. [DOI: 10.1016/j.neuro.2013.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
|
50
|
Zhang Y, Chopp M, Meng Y, Zhang ZG, Doppler E, Mahmood A, Xiong Y. Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J Neurosurg 2013; 118:1343-55. [PMID: 23581594 DOI: 10.3171/2013.3.jns122061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebrolysin is a unique peptide preparation that mimics the action of neurotrophic factors. This study was designed to investigate the effects of acute treatment of experimental closed head injury (CHI) in rats with Cerebrolysin on neurological function. METHODS Adult male Wistar rats (n = 60) were subjected to impact acceleration-induced CHI. Closed head injured rats received intraperitoneal injection of saline (n = 30) or Cerebrolysin (2.5 ml/kg, n = 30) starting 1 hour postinjury and administered once daily until they were killed (2 or 14 days after CHI). To evaluate functional outcome, the modified neurological severity score (mNSS), foot fault, adhesive removal, and Morris water maze (MWM) tests were performed. Animals were killed on Day 14 (n = 20) after injury, and their brains were removed and processed for measurement of neuronal cells, axonal damage, apoptosis, and neuroblasts. The remaining rats (n = 40) were killed 2 days postinjury to evaluate cerebral microvascular patency by fluorescein isothiocyanate (FITC)-dextran perfusion (n = 16) and to measure the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) by using real-time reverse transcriptase-polymerase chain reaction (RT-PCR, n = 8) and by immunohistochemical analysis (n = 16). RESULTS At 14 days post-CHI, the Cerebrolysin treatment group exhibited significant improvements in functional outcomes (the adhesive removal, mNSS, foot-fault, and MWM tests), and significantly more neurons and neuroblasts were present in the dentate gyrus (DG) (p < 0.05) compared with the saline-treated group (p < 0.05). At 2 days post-CHI, the Cerebrolysin group exhibited a significantly higher percentage of phosphorylated neurofilament H (pNF-H)-positive staining area in the striatum (p < 0.05), a significant increase in the percentage of FITC-dextran perfused vessels in the brain cortex (p < 0.05), a significant increase in the number of VEGF-positive cells (p < 0.05), and a significant reduction in the MMP-9 staining area (p < 0.05) compared with the saline-treated group. There was no significant difference in mRNA levels of MMP-9 and VEGF in the hippocampus and cortex 48 hours postinjury between Cerebrolysin- and saline-treated rats that sustained CHI. CONCLUSIONS Acute Cerebrolysin treatment improves functional recovery in rats after CHI. Cerebrolysin is neuroprotective for CHI (increased neurons in the dentate gyrus and the CA3 regions of the hippocampus and increased neuroblasts in the dentate gyrus) and may preserve axonal integrity in the striatum (significantly increased percentage of pNF-H-positive tissue in the striatum). Reduction of MMP-9 and elevation of VEGF likely contribute to enhancement of vascular patency and integrity as well as neuronal survival induced by Cerebrolysin. These promising results suggest that Cerebrolysin may be a useful treatment in improving the recovery of patients with CHI.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|