1
|
Langeskov-Christensen M, Franzén E, Grøndahl Hvid L, Dalgas U. Exercise as medicine in Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:1077-1088. [PMID: 38418216 DOI: 10.1136/jnnp-2023-332974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Parkinson's disease (PD) is an incurable and progressive neurological disorder leading to deleterious motor and non-motor consequences. Presently, no pharmacological agents can prevent PD evolution or progression, while pharmacological symptomatic treatments have limited effects in certain domains and cause side effects. Identification of interventions that prevent, slow, halt or mitigate the disease is therefore pivotal. Exercise is safe and represents a cornerstone in PD rehabilitation, but exercise may have even more fundamental benefits that could change clinical practice. In PD, the existing knowledge base supports exercise as (1) a protective lifestyle factor preventing the disease (ie, primary prevention), (2) a potential disease-modifying therapy (ie, secondary prevention) and (3) an effective symptomatic treatment (ie, tertiary prevention). Based on current evidence, a paradigm shift is proposed, stating that exercise should be individually prescribed as medicine to persons with PD at an early disease stage, alongside conventional medical treatment.
Collapse
Affiliation(s)
- Martin Langeskov-Christensen
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Neurology, Viborg Regional Hospital, Viborg, Denmark
| | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden
- Department of Physical Therapy, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Grøndahl Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals, Ry and Haslev, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Bhidayasiri R, Sringean J, Phumphid S, Anan C, Thanawattano C, Deoisres S, Panyakaew P, Phokaewvarangkul O, Maytharakcheep S, Buranasrikul V, Prasertpan T, Khontong R, Jagota P, Chaisongkram A, Jankate W, Meesri J, Chantadunga A, Rattanajun P, Sutaphan P, Jitpugdee W, Chokpatcharavate M, Avihingsanon Y, Sittipunt C, Sittitrai W, Boonrach G, Phonsrithong A, Suvanprakorn P, Vichitcholchai J, Bunnag T. The rise of Parkinson's disease is a global challenge, but efforts to tackle this must begin at a national level: a protocol for national digital screening and "eat, move, sleep" lifestyle interventions to prevent or slow the rise of non-communicable diseases in Thailand. Front Neurol 2024; 15:1386608. [PMID: 38803644 PMCID: PMC11129688 DOI: 10.3389/fneur.2024.1386608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The rising prevalence of Parkinson's disease (PD) globally presents a significant public health challenge for national healthcare systems, particularly in low-to-middle income countries, such as Thailand, which may have insufficient resources to meet these escalating healthcare needs. There are also many undiagnosed cases of early-stage PD, a period when therapeutic interventions would have the most value and least cost. The traditional "passive" approach, whereby clinicians wait for patients with symptomatic PD to seek treatment, is inadequate. Proactive, early identification of PD will allow timely therapeutic interventions, and digital health technologies can be scaled up in the identification and early diagnosis of cases. The Parkinson's disease risk survey (TCTR20231025005) aims to evaluate a digital population screening platform to identify undiagnosed PD cases in the Thai population. Recognizing the long prodromal phase of PD, the target demographic for screening is people aged ≥ 40 years, approximately 20 years before the usual emergence of motor symptoms. Thailand has a highly rated healthcare system with an established universal healthcare program for citizens, making it ideal for deploying a national screening program using digital technology. Designed by a multidisciplinary group of PD experts, the digital platform comprises a 20-item questionnaire about PD symptoms along with objective tests of eight digital markers: voice vowel, voice sentences, resting and postural tremor, alternate finger tapping, a "pinch-to-size" test, gait and balance, with performance recorded using a mobile application and smartphone's sensors. Machine learning tools use the collected data to identify subjects at risk of developing, or with early signs of, PD. This article describes the selection and validation of questionnaire items and digital markers, with results showing the chosen parameters and data analysis methods to be robust, reliable, and reproducible. This digital platform could serve as a model for similar screening strategies for other non-communicable diseases in Thailand.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jirada Sringean
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chanawat Anan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Suwijak Deoisres
- National Electronics and Computer Technology Centre, Pathum Thani, Thailand
| | - Pattamon Panyakaew
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Suppata Maytharakcheep
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Vijittra Buranasrikul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Tittaya Prasertpan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Sawanpracharak Hospital, Nakhon Sawan, Thailand
| | | | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Araya Chaisongkram
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Worawit Jankate
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jeeranun Meesri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Araya Chantadunga
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Piyaporn Rattanajun
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Phantakarn Sutaphan
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Weerachai Jitpugdee
- Department of Rehabilitation Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Marisa Chokpatcharavate
- Chulalongkorn Parkinson's Disease Support Group, Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Society, Bangkok, Thailand
| | - Chanchai Sittipunt
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Red Cross Society, Bangkok, Thailand
| | | | | | | | | | | | - Tej Bunnag
- Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
3
|
Haynes A, Tiedemann A, Hewton G, Chenery J, Sherrington C, Merom D, Gilchrist H. "It doesn't feel like exercise": a realist process evaluation of factors that support long-term attendance at dance classes designed for healthy ageing. Front Public Health 2023; 11:1284272. [PMID: 38192566 PMCID: PMC10773813 DOI: 10.3389/fpubh.2023.1284272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Dance can positively impact older people's health and wellbeing across cultures and socioeconomic groups, countering age-related physical, sensorimotor and cognitive decline. Background/objectives The RIPE (Really Is Possible for Everyone) Dance program aims to improve older people's physical, mental, cognitive and social wellbeing by integrating engaging dance sequences with evidence-based fall prevention exercises. We sought to identify what mechanisms support observed long-term participation in this program, including by people living with challenging health conditions. Methods Following a realist evaluation approach, we co-developed and tested program theories iteratively with participant interviewees (n = 20), dance teachers (n = 2) and via observation of a dance class. Initial data were dual-coded and emergent findings were interrogated by the research team. Findings were organised to express Program activities + Context + Mechanism = Process outcomes configurations. Results We identified four program theories comprising 14 mechanisms which explained long-term attendance: 1. RIPE Dance benefits my body and mind (trust in the program, belief in health benefits), 2. RIPE Dance helps me feel good about myself (self-efficacy, pride in achievement, psychological safety, defying expectations, feeling valued), 3. RIPE Dance creates camaraderie (social connection, mutual support, rapport with the teacher), and 4. RIPE Dance is uplifting (raised spirits, fun, synchrony, musical reactivity). Conclusion The RIPE Dance program provides effective and enjoyable 'exercise in disguise' for older people with diverse mobility profiles. Significance/implications This research confirms that participation in dance can contribute significantly to healthy, happy ageing. Findings detail program activities that were most strongly associated with process outcomes, offering guidance for further program development, implementation and scaling up.
Collapse
Affiliation(s)
- Abby Haynes
- Sydney Musculoskeletal Health, Institute for Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Anne Tiedemann
- Sydney Musculoskeletal Health, Institute for Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Gail Hewton
- Gold Moves Australia and RIPE Dance, Noosa, QLD, Australia
| | | | - Catherine Sherrington
- Sydney Musculoskeletal Health, Institute for Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Dafna Merom
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia
| | - Heidi Gilchrist
- Sydney Musculoskeletal Health, Institute for Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Cui W, Li D, Yue L, Xie J. The effects of exercise dose on patients with Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2023; 270:5327-5343. [PMID: 37530788 DOI: 10.1007/s00415-023-11887-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE The effects of different exercise doses on motor function, balance, mobility, and quality of life (QOL) in patients with Parkinson's disease (PD) were evaluated. METHOD The exercise intervention dose was evaluated based on the recommendations of the American College of Sports Medicine (ACSM) for developing and maintaining cardiorespiratory health, muscle strength, and physical function for PD patients and classified into high ACSM compliance and low or uncertain ACSM compliance. The impact of ACSM compliance on Unified Parkinson's Disease Rating Scale, Part III (UPDRS-III), Berg Balance Scale (BBS), Timed Up and Go (TUG), and 39-item Parkinson's Disease Questionnaire (PDQ-39) in patients with PD was compared using the standardized mean difference (SMD) along with the corresponding 95% confidence interval (95% CI). RESULTS A total of 26 articles were included, comprising 32 studies. Twenty-one studies were classified as high ACSM compliance, and 11 studies were classified as low or uncertain ACSM compliance. For the four outcome measures, the SMD ratio of exercise interventions with high ACSM compliance to those with low or uncertain ACSM compliance was as follows: UPDRS-III (- 0.74: - 0.17), TUG (- 0.62: - 0.17), PDQ-39 (- 0.58: - 0.31), and BBS (0.51: 0.52). CONCLUSION The results suggest that compared with exercise interventions with low or uncertain ACSM compliance, exercise interventions with high ACSM compliance had a more significant improvement effect on motor function, mobility, and QOL in PD patients. However, the effect on balance was not as pronounced, and further research is needed to validate these findings.
Collapse
Affiliation(s)
- Wenlai Cui
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Dong Li
- Department of International Culture Education, Chodang University, Muan, South Korea
| | - Leijiao Yue
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Jun Xie
- Graduate School, Capital University of Physical Education and Sports, Beijing, China.
| |
Collapse
|
5
|
Zhang W, Chen J, Liu H. Network Pharmacology and Molecular Docking-Based Prediction of the Molecular Targets and Signaling Pathways of Ginseng in the Treatment of Parkinson's Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The present study was aimed at exploring the molecular mechanism underlying the action of ginseng in the treatment of Parkinson's disease (PD) using network pharmacology. Methods: The main effective ginseng ingredients were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database and screened for oral bioavailability (OB), as well as drug-like properties (DL). A platform of PD targets was established using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and then an “effective ingredient-target-disease” interaction network was constructed using Cytoscape 3.7.1 software. A STRING database was used to construct a protein–protein interaction (PPI) network, and the related protein interactions were analyzed. Finally, we performed functional analyses of core targets using the Gene Ontology (GO) and Kyoto Gene and Gene Encyclopedia (KEGG) pathway enrichment, and then conducted molecular docking of the effective ingredients with disease targets. Results: Ninety-seven effective ginseng ingredients and 168 potential targets of PD were identified in the present study. Network analysis showed that the targets were mainly involved in regulating cell metabolism, apoptosis, and other biological processes (BPs). Further, it was noted that the effects of the targets on treatment of PD involved regulation of several signaling pathways, such as mitogen-activated protein kinase (MAPK), advanced glycation end products (AGE), and receptors of advanced glycation end products (RAGE). The results of molecular docking showed that the active ginseng ingredients bind well with the targets of MAPK3 and MAPK14. Conclusion: The main active compounds of ginseng in the treatment of PD may be ginsenosides, and the molecular mechanism may be related to key targets such as MAPK3, MAPK14, and EGFR. The MAPK and AGE-RAGE signaling pathways may also be involved.
Collapse
Affiliation(s)
- Wei Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingya Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongquan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Domaszewska K, Boraczyński M, Tang YY, Gronek J, Wochna K, Boraczyński T, Wieliński D, Gronek P. Protective Effects of Exercise Become Especially Important for the Aging Immune System in The Covid-19 Era. Aging Dis 2022; 13:129-143. [PMID: 35111366 PMCID: PMC8782560 DOI: 10.14336/ad.2021.1219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex, multietiological process and a major risk factor for most non-genetic, chronic diseases including geriatric syndromes that negatively affect healthspan and longevity. In the scenario of "healthy or good aging", especially during the COVID-19 era, the proper implementation of exercise as "adjuvant" or "polypill" to improve disease-related symptoms and comorbidities in the general population is a top priority. However, there is still a gap concerning studies analyzing influence of exercise training to immune system in older people. Therefore, the aim of this review is to provide a brief summary of well-established findings in exercise immunology and immunogerontology, but with a focus on the main exercise-induced mechanisms associated with aging of the immune system (immunosenescence). The scientific data strongly supports the notion that regular exercise as a low-cost and non-pharmacological treatment approach, when adjusted on an individual basis in elderly, induce multiple rejuvenating mechanisms: (1) affects the telomere-length dynamics (a "telo-protective" effect), (2) promote short- and long-term anti-inflammatory effects (via e.g., triggering the anti-inflammatory phenotype), 3) stimulates the adaptive immune system (e.g., helps to offset diminished adaptive responses) and in parallel inhibits the accelerated immunosenescence process, (4) increases post-vaccination immune responses, and (5) possibly extends both healthspan and lifespan.
Collapse
Affiliation(s)
- Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poland.
| | - Michał Boraczyński
- Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland.
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, USA.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| | - Krystian Wochna
- Laboratory of Swimming and Water Lifesaving, Faculty of Sport Sciences, Poznan University of Physical Education, Poland.
| | | | - Dariusz Wieliński
- Department of Anthropology and Biometry, Poznan University of Physical Education, Poland.
| | - Piotr Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| |
Collapse
|
7
|
Li F, Wang N, Zheng Y, Luo Y, Zhang Y. cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders. Aging Dis 2021; 12:1658-1674. [PMID: 34631213 PMCID: PMC8460300 DOI: 10.14336/ad.2021.0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of the cGAS-STING pathway in CNS disorders.
Collapse
Affiliation(s)
- Fengjuan Li
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ningqun Wang
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yongbo Zhang
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Leta V, Urso D, Batzu L, Weintraub D, Titova N, Aarsland D, Martinez-Martin P, Borghammer P, van Wamelen DJ, Yousaf T, Rizos A, Rodriguez-Blazquez C, Chung-Faye G, Chaudhuri KR. Constipation is Associated with Development of Cognitive Impairment in de novo Parkinson's Disease: A Longitudinal Analysis of Two International Cohorts. JOURNAL OF PARKINSONS DISEASE 2021; 11:1209-1219. [PMID: 33843697 DOI: 10.3233/jpd-212570] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Constipation is regarded as one of the prodromal features of Parkinson's disease (PD) and there is emerging evidence linking gastrointestinal dysfunction and cognitive impairment (CI) in PD. OBJECTIVE We explored whether constipation is associated with development of CI in two independent cohorts of de novo PD patients (n = 196 from the Non-motor International Longitudinal Study [NILS] and n = 423 from the Parkinson's Progression Markers Initiative [PPMI] study). METHODS Constipation was clinically defined using the Non-Motor Symptoms Scale (NMSS) item-21 [NILS] and Scales for Outcomes in PD-Autonomic (SCOPA-AUT) item-5 [PPMI]. We assessed baseline group differences (PD with or without constipation) in CI, global non-motor symptoms burden, motor dysfunction, and striatal dopaminergic denervation. Kaplan-Meier method estimated group differences in cumulative proportion of patients with incident CI over three years. In PPMI, we subsequently performed univariate and multivariate Cox survival analyses to evaluate whether constipation predicts incident mild cognitive impairment or dementia over a 6-year period, including constipation and other known predictors of CI as covariates. RESULTS Patients with constipation had greater motor and global non-motor burden in both cohorts at baseline (p < 0.05). Kaplan-Meier plots showed faster conversion to CI in patients with constipation in both cohorts (p < 0.05). In PPMI, 37 subjects developed dementia during a mean follow-up of 4.9 years, and constipation was an independent predictor of dementia onset (hazard ratio = 2.311; p = 0.02). CONCLUSION Constipation in de novo PD patients is associated with development of cognitive decline and may serve as a clinical biomarker for identification of patients at risk for cognitive impairment.
Collapse
Affiliation(s)
- Valentina Leta
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Daniele Urso
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.,Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - Lucia Batzu
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | | | - Nataliya Titova
- Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Department of Neurology, Neurosurgery and Medical Genetics, Moscow, Russia.,Federal State Budgetary Institution "Federal Center of Brain and Neurotechnologies" of the Ministry of Health of the Russian Federation, Department of Neurodegenerative Diseases, Moscow, Russia
| | - Dag Aarsland
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Pablo Martinez-Martin
- Centre for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark.,Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel J van Wamelen
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tayyabah Yousaf
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom
| | - Alexandra Rizos
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | | | - Guy Chung-Faye
- Department of Gastroenterology, King's College Hospital Foundation NHS Trust, London, United Kingdom
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience, Department of Neurosciences, King's College London, London, United Kingdom.,Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| |
Collapse
|
9
|
Fiorilli G, Quinzi F, Buonsenso A, Casazza G, Manni L, Parisi A, Di Costanzo A, Calcagno G, Soligo M, di Cagno A. A Single Session of Whole-Body Electromyostimulation Increases Muscle Strength, Endurance and proNGF in Early Parkinson Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5499. [PMID: 34065571 PMCID: PMC8161270 DOI: 10.3390/ijerph18105499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) patients lead a sedentary lifestyle, being unable or unwilling to exercise conventionally, due to physical and mental limitations. The aim of this study was to assess the acute effects of a single session of whole-body electromyostimulation (WB-EMS) on the physical performances and serum levels of the neurotrophic factors in PD patients. Ten subjects (aged 72.60 ± 6.82) underwent 20 min of physical activity with superimposed WB-EMS and, after four weeks, the same protocol with no WB-EMS. WB-EMS was conducted with intermittent stimulation, with 4 s WB-EMS/4 s rest, at 85 Hz, 350 μs. A physical fitness assessment and blood samples collection, to evaluate neurotrophic factors' levels (BDNF, FGF21, proNGF, mNGF), were collected before and after the intervention. The RM-ANOVA showed significant improvements in sit-to-stand (p < 0.01), arm curl (p < 0.01), handgrip (p < 0.01) and soda pop test (p < 0.01) after the WB-EMS intervention. Higher proNFG serum levels were observed in the WB-EMS condition compared to the no WB-EMS after 60 min post-intervention (p = 0.0163). The effect of WB-EMS confirmed the electrostimulation ability to modulate the proNGF quantity. The positive impact of the WB-EMS protocol on physical functioning, and eye-hand coordination, makes this intervention a promising strategy to improve motor and non-motor symptoms in PD patients.
Collapse
Affiliation(s)
- Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Federico Quinzi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giusy Casazza
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Luigi Manni
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Attilio Parisi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Alessandra di Cagno
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| |
Collapse
|
10
|
Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules 2021; 11:biom11040612. [PMID: 33924103 PMCID: PMC8074325 DOI: 10.3390/biom11040612] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) usually presents in older adults and typically has both motor and non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopaminergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is an integrative medicine and health strategy that highlights five treatment options for people with Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins following the diagnosis and throughout any additional treatment processes, especially vis-à-vis consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine agonist, compounds that preserve residual dopamine, and other specific motor/non-motor-related compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective. Maintenance uses complementary and alternative medicine substances that potentially support and protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to achieve stability with neuroprotection. The ultimate goal of any management program is to improve the quality-of-life for a person with Parkinson’s disease.
Collapse
|
11
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
12
|
Chen L, Cai G, Weng H, Yu J, Yang Y, Huang X, Chen X, Ye Q. More Sensitive Identification for Bradykinesia Compared to Tremors in Parkinson's Disease Based on Parkinson's KinetiGraph (PKG). Front Aging Neurosci 2020; 12:594701. [PMID: 33240078 PMCID: PMC7670912 DOI: 10.3389/fnagi.2020.594701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
The effective management and therapies for Parkinson's disease (PD) require appropriate clinical evaluation. The Parkinson's KinetiGraph (PKG) is a wearable sensor system that can monitor the motion characteristics of PD objectively and continuously. This study was aimed to assess the correlations between PKG data and clinical scores of bradykinesia, rigidity, tremor, and fluctuation. It also aims to explore the application value of identifying early motor symptoms. An observational study of 100 PD patients wearing the PKG for ≥ 6 days was performed. It provides a series of data, such as the bradykinesia score (BKS), percent time tremor (PTT), dyskinesia score (DKS), and fluctuation and dyskinesia score (FDS). PKG data and UPDRS scores were analyzed, including UPDRS III total scores, UPDRS III-bradykinesia scores (UPDRS III-B: items 23-26, 31), UPDRS III-rigidity scores (UPDRS III-R: item 22), and scores from the Wearing-off Questionnaire (WOQ-9). This study shows that there was significant correlation between BKS and UPDRS III scores, including UPDRS III total scores, UPDRS III-B, and UPDRS III-R scores (r = 0.479-0.588, p ≤ 0.001), especially in the early-stage group (r = 0.682, p < 0.001). Furthermore, we found that BKS in patients with left-sided onset (33.57 ± 5.14, n = 37) is more serious than in patients with right-sided onset (29.87 ± 6.86, n = 26). Our findings support the feasibility of using the PKG to detect abnormal movements, especially bradykinesia in PD. It is suitable for the early detection, remote monitoring, and timely treatment of PD symptoms.
Collapse
Affiliation(s)
- Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiao Yu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Yang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuanyu Huang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|