1
|
von Stade D, Meyers M, Johnson J, Schlegel T, Romeo A, Regan D, McGilvray K. Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. Tissue Eng Part A 2025. [PMID: 39761039 DOI: 10.1089/ten.tea.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.
Collapse
Affiliation(s)
- Devin von Stade
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Wang YB, Li T, Wang FY, Yao X, Bai QX, Su HW, Liu J, Wang L, Tan RZ. The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease. Int J Biol Sci 2025; 21:632-657. [PMID: 39781471 PMCID: PMC11705649 DOI: 10.7150/ijbs.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized. During this process, macrophages exhibit a range of pro-damage response to senescent tissues and cells, while the aging of macrophages themselves also significantly influences disease progression, creating a bidirectional regulatory role between aging and macrophages. To explore this bidirectional mechanism, this review will elucidate the origin, characteristic, phenotype, and function of macrophages in response to the senescence-associated secretory phenotype (SASP), extracellular vesicles from senescent cells, and the senescence cell-engulfment suppression (SCES), particularly in the context of kidney disease. Additionally, it will discuss the characteristics of senescent macrophage, such as common markers, and changes in autophagy, metabolism, gene regulation, phagocytosis, antigen presentation, and exosome secretion, along with their physiological and pathological impacts on renal tissue cells. Furthermore, exploring therapies and drugs that modulate the function of senescent macrophages or eliminate senescent cells may help slow the progression of kidney aging and damage.
Collapse
Affiliation(s)
- Yi-bing Wang
- Department of Radiology, the Affiliated Hospital, Southwest Medical University, 646000 Luzhou, China
- Department of Medical Imaging, Southwest Medical University, 646000 Luzhou, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Feng-yu Wang
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Xin Yao
- Department of Anesthesiology, Southwest Medical University, 646000 Luzhou, China
| | - Qiu-xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Hong-wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Rui-zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
3
|
Wang H, Laram Y, Hu L, Hu Y, Chen M. Exploring the potential mechanisms of Rehmannia glutinosa in treating sepsis based on network pharmacology. BMC Infect Dis 2024; 24:893. [PMID: 39217296 PMCID: PMC11366132 DOI: 10.1186/s12879-024-09796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Yongchu Laram
- Department of Clinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Li Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yingchun Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| | - Muhu Chen
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
4
|
Yu Z, Li M, Peng W. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning. Sci Rep 2023; 13:11498. [PMID: 37460774 PMCID: PMC10352282 DOI: 10.1038/s41598-023-38754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a reproductive endocrine disorder characterized by infertility and perimenopausal syndrome, with a highly heterogeneous genetic etiology and its mechanism is not fully understood. Therefore, we utilized Oxford Nanopore Technology (ONT) for the first time to characterize the full-length transcript profile, and revealed biomarkers, pathway and molecular mechanisms for POI by bioinformatics analysis and machine learning. Ultimately, we identified 272 differentially expressed genes, 858 core genes, and 25 hub genes by analysis of differential expression, gene set enrichment, and protein-protein interactions. Seven candidate genes were identified based on the intersection features of the random forest and Boruta algorithm. qRT-PCR results indicated that COX5A, UQCRFS1, LCK, RPS2 and EIF5A exhibited consistent expression trends with sequencing data and have potential as biomarkers. Additionally, GSEA analysis revealed that the pathophysiology of POI is closely associated with inhibition of the PI3K-AKT pathway, oxidative phosphorylation and DNA damage repair, as well as activation of inflammatory and apoptotic pathways. Furthermore, we emphasize that downregulation of respiratory chain enzyme complex subunits and inhibition of oxidative phosphorylation pathways play crucial roles in the pathophysiology of POI. In conclusion, our utilization of long-read sequencing has refined the annotation information within the POI transcriptional profile. This valuable data provides novel insights for further exploration into molecular regulatory networks and potential biomarkers associated with POI.
Collapse
Affiliation(s)
- Zhaoyang Yu
- The First Affiliated Clinical College of Guangxi Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weilong Peng
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Wen Y, Huang J, Guo S, Elyahu Y, Monsonego A, Zhang H, Ding Y, Zhu H. Applying causal discovery to single-cell analyses using CausalCell. eLife 2023; 12:e81464. [PMID: 37129360 PMCID: PMC10229139 DOI: 10.7554/elife.81464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Correlation between objects is prone to occur coincidentally, and exploring correlation or association in most situations does not answer scientific questions rich in causality. Causal discovery (also called causal inference) infers causal interactions between objects from observational data. Reported causal discovery methods and single-cell datasets make applying causal discovery to single cells a promising direction. However, evaluating and choosing causal discovery methods and developing and performing proper workflow remain challenges. We report the workflow and platform CausalCell (http://www.gaemons.net/causalcell/causalDiscovery/) for performing single-cell causal discovery. The workflow/platform is developed upon benchmarking four kinds of causal discovery methods and is examined by analyzing multiple single-cell RNA-sequencing (scRNA-seq) datasets. Our results suggest that different situations need different methods and the constraint-based PC algorithm with kernel-based conditional independence tests work best in most situations. Related issues are discussed and tips for best practices are given. Inferred causal interactions in single cells provide valuable clues for investigating molecular interactions and gene regulations, identifying critical diagnostic and therapeutic targets, and designing experimental and clinical interventions.
Collapse
Affiliation(s)
- Yujian Wen
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jielong Huang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuhui Guo
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Hai Zhang
- Network Center, Southern Medical UniversityGuangzhouChina
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Alqarni SA, Ahmad SF, Alqahtani F, Al-Harbi NO, Alshehri S, Ibrahim KE, Alfardan AS, Attia SM, Nadeem A. Inhibition of non-receptor tyrosine kinase LCK partially mitigates mixed granulocytic airway inflammation in a murine model of asthma. Int Immunopharmacol 2023; 119:110225. [PMID: 37119678 DOI: 10.1016/j.intimp.2023.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Asthma affects millions of people worldwide and is one of the most common inflammatory airway diseases. Asthma phenotypes are quite complex and categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Mixed granulocytic asthma requires large doses of inhaled corticosteroids, which are often insufficient in controlling airway inflammation. Therefore, there is a medical need to test newer therapies to control granulocytic inflammation. Lymphocyte specific protein tyrosine kinase (LCK) signaling has gained momentum in recent years as a molecular target in inflammatory diseases such as asthma. LCK is expressed in lymphocytes and is required for inflammatory intracellular signaling in response to antigenic stimulation. Therefore, efficacy of LCK inhibitor, A770041 was tested in cockroach (CE)-induced corticosteroid insensitive murine model of asthma. The effect of LCK inhibitor was investigated on granulocytic airway inflammation, mucus production, p-LCK and downstream signaling molecules such as p-PLCγ, GATA3, p-STAT3 in CD4+ T cells. Moreover, its effects were also studied on Th2/Th17 related cytokines and oxidative stress parameters (iNOS/nitrotyrosine) in neutrophils/macrophages. Our study shows that CE-induced p-LCK levels are concomitant with increased neutrophilic/eosinophilic inflammation and mucus hypersecretion which are significantly mitigated by A770041 treatment. A770041 also caused marked attenuation of CE-induced pulmonary levels of IL-17A levels but not completely. However, A770041 in combination with dexamethasone caused complete downregulation of mixed granulocytic airway inflammation as well as Th2/Th17 related immune responses. These results suggest that combination of LCK inhibition along with corticosteroids may be pursued as an alternative strategy to completely treat mixed granulocytic asthma.
Collapse
Affiliation(s)
- Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Noh SG, Jung HJ, Kim S, Arulkumar R, Chung KW, Park D, Choi YJ, Chung HY. Sex-Mediated Differences in TNF Signaling- and ECM-Related Gene Expression in Aged Rat Kidney. Biol Pharm Bull 2023; 46:552-562. [PMID: 37005299 DOI: 10.1248/bpb.b22-00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Seungwoo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, College of Science and Technology, Dongguk University
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| |
Collapse
|
8
|
Blockade of Tyrosine Kinase, LCK Leads to Reduction in Airway Inflammation through Regulation of Pulmonary Th2/Treg Balance and Oxidative Stress in Cockroach Extract-Induced Mouse Model of Allergic Asthma. Metabolites 2022; 12:metabo12090793. [PMID: 36144198 PMCID: PMC9506330 DOI: 10.3390/metabo12090793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Asthma is one of the most common inflammatory diseases affecting the airways. Approximately 300 million individuals suffer from asthma around the world. Allergic immune responses in the asthmatic airways are predominantly driven by Th2 cells and eosinophils. Lymphocyte-specific protein tyrosine kinase (LCK) is a non-receptor tyrosine kinase which regulates several key intracellular events through phosphorylation of its substrates. Some of the intracellular signaling pathways activated by LCK phosphorylation help in differentiation of Th2 cells which secrete allergic cytokines that amplify airway inflammation. Therefore, this investigative study was designed to determine the role of LCK in a cockroach extract (CE)-induced airway inflammation murine model of allergic asthma. Further, the effect of a pharmacological LCK inhibitor, A-770041, on allergic airway inflammation and key intracellular pathways in CD4+ T cells was assessed. Our data exhibit that there is an activation of LCK during allergic airway inflammation as depicted by increased p-LCK levels in CD4+ T cells. Activated LCK is involved in the activation of ITK, PLC-γ, GATA3, NFkB, and NFATc1. Activated LCK is also involved in the upregulation of Th2 related cytokines, such as IL-4/IL-5/IL-13 and oxidative stress, and the downregulation of Treg cells. Furthermore, utilization of LCK inhibitor causes the reduction in p-LCK, PLC-γ, GATA3, and NFATc1 as well as Th2 cytokines and oxidative stress. LCK inhibitor causes upregulation of Treg cells in allergic mice. LCK inhibitor also caused a reduction in CE-induced airway inflammation and mucus secretion. Therefore, the inhibition of LCK signaling could be a fruitful approach to adjust allergic airway inflammation through the attuning of Th2/Treg immune responses. This study could lead to the design of newer treatment options for better management of allergic inflammation in asthma.
Collapse
|
9
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Al-Harbi NO, Ahmad SF, Almutairi M, Alanazi AZ, Ibrahim KE, Alqarni SA, Alqahtani F, Alhazzani K, Alharbi M, Alasmari F, Nadeem A. Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model. Cell Immunol 2022; 376:104531. [DOI: 10.1016/j.cellimm.2022.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
|
11
|
Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, Hu J, Wang Z, Ouyang B, Tu X, Zou X, Liu W, Lu M, Deng C, Yang Q, Xie Y. Anatomical Transcriptome Atlas of the Male Mouse Reproductive System During Aging. Front Cell Dev Biol 2022; 9:782824. [PMID: 35211476 PMCID: PMC8861499 DOI: 10.3389/fcell.2021.782824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The elderly males undergo degenerative fertility and testicular endocrine function that jeopardize the reproductive health and well-being. However, the mechanisms underlying reproductive aging are unclear. Here, we tried to address this by investigating the phenotypes and transcriptomes of seven regions of the male mouse reproductive tract: the testis, efferent ductules, initial segment, caput, corpus and cauda epididymidis, and vas deferens, in adult (3 months) and aged (21 months) mice. Quantitative PCR, immunohistochemistry, immunofluorescent staining, and enzyme-linked immunosorbent assay were performed for the analysis of gene expression in mice, human tissues, and semen samples. Aged male mice showed both systematic and reproductive changes, and remarkable histological changes were detected in the testis and proximal epididymis. Transcriptomes of the male reproductive tract were mapped, and a series of region-specific genes were identified and validated in mouse and/or human tissues, including Protamine 1 (Prm2), ADAM metallopeptidase domain 28 (Adam28), Ribonuclease A family member 13 (Rnase13), WAP four-disulfide core domain 13 (Wfdc13), and Wfdc9. Meanwhile, age-related transcriptome changes of different regions of the male reproductive tract were characterized. Notably, increased immune response was functionally related to the male reproductive aging, especially the T cell activation. An immune response-associated factor, phospholipase A2 group IID (Pla2g2d), was identified as a potential biomarker for reproductive aging in mice. And the PLA2G2D level in human seminal plasma surged at approximately 35 years of age. Furthermore, we highlighted Protein tyrosine phosphatase receptor type C (Ptprc), Lymphocyte protein tyrosine kinase (Lck), Microtubule associated protein tau (Mapt), and Interferon induced protein with tetratricopeptide repeats 3 (Ifit3) as critical molecules in the aging of initial segment, caput, caput, and cauda epididymidis, respectively. This study provides an RNA-seq resource for the male reproductive system during aging in mice, and is expected to improve our understanding of male reproductive aging and infertility.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd., Guangzhou, China
| | - Zhenqing Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hu
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Wang
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1048139. [PMID: 36568106 PMCID: PMC9768367 DOI: 10.3389/fendo.2022.1048139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation and immune response are involved in the pathogenesis of diabetic nephropathy (DN). However, the specific immune-associated signature during DN development is unclear. Our study aimed to reveal the roles of immune-related genes during DN progression. METHODS The GSE30529 and GSE30528 datasets were acquired from the Gene Expression Omnibus (GEO) database. Then, the intersection between differentially expressed genes (DEGs) and immune score-related genes (ISRGs) was screened. Subsequently, functional enrichment analyses were performed. The different immune phenotype-related subgroups were finally divided using unsupervised clustering. The core genes were identified by WGCNA and the protein-protein interaction (PPI) network. xCell algorithm was applied to assess the proportion of immune cell infiltration. RESULTS 92 immune score-related DEGs (ISRDEGs) were identified, and these genes were enriched in inflammation- and immune-associated pathways. Furthermore, two distinct immune-associated subgroups (C1 and C2) were identified, and the C1 subgroup exhibited activated immune pathways and a higher percentage of immune cells compared to the C2 subgroup. Two core genes (LCK and HCK) were identified and all up-regulated in DN, and the expressions were verified using GSE30122, GSE142025, and GSE104954 datasets. GSEA indicated the core genes were mainly enriched in immune-related pathways. Correlation analysis indicated LCK and HCK expressions were positively correlated with aDC, CD4+ Tem, CD8+T cells, CD8+ Tem, and mast cells. CONCLUSIONS We identified two immune-related genes and two immune-associated subgroups, which might help to design more precise tailored immunotherapy for DN patients.
Collapse
Affiliation(s)
- Kunna Lu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yan Fu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Guanghong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Mingfeng Cao,
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Mingfeng Cao,
| |
Collapse
|
13
|
Santos E Silva JC, Vasconcelos AP, Noma IHY, Noronha NY, Aquino R, Giddaluru J, Durão L, Costa-Martins AG, Schuch V, Moraes-Vieira PM, Nakaya HI. Gene signatures of autopsy lungs from obese patients with COVID-19. Clin Nutr ESPEN 2021; 44:475-478. [PMID: 34330510 PMCID: PMC8149170 DOI: 10.1016/j.clnesp.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/27/2023]
Abstract
Background & aims Obesity is associated with low grade systemic inflammation and insulin resistance. Although metabolic and immunological changes may contribute to the increased risk for COVID-19 mortality in obese, little is known about the impact of obesity in the lungs of patients with COVID-19. Methods We analyzed gene expression profiles of autopsy lungs of a cohort of 14 COVID-19 patients and 4 control individuals. Patients were divided into 3 groups according to their comorbidities: hypertension, type 2 diabetes (T2D) and obesity. We then identified the molecular alterations associated with these comorbidities in COVID-19 patients. Results Patients with only hypertension showed higher levels of inflammatory genes and B-cell related genes when compared to those with T2D and obesity. However, the levels of IFN-gamma, IL22, and CD274 (a ligand that binds to receptor PD1) were higher in COVID-19 patients with T2D and obesity. Several metabolic- and immune-associated genes such as G6PD, LCK and IL10 were significantly induced in the lungs of the obese group. Conclusion Our findings suggest that SARS-CoV-2 infection in the lungs may exacerbate the immune response and chronic condition in obese COVID-19 patients.
Collapse
Affiliation(s)
- Juan Carlo Santos E Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Pereira Vasconcelos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Yumi Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rodrigo Aquino
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jeevan Giddaluru
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
| | - Luiz Durão
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - André Guilherme Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
| | - Viviane Schuch
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Role and mechanism of TXNIP in ageing-related renal fibrosis. Mech Ageing Dev 2021; 196:111475. [PMID: 33781783 DOI: 10.1016/j.mad.2021.111475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
Kidney ageing, which is always accompanied by renal fibrosis, drives the progression of renal fibrosis. Thioredoxin-interacting protein (TXNIP) is an endogenous suppressor of the reactive oxygen species-scavenging protein thioredoxin, which has been implicated in the ageing of some organs and is involved in renal fibrosis. However, the expression of TXNIP in ageing kidneys has not been examined, and the relationship between TXNIP and ageing-related renal fibrosis is unclear. We found that TXNIP expression was upregulated in aged mouse kidneys, and this upregulation was accompanied by ageing-related renal fibrosis phenotypes. We demonstrated that the ageing biomarkers were downregulated in TXNIP-knockout mice, and these effects resulted in the alleviation of renal fibrosis and impairments in kidney function. TXNIP overexpression in tubular cells upregulated senescence markers, promoted a profibrotic response and activated STAT3 signalling, and these parameters were inhibited by the silencing of TXNIP. Similarly, the TXNIP-mediated profibrotic response was significantly suppressed by a STAT3 inhibitor. By coimmunoprecipitation, we verified that TXNIP directly bound to STAT3, which suggested that TXNIP exacerbates renal tubular epithelial fibrosis by activating the STAT3 pathway. In summary, TXNIP plays an important role in age-related renal fibrosis and might be a therapeutic target for preventing ageing-associated renal fibrosis.
Collapse
|
15
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|