1
|
Li X, Sung P, Zhang D, Yan L. Curcumin in vitro Neuroprotective Effects Are Mediated by p62/keap-1/Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Physiol Res 2023; 72:497-510. [PMID: 37795892 PMCID: PMC10634561 DOI: 10.33549/physiolres.935054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood. We evaluated the protective effects and potential mechanisms of curcumin on cerebral microvascular endothelial cells (bEnd.3) and neuronal cells (HT22) against oxygen glucose deprivation/reoxygenation (OGD/R) in vitro models that mimic in vivo cerebral IRI. The cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity assays revealed that curcumin attenuated the OGD/R-induced injury in a dose-specific manner. OGD/R induced elevated levels of inflammatory cytokines TNF-alpha, IL-6 as well as IL-1beta, and these effects were notably reduced by curcumin. OGD/R-mediated apoptosis was suppressed by curcumin via upregulating B-cell lymphoma-2 (Bcl-2) and downregulating Bcl-associated X (Bax), cleaved-caspase3 and TUNEL apoptosis marker. Additionally, curcumin increased superoxide dismutase (SOD) and glutathione (GSH), but suppressed malondialdehyde (MDA) and reactive oxygen species (ROS) content. Curcumin inhibited the levels of autophagic biomarkers such as LC3 II/LC3 I and Beclin1. Particularly, curcumin induced p62 accumulation and its interactions with keap1 and promoted NF-E2-related factor 2 (Nrf2) translocation to nucleus, accompanied by increased NADPH quinone dehydrogenase (Nqo1) and heme oxygenase 1 (HO-1). Treatment of curcumin increased phosphorylation-phosphatidylinositol 3 kinase (p-PI3K) and p-protein kinase B (p-AKT). The autophagy inhibitor 3-methyladenine (3-MA) activated the keap-1/Nrf2 and PI3K/AKT pathways. This study highlights the neuroprotective effects of curcumin on cerebral IRI.
Collapse
Affiliation(s)
- X Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | | | | | | |
Collapse
|
2
|
Tan J, Zhang J, Wang M, Wang Y, Dong M, Ma X, Sun B, Liu S, Zhao Z, Chen L, Jin W, Liu K, Xin Y, Zhuang L. DRAM1 increases the secretion of PKM2-enriched EVs from hepatocytes to promote macrophage activation and disease progression in ALD. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:375-389. [PMID: 35036051 PMCID: PMC8728309 DOI: 10.1016/j.omtn.2021.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
DNA damage-regulated autophagy modulator 1 (DRAM1) could play important roles in inflammation and hepatic apoptosis, while its roles in alcohol-related liver disease (ALD), which is characterized by hepatic inflammation and apoptosis, are still unclear. In this study, we explored the expression, role, and mechanism of DRAM1 in ALD. Firstly, our results showed that DRAM1 was significantly increased in liver tissues of mice at the early stage of alcohol treatment. In addition, DRAM1 knockout reduced, and liver-specific overexpression of DRAM1 aggravated, alcohol-induced hepatic steatosis, injury, and expressions of M1 macrophage markers in mice. Furthermore, ethanol-induced DRAM1 of hepatic cells increased pyruvate kinase M2 (PKM2)-enriched extracellular vesicles (EVs), and ectosomes derived from hepatic cells with DRAM1 overexpression promoted macrophage activation. Mechanistic investigations showed that DRAM1 interacted with PKM2 and increased the PKM2 level in plasma membrane. At last, DRAM1 was significantly increased in liver tissues of ALD patients, and it was positively correlated with M1 macrophage markers. Taken together, this study revealed that ethanol-induced DRAM1 of hepatic cells could increase the PKM2-enriched EVs, promote macrophage activation, and aggravate the disease progression of ALD. These findings suggested that DRAM1 might be a potentially promising target for the therapy of ALD.
Collapse
Affiliation(s)
- Jie Tan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Jie Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Mengke Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Yifen Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Mengzhen Dong
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Xuefeng Ma
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Baokai Sun
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lizhen Chen
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Wenwen Jin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Kai Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266011, China
| | - Likun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Wang Y, Yao Y, Li R, Wu B, Lu H, Cheng J, Liu Z, Du J. Different effects of anti-VEGF drugs (Ranibizumab, Aflibercept, Conbercept) on autophagy and its effect on neovascularization in RF/6A cells. Microvasc Res 2021; 138:104207. [PMID: 34119535 DOI: 10.1016/j.mvr.2021.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) is the main pathological change of wet age-related macular degeneration. Anti-VEGF drugs are the most commonly used treatment for CNV. The biggest drawback of anti-VEGF drugs is the recurrence of CNV, which requires repeated therapy several times. Autophagy activation may be involved in reducing the therapeutic effect of anti-VEGF drugs. So, this study aims to elucidate the effect and mechanism of anti-VEGF drugs on endothelial autophagy and neovascularization in vitro. METHODS RF/6A cells were randomly divided into five groups: The control group, hypoxia group (1% O2, 5% CO2, 94% N2), anti-VEGF group (group1: Ranibizumab 100 μg/ml; group2: Aflibercept, 400 μg/ml; group3: Conbercept, 100 μg/ml). Autophagy-related proteins were examined by Western blot. RFP-GFP-LC3 was used to detect autophagy and autophagic flow. Subsequently, we used autophagy inhibitors (3-MA or CQ) to inhibit Conbercept induced autophagy and to observe its effect on angiogenesis in vitro. Proliferation, migration, and tube formation of endothelial cells can be used to study neovascularization in vitro. In this research, the CCK-8 assay was used to detect cell proliferation. Cell migration and tube formation were assessed by wound assay and matrix method, respectively. Flow cytometry and Tunel were used to detect cell apoptosis. Finally, the mechanism of Conbercept activated autophagy was studied. Western blot was used to detect the expression of p53 and DRAM (damage-regulated autophagy modulator), upstream activators of autophagy. RESULTS The protein levels of Beclin-1 and LC3-2/1 in Ranibizumab and Conbercept groups were significantly higher than in the hypoxia group(P < 0.05). While the expression of P62 was decreased (P < 0.05). The autophagic flux was showed the same results. However, Aflibercept showed the opposite effect on autophagy. Compared with the Conbercept group, autophagy inhibitor 3-MA or CQ can further inhibit cell proliferation and promotes cell apoptosis (P < 0.05). Conbercept significantly inhibited cell migration compared with the hypoxia group (633.08 ± 72.52 vs. 546.33 ± 24.61), while the autophagy inhibitor group (3-MA or CQ) had a more obvious inhibition effect (309.75 ± 86.36 and 263.33 ± 68.67) (P < 0.05). For tube formation, the number of tube formation was decreased significantly in the Conbercept group (32.00 ± 2.00) compared to the hypoxia group (39.00 ± 1.53) and even further reduced in 3-MA or CQ group (24.00 ± 3.61, 20.00 ± 2.65). The length of master segments in the hypoxia group was 15,668.00 ± 894.11. It was decreased in Conbercept (13,885.34 ± 730.03). In 3-MA or CQ group, the length of master segments dropped further (11,997.00 ± 433.66, 10,617.67 ± 543.21). Compare with the hypoxia group, the expression P53 and DRAM were increased in the Conbercept group (P < 0.05). Autophagy-related proteins LC-3, Beclin-1, and DRAM were inhibited by P53 inhibitor Pifithrin-α (PFTα) (P < 0.05). CONCLUSION Ranibizumab and Conbercept can trigger the autophagy of vascular endothelial cells while Aflibercept can inhibit it. The combination of Conbercept and autophagy inhibitor can significantly inhibit the formation of angiogenesis in vitro. The mechanism of autophagy activation is related to the activation of the p53/DRAM pathway.
Collapse
Affiliation(s)
- Yi Wang
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yang Yao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, West Fenghao Road 48, Xi'an 710077, Shaanxi Province, China
| | - Rong Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, West Fenghao Road 48, Xi'an 710077, Shaanxi Province, China
| | - Binghui Wu
- Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an 710001, Shaanxi Province, China
| | - Huiqin Lu
- Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an 710001, Shaanxi Province, China
| | - Jing Cheng
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Zhe Liu
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Junhui Du
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China; Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
4
|
Gu XX, Xu XX, Liao HH, Wu RN, Huang WM, Cheng LX, Lu YW, Mo J. Dexmedetomidine hydrochloride inhibits hepatocyte apoptosis and inflammation by activating the lncRNA TUG1/miR-194/SIRT1 signaling pathway. J Inflamm (Lond) 2021; 18:20. [PMID: 34039367 PMCID: PMC8157629 DOI: 10.1186/s12950-021-00287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver injury seriously threatens the health of people. Meanwhile, dexmedetomidine hydrochloride (DEX) can protect against liver injury. However, the mechanism by which Dex mediates the progression of liver injury remains unclear. Thus, this study aimed to investigate the function of DEX in oxygen and glucose deprivation (OGD)-treated hepatocytes and its underlying mechanism. METHODS In order to investigate the function of DEX in liver injury, WRL-68 cells were treated with OGD. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. Inflammatory cytokines levels were measured by ELISA assay. The interaction between miR-194 and TUG1 or SIRT1 was detected by dual-luciferase reporter. Gene and protein levels were measured by qPCR or western blotting. RESULTS DEX notably reversed OGD-induced inflammation and apoptosis in WRL-68 cell. Meanwhile, the effect of OGD on TUG1, SIRT1 and miR-194 expression in WRL-68 cells was reversed by DEX treatment. However, TUG1 knockdown or miR-194 overexpression reversed the function of DEX in OGD-treated WRL-68 cells. Moreover, TUG1 could promote the expression of SIRT1 by sponging miR-194. Furthermore, knockdown of TUG1 promoted OGD-induced cell growth inhibition and inflammatory responses, while miR-194 inhibitor or SIRT1 overexpression partially reversed this phenomenon. CONCLUSIONS DEX could suppress OGD-induced hepatocyte apoptosis and inflammation by mediation of TUG1/miR-194/SIRT1 axis. Therefore, this study might provide a scientific basis for the application of DEX on liver injury treatment.
Collapse
Affiliation(s)
- Xiao-Xia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Xiao-Xia Xu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Hui-Hua Liao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Ruo-Na Wu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Wei-Ming Huang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Li-Xia Cheng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Yi-Wen Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Jian Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China.
| |
Collapse
|
5
|
Chen T, Ye B, Tan J, Yang H, He F, Khalil RA. CD146+Mesenchymal stem cells treatment improves vascularization, muscle contraction and VEGF expression, and reduces apoptosis in rat ischemic hind limb. Biochem Pharmacol 2021; 190:114530. [PMID: 33891966 DOI: 10.1016/j.bcp.2021.114530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
Peripheral arterial disease (PAD) is an increasingly common narrowing of the peripheral arteries that can lead to lower limb ischemia, muscle weakness and gangrene. Surgical vein or arterial grafts could improve PAD, but may not be suitable in elderly patients, prompting research into less invasive approaches. Mesenchymal stem cells (MSCs) have been proposed as potential therapy, but their effectiveness and underlying mechanisms in limb ischemia are unclear. We tested the hypothesis that treatment with naive MSCs (nMSCs) or MSCs expressing CD146 (CD146+MSCs) could improve vascularity and muscle function in rat model of hind-limb ischemia. Sixteen month old Sprague-Dawley rats were randomly assigned to 4 groups: sham-operated control, ischemia, ischemia + nMSCs and ischemia+CD146+MSCs. After 4 weeks of respective treatment, rat groups were assessed for ischemic clinical score, Tarlov score, muscle capillary density, TUNEL apoptosis assay, contractile force, and vascular endothelial growth factor (VEGF) mRNA expression. CD146+MSCs showed greater CD146 mRNA expression than nMSCs. Treatment with nMSCs or CD146+MSCs improved clinical and Tarlov scores, muscle capillary density, contractile force and VEGF mRNA expression in ischemic limbs as compared to non-treated ischemia group. The improvements in muscle vascularity and function were particularly greater in ischemia+CD146+MSCs than ischemia + nMSCs group. TUNEL positive apoptotic cells were least abundant in ischemia+CD146+MSCs compared with ischemia + nMSCs and non-treated ischemia groups. Thus, MSCs particularly those expressing CD146 improve vascularity, muscle function and VEGF expression and reduce apoptosis in rat ischemic limb, and could represent a promising approach to improve angiogenesis and muscle function in PAD.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China; Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Jing Tan
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Haifeng Yang
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Faming He
- Department of Vascular Surgery, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Yu Y, Guo H, Jiang W, Zhang C, Xing C, Chen D, Xu C, Su L. Cyclic GMP-AMP promotes the acute phase response and protects against Escherichia coli infection in mice. Biochem Pharmacol 2021; 188:114541. [PMID: 33812857 DOI: 10.1016/j.bcp.2021.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
The acute phase response, as a component of the innate immune system, is part of the first line of defense against invading pathogens. The Stimulator of Interferon Genes (STING) pathway initiates innate immune responses upon recognition of exogenous bacterial and viral DNA. However, whether STING signaling pathway plays any roles in regulating acute phase response during bacterial infection remains unknown. In this study, we used STING-deficient (Tmem173gt) and wildtype mice to investigate acute phase responses to bacterial infection (Escherichia coli, E. coli) and test the effect of exogenous cyclic GMP-AMP (cGAMP, a STING agonist) treatment. Bacterial infection of STING-deficient mice resulted in an increase in mortality and bacterial dissemination. Also, inflammation-induced acute phase response was drastically reduced in STING-deficient mice, showing significant reduction in expression of cytokine TNF-α and acute phase proteins. In contrast, exogenous cGAMP treatment enhanced inflammation-induced acute phase response by increasing the expression of TNF-α and acute phase proteins. Also, cGAMP accelerated bacterial clearance and improved survival rate of wildtype mice, but not STING-deficient mice. Interestingly, cGAMP treatment mitigated bacterial infection induced liver injury in both wildtype and STING-deficient mice. Further in vitro evidence showed that cGAMP treatment retarded TNF-α-mediated hepatocyte apoptosis, potentially accelerating autophagy. Taken together, our results indicated that cGAMP/STING signaling pathway is critical for organism to initiate blood-borne innate immune-responses to defend bacterial infection, and cGAMP is envisaged as a drug candidate for further clinical trial.
Collapse
Affiliation(s)
- Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, The Faculty of Basic Medical Science, Second Military Medical University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
7
|
Dai Y, Li TH, He X, Yan SB, Gao Y, Chen Y. The Effect and Mechanism of Asymmetric Dimethylarginine Regulating Trophoblastic Autophagy on Fetal Growth Restriction. Reprod Sci 2021; 28:2012-2022. [PMID: 33428125 DOI: 10.1007/s43032-020-00442-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Fetal growth restriction (FGR) is an important cause of perinatal death and adverse pregnancy outcomes. Asymmetric dimethylarginine (ADMA) is associated with FGR, but the mechanisms have not been thoroughly studied. Here, we determined the levels of ADMA and autophagy-related molecules in human blood samples and placental tissues. And we also used the human chorionic carcinoma cell line BeWo to investigate the mechanism of ADMA-induced FGR in vitro. Compared with the control group, ADMA levels in maternal blood and placenta were increased in patients with FGR, and the birth weight (BW) percentile was negatively correlated with maternal serum ADMA concentration in the FGR group. The expression of mammalian target of rapamycin (mTOR) in the placenta of the FGR group was lower than the control group, while the expression of Beclin-1 and microtubule-associated protein 1 light chain 3-II (LC3-II)/LC3-I was significantly increased in the FGR group. And the expression of matrix metalloproteinase 9 (MMP9) was decreased in the placenta of patients with FGR. In in vitro cell experiments, compared with the control group, the expression of mTOR and MMP9 in BeWo cells was decreased and the expression of Beclin-1 and LC3-II/LC3-I was increased in the ADMA-treated group. Moreover, ADMA had favorable effects on the formation of autophagic vacuoles, and the autophagy inhibitor 3-Methyladenine (3-MA) could reduce the autophagy-induction effect of ADMA on BeWo cells. This study found that ADMA could participate in the occurrence of FGR through inducing autophagy in trophoblasts.
Collapse
Affiliation(s)
- Yan Dai
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Tian-He Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Xin He
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Song-Biao Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Yan Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| |
Collapse
|
8
|
Zhong Y, Hu X, Miao L. Isoflurane preconditioning protects hepatocytes from oxygen glucose deprivation injury by regulating FoxO6. J Biosci 2019; 44:144. [PMID: 31894125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The forkhead protein (FoxO) family plays a crucial role in regulating oxidative stress, cell proliferation, and apoptosis. FoxO6, a member of the FoxO family, helps regulate oxidative stress in gastric cancer and hepatocellular carcinoma. However, it is unclear whether FoxO6 participates in the protective effect of isoflurane preconditioning in liver injury caused by oxidative stress in ischemia. In this study, we explored the role and mechanism of FoxO6 in the protective effect of isoflurane preconditioning during hepatocyte injury caused by oxygen-glucose deprivation (OGD). Cells from the human fetal hepatocyte (LO2) line were incubated with 0%, 1%, 2%, 2.5%, 3%, 3.5%, 4%, or 5% isoflurane for 3 h and then exposed to OGD. Data showed that 3% isoflurane preconditioning inhibited FoxO6 expression, caspase-3 activity, and reactive oxygen species production and promoted cell viability. FoxO6 overexpression abolished the effects of 3% isoflurane preconditioning on caspase-3 activity, reactive oxygen species production, and cell viability in these cells. Moreover, FoxO6 regulated nuclear factor erythroid 2-related factor (Nrf2) expression via c-Myc after 3% isoflurane preconditioning and OGD exposure. Thus, isoflurane preconditioning prevented OGD-induced injury in LO2 cells by modulating FoxO6, c-Myc, and Nrf2 signaling.
Collapse
Affiliation(s)
- Yonghui Zhong
- Department of Anesthesiology, Weinan Central Hospital, Weinan 714000, China
| | | | | |
Collapse
|
9
|
Isoflurane preconditioning protects hepatocytes from oxygen glucose deprivation injury by regulating FoxO6. J Biosci 2019. [DOI: 10.1007/s12038-019-9967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|