1
|
Wang R, Deng Y, Zhang Y, Li X, Gooneratne R, Li J. Integrated microbiome, metabolome and transcriptome profiling reveals the beneficial effects of fish oil and Bacillus subtilis jzxj-7 on mouse gut ecosystem. Food Funct 2024; 15:1655-1670. [PMID: 38251410 DOI: 10.1039/d3fo04213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The effects of fish oil (FO) and Bacillus subtilis jzxj-7 (JZXJ-7) on the colonic physiology, bacteria, metabolites, and gene expressions were studied in C57BL/6J mice. Co-administration of FO and JZXJ-7 was more beneficial than individual supplementation, as evidenced by improved growth performance, enhanced colon crypt depth and goblet cell numbers. FO + JZXJ-7 inhibited colonic fibrosis by downregulating fibrosis marker protein expression and upregulating occludin, claudin-2 and claudin-4 gene expressions. FO + JZXJ-7 ameliorated oxidative stress and inflammation by increasing catalase, superoxide dismutase, total anti-oxidation capacity, and reducing colon tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels. Mechanistically, FO + JZXJ-7 modulated the colon micro-ecological environment by enriching Roseburia, Lachnospiraceae NK4B4, Faecalibaculum and Lactococcus and its derived short-chain fatty acids, and activating Ppara and Car1 mediated peroxisome proliferators-activated receptor (PPAR) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling. Overall, FO + JZXJ-7 may serve as a promising nutraceutical to improve health by boosting the growth of colonic beneficial bacteria, altering metabolic phenotype, and regulating gene expression.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China.
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Yijia Deng
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China.
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
2
|
Wang D, Wang J, Wu Y, Liu C, Huang Y, Chen Y, Ding Z, Guan Y, Wu Q. Amelioration of Acute Alcoholic Liver Injury via Attenuating Oxidative Damage and Modulating Inflammation by Means of Ursodeoxycholic Acid-Zein Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17080-17096. [PMID: 38104279 DOI: 10.1021/acs.jafc.3c04786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) has been broadly adopted for the clinical treatment of hepatic and biliary diseases; however, its poor water-solubility becomes an obstacle in wide applications. To overcome these challenges, herein, a two-tier UDCA-embedded system of zein nanoparticles (NPs) along with a polyelectrolyte complex was designed under facile conditions. Both the UDCA-zein NPs and their inclusion microcapsules showed a spherical shape with a uniform size. A typical wall plus capsule/core structure was formed in which UDCA-zein NPs distributed evenly in the interior. The UDCA inclusion microcapsules had an encapsulation rate of 67% and were released in a non-Fickian or anomalous transport manner. The bioavailability and efficacy of UDCA-zein NPs were assessed in vivo through the alcoholic liver disease (ALD) mouse model via intragastric administration. UDCA-zein NPs ameliorated the symptoms of ALD mice remarkably, which were mainly exerted through attenuation of antioxidant stress levels. Meanwhile, it notably upregulated the intestinal tight junction protein expression and improved and maintained the integrity of the mucosal barrier effectively. Collectively, with the improvement of bioavailability, the UDCA-zein NPs prominently alleviated the oxidative damage induced by alcohol, modulating the inflammation so as to restore ALD. It is anticipated that UDCA-zein NPs have great therapeutic potential as sustained-nanovesicles in ALD treatment.
Collapse
Affiliation(s)
- Dong Wang
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Jing Wang
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Yingchao Wu
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Caixia Liu
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Yuzhe Huang
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Yan Chen
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yixin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qingxi Wu
- School of Life Sciences, Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, PR China
| |
Collapse
|
3
|
Deng Y, Wang R, Li X, Tan X, Zhang Y, Gooneratne R, Li J. Fish Oil Ameliorates Vibrio parahaemolyticus Infection in Mice by Restoring Colonic Microbiota, Metabolic Profiles, and Immune Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6920-6934. [PMID: 37126589 DOI: 10.1021/acs.jafc.2c08559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
4
|
Bushyhead D, Quigley EMM. Small Intestinal Bacterial Overgrowth-Pathophysiology and Its Implications for Definition and Management. Gastroenterology 2022; 163:593-607. [PMID: 35398346 DOI: 10.1053/j.gastro.2022.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022]
Abstract
The concept of small intestinal bacterial overgrowth (SIBO) arose in the context of maldigestion and malabsorption among patients with obvious risk factors that permitted the small bowel to be colonized by potentially injurious colonic microbiota. Such colonization resulted in clinical signs, symptoms, and laboratory abnormalities that were explicable within a coherent pathophysiological framework. Coincident with advances in medical science, diagnostic testing evolved from small bowel culture to breath tests and on to next-generation, culture-independent microbial analytics. The advent and ready availability of breath tests generated a dramatic expansion in both the rate of diagnosis of SIBO and the range of associated gastrointestinal and nongastrointestinal clinical scenarios. However, issues with the specificity of these same breath tests have clouded their interpretation and aroused some skepticism regarding the role of SIBO in this expanded clinical repertoire. Furthermore, the pathophysiological plausibility that underpins SIBO as a cause of maldigestion/malabsorption is lacking in regard to its purported role in irritable bowel syndrome, for example. One hopes that the application of an ever-expanding armamentarium of modern molecular microbiology to the human small intestinal microbiome in both health and disease will ultimately resolve this impasse and provide an objective basis for the diagnosis of SIBO.
Collapse
Affiliation(s)
- Daniel Bushyhead
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas.
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| |
Collapse
|
5
|
Lei Z, Rong H, Yang Y, Yu S, Zhang T, Chen L, Nie Y, Song Q, Hu Q, Guo J. Loperamide Induces Excessive Accumulation of Bile Acids in the Liver of Mice with Different Diets. Toxicology 2022; 477:153278. [DOI: 10.1016/j.tox.2022.153278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/03/2023]
|
6
|
Yang L, Wan Y, Li W, Liu C, Li HF, Dong Z, Zhu K, Jiang S, Shang E, Qian D, Duan J. Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb. Appl Microbiol Biotechnol 2022; 106:1615-1631. [PMID: 35129656 DOI: 10.1007/s00253-022-11813-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Hui-Fang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Zhiling Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Ke Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
7
|
García MA, Varum F, Al-Gousous J, Hofmann M, Page S, Langguth P. In Vitro Methodologies for Evaluating Colon-Targeted Pharmaceutical Products and Industry Perspectives for Their Applications. Pharmaceutics 2022; 14:pharmaceutics14020291. [PMID: 35214024 PMCID: PMC8876830 DOI: 10.3390/pharmaceutics14020291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several locally acting colon-targeted products to treat colonic diseases have been recently developed and marketed, taking advantage of gastrointestinal physiology to target delivery. Main mechanisms involve pH-dependent, time-controlled and/or enzymatic-triggered release. With site of action located before systemic circulation and troublesome colonic sampling, there is room for the introduction of meaningful in vitro methods for development, quality control (QC) and regulatory applications of these formulations. A one-size-fits-all method seems unrealistic, as the selection of experimental conditions should resemble the physiological features exploited to trigger the release. This article reviews the state of the art for bio-predictive dissolution testing of colon-targeted products. Compendial methods overlook physiological aspects, such as buffer molarity and fluid composition. These are critical for pH-dependent products and time-controlled systems containing ionizable drugs. Moreover, meaningful methods for enzymatic-triggered products including either bacteria or enzymes are completely ignored by pharmacopeias. Bio-predictive testing may accelerate the development of successful products, although this may require complex methodologies. However, for high-throughput routine testing (e.g., QC), simplified methods can be used where balance is struck between simplicity, robustness and transferability on one side and bio-predictivity on the other. Ultimately, bio-predictive methods can occupy a special niche in terms of supplementing plasma concentration data for regulatory approval.
Collapse
Affiliation(s)
- Mauricio A. García
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
| | - Felipe Varum
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Jozef Al-Gousous
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Michael Hofmann
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Susanne Page
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (F.V.); (M.H.); (S.P.)
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (M.A.G.); (J.A.-G.)
- Correspondence:
| |
Collapse
|
8
|
Liu JJ, Brenner DM. Review article: current and future treatment approaches for IBS with constipation. Aliment Pharmacol Ther 2021; 54 Suppl 1:S53-S62. [PMID: 34927760 DOI: 10.1111/apt.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Multiple efficacious therapies are currently available for treating irritable bowel syndrome with constipation (IBS-C). IBS-C specific survey tools that assess symptom relief, treatment satisfaction, and quality of life are important for gauging real-world effectiveness. AIMS/METHODS This article reviews clinical trial efficacy data as well as survey data on adequate relief and quality of life from pivotal trials for lubiprostone, linaclotide, plecanatide, tenapanor, and tegaserod. A brief discussion of agents in development with novel mechanisms of action is also provided. RESULTS/CONCLUSIONS Quality of life and symptom metrics should be standardized and continue to be represented in future IBS-C trials. The choice of agent should be tailored to probability of improving symptoms, safety, tolerability, and cost.
Collapse
Affiliation(s)
- Joy J Liu
- Division of Gastroenterology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | - Darren M Brenner
- Division of Gastroenterology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Palace SG, Fryling KE, Li Y, Wentworth AJ, Traverso G, Grad YH. Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea. J Antimicrob Chemother 2021; 76:2569-2577. [PMID: 34245280 DOI: 10.1093/jac/dkab217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for Neisseria gonorrhoeae, given its increasing antimicrobial resistance. Treatment of oropharyngeal N. gonorrhoeae infections has proven particularly challenging, with most reported treatment failures of the first-line drug ceftriaxone occurring at this site and lower cure rates in recent trials of new antibiotics reported for oropharyngeal infections compared with other sites of infection. However, the accessibility of the oropharynx to topical therapeutics provides an opportunity for intervention. Local delivery of a therapeutic at a high concentration would enable the use of non-traditional antimicrobial candidates, including biological molecules that exploit underlying chemical sensitivities of N. gonorrhoeae but lack the potency or pharmacokinetic profiles required for effective systemic administration. METHODS Two classes of molecules that are thought to limit gonococcal viability in vivo, bile acids and short- and medium-chain fatty acids, were examined for rapid bactericidal activity. RESULTS The bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), but not other bile acid species, exerted extremely rapid bactericidal properties against N. gonorrhoeae, reducing viability more than 100 000-fold after 1 min. The short-chain fatty acids formic acid and hexanoic acid shared this rapid bactericidal activity. All four molecules are effective against a phylogenetically diverse panel of N. gonorrhoeae strains, including clinical isolates with upregulated efflux pumps and resistance alleles to the most widely used classes of existing antimicrobials. DCA and CDCA are both approved therapeutics for non-infectious indications and are well-tolerated by cultured epithelial cells. CONCLUSIONS DCA and CDCA are attractive candidates for further development as anti-gonococcal agents.
Collapse
Affiliation(s)
- Samantha G Palace
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kyra E Fryling
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam J Wentworth
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-Aminolevulinic Acid as a Novel Therapeutic for Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9050578. [PMID: 34065300 PMCID: PMC8160866 DOI: 10.3390/biomedicines9050578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring nonprotein amino acid licensed as an optical imaging agent for the treatment of gliomas. In recent years, 5-ALA has been shown to possess anti-inflammatory and immunoregulatory properties through upregulation of heme oxygenase-1 via enhancement of porphyrin, indicating that it may be beneficial for the treatment of inflammatory conditions. This study systematically examines 5-ALA for use in inflammatory bowel disease (IBD). Firstly, the ex vivo colonic stability and permeability of 5-ALA was assessed using human and mouse fluid and tissue. Secondly, the in vivo efficacy of 5-ALA, in the presence of sodium ferrous citrate, was investigated via the oral and intracolonic route in an acute DSS colitis mouse model of IBD. Results showed that 5-ALA was stable in mouse and human colon fluid, as well as in colon tissue. 5-ALA showed more tissue restricted pharmacokinetics when exposed to human colonic tissue. In vivo dosing demonstrated significantly improved colonic inflammation, increased local heme oxygenase-1 levels, and decreased concentrations of proinflammatory cytokines TNF-α, IL-6, and IL-1β in both plasma and colonic tissue. These effects were superior to that measured concurrently with established anti-inflammatory treatments, ciclosporin and 5-aminosalicylic acid (mesalazine). As such, 5-ALA represents a promising addition to the IBD armamentarium, with potential for targeted colonic delivery.
Collapse
Affiliation(s)
- Vipul Yadav
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Correspondence: (V.Y.); (A.W.B.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Laura E. McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
| | - Yasufumi Wada
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Motoyasu Tomioka
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Satofumi Kawata
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Shrikant Charde
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Abdul W. Basit
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
- Correspondence: (V.Y.); (A.W.B.)
| |
Collapse
|