1
|
Zheng H, Sechi LA, Navarese EP, Casu G, Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: a comprehensive review. Cardiovasc Diabetol 2024; 23:346. [PMID: 39342178 PMCID: PMC11439309 DOI: 10.1186/s12933-024-02434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), poses a significant global health challenge due to its increasing prevalence and strong association with cardiovascular disease (CVD). This comprehensive review summarizes the current knowledge on the MASLD-CVD relationship, compares analysis of how different terminologies for fatty liver disease affect cardiovascular (CV) risk assessment using different diagnostic criteria, explores the pathophysiological mechanisms connecting MASLD to CVD, the influence of MASLD on traditional CV risk factors, the role of noninvasive imaging techniques and biomarkers in the assessment of CV risk in patients with MASLD, and the implications for clinical management and prevention strategies. By incorporating current research and clinical guidelines, this review provides a comprehensive overview of the complex interplay between MASLD and cardiovascular health.
Collapse
Affiliation(s)
- Haixiang Zheng
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100, Sassari, Italy
| | - Eliano Pio Navarese
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gavino Casu
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Azienda Ospedaliero, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Durska A, Szpecht D, Gotz-Więckowska A, Strauss E. Association of ACE and AGTR1 variants with retinopathy of prematurity: a case-control study and meta-analysis. J Appl Genet 2024:10.1007/s13353-024-00900-0. [PMID: 39186201 DOI: 10.1007/s13353-024-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, linked to gene variants in the renin-angiotensin-aldosterone system, including angiotensin-converting enzyme (ACE) and angiotensin II receptor type 1 (AGTR1). This study aims to evaluate the association between ACE insertion/deletion (I/D) and AGTR1 rs5186A > C variants with the occurrence and progression of ROP in a Polish cohort. A total of 377 premature infants were enrolled in the study. The ACE variant was evaluated using PCR, and AGTR1 was assessed using TaqMan probes. Clinical characteristics, including risk factors and comorbidities, were documented. A meta-analysis of the effects of the studied variants on ROP was also conducted. The AGTR1 rs5186C allele was significantly associated with both the progression of ROP and treatment outcomes. Homozygotes exhibited a 2.47-fold increased risk of developing proliferative ROP and a 4.82-fold increased risk of treatment failure. The impact of this allele increased at low birth weight. A meta-analysis, including 191 cases and 1661 controls, indicated an overall risk of 1.7 (95%CI 1.02-2.84) for the recessive effect of the rs5186C allele. The ACE variant did not show a significant association with ROP in our population; however, a meta-analysis of 996 cases and 2787 controls suggested a recessive effect of the insertion allele (an odds ratio of 1.21 (95%CI 1.00-1.60)). These results indicate that gain-of-function AGTR1 variants may play a crucial role in the development of ROP, potentially by promoting angiogenesis and pro-inflammatory effects. Screening for these variants could facilitate the development of personalized risk assessment and treatment strategies for ROP.
Collapse
Affiliation(s)
- Anna Durska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Dawid Szpecht
- Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
3
|
Liu JY, Yi YZ, Guo QW, Jia KX, Li XC, Cai JJ, Shen YL, Su GM, Chen X, Zhang XY, Fang DZ, Hong H, Lin J. Associations of ACE I/D and AGTR1 rs5182 polymorphisms with diabetes and their effects on lipids in an elderly Chinese population. Lipids Health Dis 2024; 23:231. [PMID: 39080710 PMCID: PMC11290002 DOI: 10.1186/s12944-024-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Diabetes mellitus is generally accompanied by dyslipidaemia, but inconsistent relationships between lipid profiles and diabetes are noted. Moreover, genetic variations in insertion/deletion (I/D) polymorphisms at angiotensin-converting enzyme gene (ACE) and T/C polymorphisms in the angiotensin type 1 receptor gene (AGTR1) are related to diabetes and lipid levels, but the associations are controversial. Thus, the current research aimed to explore the effects of ACE I/D, AGTR1 rs5182 and diabetes mellitus on serum lipid profiles in 385 Chinese participants with an average age of 75.01 years. METHODS The ACE I/D variant was identified using the polymerase chain reaction (PCR) method, whereas the AGTR1 rs5182 polymorphism was identified using the PCR-based restriction fragment length polymorphism (PCR-RFLP) method and verified with DNA sequencing. Total cholesterol (TC), triglyceride (TG), apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured using routine methods, and the lipid ratios were calculated. RESULTS ACE I/D, but not AGTR1 rs5182, was a predictor of TG/HDL-C for the whole study population. Both ACE I/D and AGTR1 rs5182 were predictors of HDL-C and LDL-C levels in females but not in males. Moreover, in females, diabetes mellitus and ACE I/D were identified as predictors of TG and TG/HDL-C, whereas AGTR1 rs5182 and diabetes mellitus were predictors of TG/HDL-C. Moreover, diabetes mellitus and the combination of ACE I/D and AGTR1 rs5182 variations were predictors of TG and TG/HDL-C exclusively in females. CONCLUSIONS The results demonstrated the potential for gender-dependent interactions of ACE I/D, AGTR1 rs5182, and diabetes on lipid profiles. These findings may serve as an additional explanation for the inconsistent changes of blood lipids in individuals with diabetes mellitus, thereby offering a novel perspective for the clinical management of blood lipid levels in diabetic patients.
Collapse
Affiliation(s)
- Jun Yi Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yan Zhi Yi
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Ke Xin Jia
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xue Cheng Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Jia Jing Cai
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Xing Yu Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Hao Hong
- Department of Spinal Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, P. R. China.
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
4
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
5
|
Yang K, Song M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023; 15:3970. [PMID: 37764755 PMCID: PMC10534946 DOI: 10.3390/nu15183970] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD) is a multifaceted disease that involves complex interactions between various organs, including the gut and heart. It is defined by hepatic lipid accumulation and is related to metabolic dysfunction, obesity, and diabetes. Understanding the intricate interplay of the gut-liver-heart crosstalk is crucial for unraveling the complexities of MAFLD and developing effective treatment and prevention strategies. The gut-liver crosstalk participates in the regulation of the metabolic and inflammatory processes through host-microbiome interactions. Gut microbiota have been associated with the development and progression of MAFLD, and its dysbiosis contributes to insulin resistance, inflammation, and oxidative stress. Metabolites derived from the gut microbiota enter the systemic circulation and influence both the liver and heart, resulting in the gut-liver-heart axis playing an important role in MAFLD. Furthermore, growing evidence suggests that insulin resistance, endothelial dysfunction, and systemic inflammation in MAFLD may contribute to an increased risk of cardiovascular disease (CVD). Additionally, the dysregulation of lipid metabolism in MAFLD may also lead to cardiac dysfunction and heart failure. Overall, the crosstalk between the liver and heart involves a complex interplay of molecular pathways that contribute to the development of CVD in patients with MAFLD. This review emphasizes the current understanding of the gut-liver-heart crosstalk as a foundation for optimizing patient outcomes with MAFLD.
Collapse
Affiliation(s)
| | - Myeongjun Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
6
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
7
|
Badmus OO, Hinds TD, Stec DE. Mechanisms Linking Metabolic-Associated Fatty Liver Disease (MAFLD) to Cardiovascular Disease. Curr Hypertens Rep 2023; 25:151-162. [PMID: 37191842 PMCID: PMC10839567 DOI: 10.1007/s11906-023-01242-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver that occurs in the majority of patients in combination with metabolic dysfunction in the form of overweight or obesity. In this review, we highlight the cardiovascular complications in MAFLD patients as well as some potential mechanisms linking MAFLD to the development of cardiovascular disease and highlight potential therapeutic approaches to treating cardiovascular diseases in patients with MAFLD. RECENT FINDINGS MAFLD is associated with an increased risk of cardiovascular diseases (CVD), including hypertension, atherosclerosis, cardiomyopathies, and chronic kidney disease. While clinical data have demonstrated the link between MAFLD and the increased risk of CVD development, the mechanisms responsible for this increased risk remain unknown. MAFLD can contribute to CVD through several mechanisms including its association with obesity and diabetes, increased levels of inflammation, and oxidative stress, as well as alterations in hepatic metabolites and hepatokines. Therapies to potentially treat MAFLD-induced include statins and lipid-lowering drugs, glucose-lowering agents, antihypertensive drugs, and antioxidant therapy.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, 40508, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
8
|
Eshraghian A, Taghavi A, Nikoupour H, Nikeghbalian S, Malek-Hosseini SA. Angiotensin receptor blockers might be protective against hepatic steatosis after liver transplantation. BMC Gastroenterol 2023; 23:152. [PMID: 37189076 DOI: 10.1186/s12876-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatic steatosis is an increasing complication in liver transplant recipients. Currently, there is no pharmacologic therapy for treatment of hepatic steatosis after liver transplantation. The aim of this study was to determine the association between use of angiotensin receptor blockers (ARB) and hepatic steatosis in liver transplant recipients. METHODS We conducted a case-control analysis on data from Shiraz Liver Transplant Registry. Liver transplant recipients with and without hepatic steatosis were compared for risk factors including use of ARB. RESULTS A total of 103 liver transplant recipients were included in the study. Thirty five patients treated with ARB and 68 patients (66%) did not receive these medications. In univariate analysis, ARB use (P = 0.002), serum triglyceride (P = 0.006), weight after liver transplantation (P = 0.011) and etiology of liver disease (P = 0.008) were associated with hepatic steatosis after liver transplantation. In multivariate regression analysis, ARB use was associated with lower likelihood of hepatic steatosis in liver transplant recipients (OR = 0.303, 95% CI: 0.117-0.784; P = 0.014). Mean duration of ARB use (P = 0.024) and mean cumulative daily dose of ARB (P = 0.015) were significantly lower in patients with hepatic steatosis. CONCLUSION Our study showed that ARB use was associated with reduced incidence of hepatic steatosis in liver transplant recipients.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran.
| | - Alireza Taghavi
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Nikoupour
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, 71994-67985, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Badr AM, Sherif IO, Mahran YF, Attia HA. Role of Renin-Angiotensin System in the Pathogenesis and Progression of Non-alcoholic Fatty Liver. THE RENIN ANGIOTENSIN SYSTEM IN CANCER, LUNG, LIVER AND INFECTIOUS DISEASES 2023:179-197. [DOI: 10.1007/978-3-031-23621-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
|
10
|
Update on Non-Alcoholic Fatty Liver Disease-Associated Single Nucleotide Polymorphisms and Their Involvement in Liver Steatosis, Inflammation, and Fibrosis: A Narrative Review. IRANIAN BIOMEDICAL JOURNAL 2022; 26:252-68. [PMID: 36000237 PMCID: PMC9432469 DOI: 10.52547/ibj.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic factors are involved in the development, progression, and severity of NAFLD. Polymorphisms in genes regulating liver functions may increase liver susceptibility to NAFLD. Therefore, we conducted this literature study to present recent findings on NAFLD-associated polymorphisms from published articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 genes and 34 SNPs were reported to be associated with NAFLD. These mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these genetic factors helps to better understand the pathogenesis pathways of NAFLD
Collapse
|
11
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
12
|
Ogresta D, Mrzljak A, Cigrovski Berkovic M, Bilic-Curcic I, Stojsavljevic-Shapeski S, Virovic-Jukic L. Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. J Clin Transl Hepatol 2022; 10:339-355. [PMID: 35528987 PMCID: PMC9039716 DOI: 10.14218/jcth.2021.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to insulin resistance, type 2 diabetes mellitus and obesity. It is considered a multisystem disease and there is a strong association with cardiovascular disease and arterial hypertension, which interfere with changes in the coagulation system. Coagulation disorders are common in patients with hepatic impairment and are dependent on the degree of liver damage. Through a review of the literature, we consider and discuss possible disorders in the coagulation cascade and fibrinolysis, endothelial dysfunction and platelet abnormalities in patients with NAFLD.
Collapse
Affiliation(s)
- Doris Ogresta
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Maja Cigrovski Berkovic
- Department for Endocrinology, Diabetes and Pharmacology, University Hospital Dubrava, Zagreb, Croatia
- Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
| | - Ines Bilic-Curcic
- Department of Pharmacology, Faculty of Medicine, University of JJ Strossmayer, Osijek, Croatia
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, Osijek, Croatia
| | | | - Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
- Correspondence to: Lucija Virović-Jukić, University of Zagreb School of Medicine, Department of Medicine; Department of Gastroenterology and Hepatology, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, Zagreb 10000, Croatia. ORCID: https://orcid.org/0000-0002-6350-317X. Tel: +385-1-3787178, Fax: +385-1-3787448, E-mail:
| |
Collapse
|
13
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
14
|
Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. PLoS One 2022; 17:e0263140. [PMID: 35120165 PMCID: PMC8815985 DOI: 10.1371/journal.pone.0263140] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
Background Infection by the SARS-Cov-2 virus produces in humans a disease of highly variable and unpredictable severity. The presence of frequent genetic single nucleotide polymorphisms (SNPs) in the population might lead to a greater susceptibility to infection or an exaggerated inflammatory response. SARS-CoV-2 requires the presence of the ACE2 protein to enter in the cell and ACE2 is a regulator of the renin-angiotensin system. Accordingly, we studied the associations between 8 SNPs from AGTR1, ACE2 and ACE genes and the severity of the disease produced by the SARS-Cov-2 virus. Methods 318 (aged 59.6±17.3 years, males 62.6%) COVID-19 patients were grouped based on the severity of symptoms: Outpatients (n = 104, 32.7%), hospitalized on the wards (n = 73, 23.0%), Intensive Care Unit (ICU) (n = 84, 26.4%) and deceased (n = 57, 17.9%). Comorbidity data (diabetes, hypertension, obesity, lung disease and cancer) were collected for adjustment. Genotype distribution of 8 selected SNPs among the severity groups was analyzed. Results Four SNPs in ACE2 were associated with the severity of disease. While rs2074192 andrs1978124showed a protector effectassuming an overdominant model of inheritance (G/A vs. GG-AA, OR = 0.32, 95%CI = 0.12–0.82; p = 0.016 and A/G vs. AA-GG, OR = 0.37, 95%CI: 0.14–0.96; p = 0.038, respectively); the SNPs rs2106809 and rs2285666were associated with an increased risk of being hospitalized and a severity course of the disease with recessive models of inheritance (C/C vs. T/C-T/T, OR = 11.41, 95% CI: 1.12–115.91; p = 0.012) and (A/A vs. GG-G/A, OR = 12.61, 95% CI: 1.26–125.87; p = 0.0081). As expected, an older age (OR = 1.47), male gender (OR = 1.98) and comorbidities (OR = 2.52) increased the risk of being admitted to ICU or death vs more benign outpatient course. Multivariable analysis demonstrated the role of the certain genotypes (ACE2) with the severity of COVID-19 (OR: 0.31, OR 0.37 for rs2074192 and rs1978124, and OR = 2.67, OR = 2.70 for rs2106809 and rs2285666, respectively). Hardy-Weinberg equilibrium in hospitalized group for I/D SNP in ACE was not showed (p<0.05), which might be due to the association with the disease. No association between COVID-19 disease and the different AGTR1 SNPs was evidenced on multivariable, nevertheless the A/A genotype for rs5183 showed an higher hospitalization risk in patients with comorbidities. Conclusions Different genetic variants in ACE2 were associated with a severe clinical course and death groups of patients with COVID-19. ACE2 common SNPs in the population might modulate severity of COVID-19 infection independently of other known markers like gender, age and comorbidities.
Collapse
|
15
|
Kountouras J, Papaefthymiou A, Polyzos SA, Deretzi G, Vardaka E, Soteriades ES, Tzitiridou-Chatzopoulou M, Gkolfakis P, Karafyllidou K, Doulberis M. Impact of Helicobacter pylori-Related Metabolic Syndrome Parameters on Arterial Hypertension. Microorganisms 2021; 9:microorganisms9112351. [PMID: 34835476 PMCID: PMC8618184 DOI: 10.3390/microorganisms9112351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Arterial hypertension is a risk factor for several pathologies, mainly including cardio-cerebrovascular diseases, which rank as leading causes of morbidity and mortality worldwide. Arterial hypertension also constitutes a fundamental component of the metabolic syndrome. Helicobacter pylori infection is one of the most common types of chronic infection globally and displays a plethora of both gastric and extragastric effects. Among other entities, Helicobacter pylori has been implicated in the pathogenesis of the metabolic syndrome. Within this review, we illustrate the current state-of-the-art evidence, which may link several components of the Helicobacter pylori-related metabolic syndrome, including non-alcoholic fatty liver disease and arterial hypertension. In particular, current knowledge of how Helicobacter pylori exerts its virulence through dietary, inflammatory and metabolic pathways will be discussed. Although there is still no causative link between these entities, the emerging evidence from both basic and clinical research supports the proposal that several components of the Helicobacter pylori infection-related metabolic syndrome present an important risk factor in the development of arterial hypertension. The triad of Helicobacter pylori infection, the metabolic syndrome, and hypertension represents a crucial worldwide health problem on a pandemic scale with high morbidity and mortality, like COVID-19, thereby requiring awareness and appropriate management on a global scale.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Correspondence:
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Department of Gastroenterology, University Hospital of Larisa, 41110 Larisa, Greece
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgia Deretzi
- Multiple Sclerosis Unit, Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Elisabeth Vardaka
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia 2252, Cyprus;
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, 1070 Brussels, Belgium;
- Department of Medical Oncology, Institut Jules Bordet, 1000 Brussels, Belgium
| | - Kyriaki Karafyllidou
- Department of Pediatrics, University Children’s Hospital of Zurich, 8032 Zurich, Switzerland;
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
16
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
17
|
Jichitu A, Bungau S, Stanescu AMA, Vesa CM, Toma MM, Bustea C, Iurciuc S, Rus M, Bacalbasa N, Diaconu CC. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel) 2021; 11:689. [PMID: 33921359 PMCID: PMC8069361 DOI: 10.3390/diagnostics11040689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a growing prevalence in recent years. Its association with cardiovascular disease has been intensively studied, and certain correlations have been identified. The connection between these two entities has lately aroused interest regarding therapeutic management. In order to find the best therapeutic options, a detailed understanding of the pathophysiology that links (NAFLD) to cardiovascular comorbidities is needed. This review focuses on the pathogenic mechanisms that are behind these two diseases and on the therapeutic management available at this time.
Collapse
Affiliation(s)
- Alexandra Jichitu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Ana Maria Alexandra Stanescu
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Stela Iurciuc
- Department of Cardiology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Nicolae Bacalbasa
- Department 13, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Surgery, “Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
18
|
Shakhanova A, Aukenov N, Nurtazina A, Massabayeva M, Babenko D, Adiyeva M, Shaimardonov N. Association of polymorphism genes LPL , ADRB2 , AGT and AGTR1 with risk of hyperinsulinism and insulin resistance in the Kazakh population. Biomed Rep 2020; 13:35. [PMID: 32843963 PMCID: PMC7441600 DOI: 10.3892/br.2020.1342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperinsulinism and insulin resistance are closely associated with several common diseases including type 2 of diabetes, cardiovascular diseases, and metabolic syndrome. The present study aimed to determine the association between hyperinsulinism, insulin resistance and the polymorphism of genes, including angiotensin II receptor type 1 (AGTR1), angiotensinogen (AGT), β2-adrenoreceptor (ADRB2) and lipoprotein lipase (LPL), in the Kazakh population. The design of the current research was a case-control study, involving 460 subjects (age range, 18-65 years). For every subject, plasma glucose, insulin, total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, apolipoprotein B and apolipoprotein A1 were examined. Moreover, reverse transcription-quantitative PCR was conducted to detect the polymorphism genes LPL Ser447Ter, ADRB2 Gln27Glu, AGT Thr174Met and AGTR1 A1166C. Hyperinsulinism was considered when the insulin level was elevated >24.9 IU/ml. The homeostasis model assessment insulin resistance (HOMA-IR) was used to evaluate insulin resistance. The subjects were divided into hyperinsulinism (17 men and 24 women) and normal level insulin (214 men and 205 women) groups, which were also split into insulin resistance group (HOMA-IR >2.7; 80 men and 105 women) and those without insulin resistance group (151 men and 124 women). The results suggested that LPL Ser447Ter (rs328) allele G was associated with a lower risk of hyperinsulinism (P=0.037). Furthermore, polymorphisms of genes ADRB2 Gln27Glu (rs1042714), AGT Thr174Met (rs4762) and AGTR1 A1166C (rs5186) were not associated with hyperinsulinism and insulin resistance in the Kazakh population. No interaction was identified between LPL Ser447Ter, ADRB2 Gln27Glu, AGT Thr174Met and AGTR1 A1166C. Therefore, the results indicated that haplotype combinations were not associated with insulin resistance.
Collapse
Affiliation(s)
- Aizhan Shakhanova
- Department of Propaedeutic of Internal Diseases, Semey Medical University, Semey, East Kazakhstan Region F17G0D3, Kazakhstan
| | - Nurlan Aukenov
- Department of Health and Human Resources, Ministry of Health of the Republic of Kazakhstan, Nur-Sultan, East Kazakhstan Region Z05K5K8, Kazakhstan
| | - Alma Nurtazina
- Department of Propaedeutic of Internal Diseases, Semey Medical University, Semey, East Kazakhstan Region F17G0D3, Kazakhstan
| | - Meruyert Massabayeva
- Department of Propaedeutic of Internal Diseases, Semey Medical University, Semey, East Kazakhstan Region F17G0D3, Kazakhstan
| | - Dmitriy Babenko
- Scientific and Research Center, Karaganda Medical University, Karaganda, East Kazakhstan Region M01K6T3, Kazakhstan
| | - Madina Adiyeva
- Department of Propaedeutic of Internal Diseases, Semey Medical University, Semey, East Kazakhstan Region F17G0D3, Kazakhstan
| | - Nurlan Shaimardonov
- Department of Propaedeutic of Internal Diseases, Semey Medical University, Semey, East Kazakhstan Region F17G0D3, Kazakhstan
| |
Collapse
|
19
|
Abstract
Hypertension, a multifactorial disorder resulting from the interplay between genetic predisposition and environmental risk factors, affects ≈30% of adults. Emerging evidence has shown that nonalcoholic fatty liver disease (NAFLD), as an underestimated metabolic abnormality, is strongly associated with an increased risk of incident prehypertension and hypertension. However, the role of NAFLD in the development of hypertension is still obscure and is highly overlooked by the general public. Herein, we highlight the epidemiological evidence and putative mechanisms focusing on the emerging roles of NAFLD in hypertension, with the purpose of reinforcing the notion that NAFLD may serve as an independent risk factor and an important driving force in the development and progression of hypertension. Finally, we also briefly summarize the current potential treatments for NAFLD that might also be beneficial approaches against hypertension.
Collapse
Affiliation(s)
- Yan-Ci Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Guo-Jun Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Ze Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
- Medical Research Institute, School of Medicine (Z.-G.S.), Wuhan University, P.R. China
| | - Jingjing Cai
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China (J.C.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
| |
Collapse
|
20
|
|
21
|
Abstract
Nonalcoholic fatty liver disease and hypertension are closely related but there has been little genetic evidence to link them. In this issue, Musso et al. provide evidence that a common variant in AGTR1 (A1166C) is associated with both incident hypertension and nonalcoholic fatty liver disease, as well as nonalcoholic steatohepatitis, fibrosis, dyslipidemia, and insulin resistance. AGTR1 is strongly expressed in adipose, liver, and arteries. The mechanism of this gain-of-function variant is unclear but may include adipose or endothelial dysfunction and immune activation. Despite previous unsuccessful clinical trials of angiotensin receptor blockers in nonalcoholic steatohepatitis, individuals with the rs5186A>C variant may have greater benefit from this therapy.
Collapse
|