1
|
Lee J, Kouznetsova VL, Kesari S, Tsigelny I. Selective diagnostics of Amyotrophic Lateral Sclerosis, Alzheimer's and Parkinson's Diseases with machine learning and miRNA. Metab Brain Dis 2025; 40:79. [PMID: 39747792 DOI: 10.1007/s11011-024-01490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
The diagnosis of neurological diseases can be expensive, invasive, and inaccurate, as it is often difficult to distinguish between different types of diseases with similar motor symptoms. However, the dysregulation of miRNAs can be used to create a robust machine-learning model for a reliable diagnosis of neurological diseases. We used miRNA sequence descriptors and gene target data to create machine-learning models that can be used as diagnostic tools. The top-performing machine-learning models, trained on filtered miRNA datasets for Amyotrophic Lateral Sclerosis, Alzheimer's and Parkinson's Diseases of this research yielded 94, 97, and 96, percent accuracies, respectively. Analysis of dysregulated miRNA in neurological diseases elucidated novel biomarkers that could be used to diagnose and distinguish between the diseases. Machine-learning models developed using sequence and gene target descriptors of miRNA biomarkers can achieve favorable accuracies for disease classification and attain a robust discerning capability of neurological diseases.
Collapse
Affiliation(s)
- Juhyeok Lee
- CureScience Institute Internship Program, San Diego, CA, 92121, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, 92093, USA
- BiAna, La Jolla, CA, 92038, USA
- CureScience Institute, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, CA, 90404, USA
| | - Igor Tsigelny
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, 92093, USA.
- BiAna, La Jolla, CA, 92038, USA.
- CureScience Institute, San Diego, CA, 92121, USA.
- Department of Neurosciences, UC San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Wang M, Zhang W, Zang W. Repetitive transcranial magnetic stimulation improves cognition, depression, and walking ability in patients with Parkinson's disease: a meta-analysis. BMC Neurol 2024; 24:490. [PMID: 39716169 DOI: 10.1186/s12883-024-03990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) on cognitive function, depression, and walking ability in patients with Parkinson's disease. METHODS A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), VIP Database, and Wanfang Database. Randomized controlled trials (RCTs) on rTMS treatment in Parkinson's disease patients were retrieved, covering the period from the inception of each database to July 2024. The quality of the included studies was assessed using the Cochrane risk of bias tool. Two researchers independently screened the literature, extracted data, and assessed the risk of bias in the studies. Data synthesis and analysis were performed using RevMan 5.4 and Stata 17.0 software. RESULTS A total of 15 studies were included. The meta-analysis revealed that rTMS significantly improved the MOCA score (MD = 2.98, 95% CI 2.08, 3.88, P = 0.000), TUGT score (SMD=-0.72, 95% CI -1.43, 0.00, P = 0.048), FOG-Q score (SMD=-0.54, 95% CI -0.97, -0.11, P = 0.01), and UPDRS-III score (SMD=-0.66, 95% CI -0.84, -0.47, P = 0.000) in Parkinson's disease patients, and also alleviated depressive symptoms as measured by the HAMD (SMD=-0.43, 95% CI -0.72, -0.13, P = 0.004). CONCLUSIONS rTMS can improve cognitive function, depressive symptoms, and walking ability in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Mingchen Wang
- Cangzhou Hopsital of Integrated Traditional Chinese and Western of Hebei Province, Cangzhou, Hebei, 061000, China
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, Hebei, China
| | - Wenyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Wanli Zang
- School of Physical Education, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Sun P, Li J, Shen H, Jiang Y, Wang X, Xu T, Shen L, Gu X. Efficacy of repetitive transcranial magnetic stimulation combined with peripheral magnetic stimulation on movement symptom and exploration of the optimal population in Parkinson's disease: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e40689. [PMID: 39612411 PMCID: PMC11608732 DOI: 10.1097/md.0000000000040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND This study explores the efficacy of repetitive transcranial magnetic stimulation (rTMS) and rTMS combined with repetitive peripheral magnetic stimulation (rPMS) (hereinafter referred to as rTMS + rPMS) on motor symptoms and quality of life in Parkinson's disease (PD), and explores whether there are differences between the two treatment methods; At the same time, analyze data from different subgroups to explore the influencing factors, in order to find the most suitable treatment group. METHODS Eighty patients with PD were randomly divided into rTMS and rTMS + rPMS groups and administered 10 Hz rTMS, and 10 Hz rTMS + 25 Hz rPMS, respectively, for 10 days. Before and after treatment, the PD Motor Function Rating Scale (UPDRS Part III, 10m Walk Timing Test, Stand Up Walk Test Evaluation Scale (TUG)) and PD Quality of Life Questionnaire (PDQ-39) were used to evaluate the motor symptoms and quality of life. After quantifying the treatment effect, a comparative analysis of the efficacy before and after treatment was conducted. Simultaneously, we divided the two treatment groups into different subgroups, compared the subgroups under the same treatment method, analyzed the relevant factors affecting the treatment method, and found the most suitable treatment group. RESULTS (1) After rTMS or rTMS + rPMS, all scoring scales improved compared to those before treatment (P < .05). Compared to rTMS, rTMS + rPMS resulted in greater improvements in overall motor function (UPDRS III) and quality of life (PDQ-39) (P < .05). (2) Patients with rigidity-based type as the main type may be the most suitable for these two treatment methods (P < .05).(3) There was no significant difference in treatment efficiency between the two treatment methods for patients with PD at different disease stages, sexes, or treatment ages(P > .05). CONCLUSION Both rTMS and rTMS + rPMS can improve movement symptoms and quality of life in patients with PD. rTMS + rPMS was more beneficial for improving the overall motor function. Patients with rigidity-based type as the main type may be the most suitable for these two treatment methods. The therapies work in all age groups, all gender and irrespective of the disease stage with varying levodopa equivalent daily doses as well.
Collapse
Affiliation(s)
- Peili Sun
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Department of Neurology, The Peoples Hospital of Rugao, Nantong, China
| | - Junrui Li
- Xuzhou Medical University, Xuzhou, China
| | - Haiqing Shen
- Department of Neurology, The Peoples Hospital of Rugao, Nantong, China
| | - Yongcheng Jiang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinjue Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Tian Xu
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Xiaosu Gu
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Kweon B, Oh J, Lim Y, Noh G, Yu J, Kim D, Jang M, Kim D, Bae G. Anti-Inflammatory Effects of Honeysuckle Leaf Against Lipopolysaccharide-Induced Neuroinflammation on BV2 Microglia. Nutrients 2024; 16:3954. [PMID: 39599739 PMCID: PMC11597670 DOI: 10.3390/nu16223954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neurodegenerative disorders have emerged as a major global public health concern, and the burden is predicted to increase over time. Modulating neuroinflammation and microglial activity is considered a promising target for improving neurodegenerative disorders. The leaf of honeysuckle (LH), which has anti-inflammatory properties, has long been collected, regardless of the season, and used for medicinal purposes. However, research on its effects on neuroinflammation is scarce. In this study, we determined the neuroprotective effects of LH water extract by inhibiting microglial activation induced by lipopolysaccharide (LPS). METHODS The production or secretion of pro-inflammatory mediators was examined in LPS-exposed BV2 cells to ascertain the efficacy of LH water extract in improving neuroinflammation. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory κBα (IκBα) were analyzed to elucidate the regulatory mechanisms of LH water extract. Ultra-performance liquid chromatography (UPLC) analysis was conducted to identify the active component of the LH. RESULTS LH water extract suppressed the formation of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α, in LPS-activated BV2 cells. LH impeded the activation of c-Jun N-terminal kinase (JNK). Moreover, chlorogenic acid was found in LH. CONCLUSIONS The above findings suggest that LH water extract could improve neuroinflammation.
Collapse
Affiliation(s)
- Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Jinyoung Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Yebin Lim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Gyeongran Noh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Jihyun Yu
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Donggu Kim
- Department of Herbology, College of Korean Medicine, Dong-Eui University, 176 Eomgwang-ro, Busan 47340, Republic of Korea
| | - Mikyung Jang
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Donguk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| | - Gisang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
| |
Collapse
|
5
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
6
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
7
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Wu JP. Combined Ketogenic Diet and Walking Exercise Interventions in Community Older Frailty and Skeletal Muscle Sarcopenia. FRAILTY AND SARCOPENIA - RECENT EVIDENCE AND NEW PERSPECTIVES 2022. [DOI: 10.5772/intechopen.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The ketogenic diet and walking exercise training interventions are two key public health lifestyle factors. The potential of combined lifestyle factors interventions focused on getting to compliance in diet and exercise. A balanced ketogenic diet and regular exercise interventions is key modifiable factor to the prevention and management of community older frailty and skeletal muscle sarcopenia. Influence health across the lifespan and reduction of the risk of premature death through several biochemistry mechanisms. Community older group’s lifestyle factors interventions contribute identity in their natural living environment. While the older health benefits of walking exercise training interventions strategies are commonly to study, combining ketogenic diet and walking exercise interventions can induce greater benefits in community older groups.
Collapse
|
9
|
Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, Sim A, Tang B, Wang Q. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2022; 52:101589. [PMID: 35923424 PMCID: PMC9340539 DOI: 10.1016/j.eclinm.2022.101589] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive form of brain stimulation that positively regulates the motor and non-motor symptoms of Parkinson's disease (PD). Although, most reviews and meta-analysis have shown that rTMS intervention is effective in treating motor symptoms and depression, very few have used randomised controlled trials (RCTs) to analyse the efficacy of this intervention in PD. We aimed to review RCTs of rTMS in patients with PD to assess the efficacy of rTMS on motor and non-motor function in patients with PD. METHODS In this systematic review and meta-analysis, we searched PubMed, MEDLINE and Web of Science databases for RCTs on rTMS in PD published between January 1, 1988 to January 1, 2022. Eligible studies included sham-controlled RCTs that used rTMS stimulation for motor or non-motor symptoms in PD. RCTs not focusing on the efficacy of rTMS in PD were excluded. Summary data were extracting from those RCTs by two investigators independently. We then calculated standardised mean difference with random-effect models. The main outcome included motor and non-motor examination of scales that were used in PD motor or non-motor assessment. This study was registered with PROSPERO, CRD42022329633. FINDINGS Fourteen studies with 469 patients met the criteria for our meta-analysis. Twelve eligible studies with 381 patients were pooled to analyse the efficacy of rTMS on motor function improvement. The effect size on motor scale scores was 0.51 (P < 0.0001) and were not distinctly heterogeneous (I2 = 29%). Five eligible studies with 202 patients were collected to evaluate antidepressant-like effects. The effect size on depression scale scores was 0.42 (P = 0.004), and were not distinctly heterogeneous (I2 = 25%), indicating a significant anti-depressive effect (P = 0.004). The results suggest that high-frequency of rTMS on primary motor cortex (M1) is effective in improving motor symptoms; while the dorsolateral prefrontal cortex (DLPFC) may be a potentially effective area in alleviating depressive symptom. INTERPRETATION The findings suggest that rTMS could be used as a possible adjuvant therapy for PD mainly to improve motor symptoms, but could have potential efficacy on depressive symptoms of PD. However, further investigation is needed. FUNDING The National Natural Science Foundation of China (NO: 81873777, 82071414), Initiated Foundation of Zhujiang Hospital (NO: 02020318005), Scientific Research Foundation of Guangzhou (NO: 202206010005), and Science and Technology Program of Guangdong of China (NO: 2020A0505100037).
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Amy Sim
- Department of Neurology, Texas Tech University Health Sciences Centre El Paso, El Paso, TX 79905, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
- Corresponding author at: Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, Guangdong Province 510282, PR China.
| |
Collapse
|
10
|
Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11081511. [PMID: 36009230 PMCID: PMC9405356 DOI: 10.3390/antiox11081511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative diseases are characterized by gradually progressive, selective loss of anatomically or physiologically related neuronal systems that produce brain damage from which there is no recovery. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear to be similar, suggesting common neurodegenerative pathways. It is well known that oxidative stress and the production of reactive oxygen radicals plays a key role in neuronal cell damage. It has been proposed that this stress, among other mechanisms, could contribute to neuronal degeneration and might be one of the factors triggering the development of these pathologies. Another common feature in most neurodegenerative diseases is neuron hyperexcitability, an aberrant electrical activity. This review, focusing mainly on primary motor cortex pyramidal neurons, critically evaluates the idea that oxidative stress and inflammation may be involved in neurodegeneration via their capacity to increase membrane excitability.
Collapse
|
11
|
Jahan S, Redhu NS, Siddiqui AJ, Iqbal D, Khan J, Banawas S, Alaidarous M, Alshehri B, Mir SA, Adnan M, Pant AB. Nobiletin as a Neuroprotectant against NMDA Receptors: An In Silico Approach. Pharmaceutics 2022; 14:pharmaceutics14061123. [PMID: 35745697 PMCID: PMC9229780 DOI: 10.3390/pharmaceutics14061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
Excitotoxicity is a type of neurodegenerative disorder. It caused by excessive glutamate receptor activation, which leads to neuronal malfunction and fatality. The N-methyl-D-aspartate (NMDA) receptors are found in glutamatergic neurons, and their excessive activation is primarily responsible for excitotoxicity. They are activated by both glutamate binding and postsynaptic depolarization, facilitating Ca2+ entry upon activation. Therefore, they are now widely acknowledged as being essential targets for excitotoxicity issues. Molecular docking and molecular dynamics (MD) simulation analyses have demonstrated that nobiletin efficiently targets the binding pocket of the NMDA receptor protein and exhibits stable dynamic behavior at the binding site. In this study, five potential neuroprotectants, nobiletin, silibinin, ononin, ginkgolide B, and epigallocatechin gallate (EGCG), were screened against the glutamate NMDA receptors in humans via computational methods. An in silico ADMET study was also performed, to predict the pharmacokinetics and toxicity profile for the expression of good drug-like behavior and a non-toxic nature. It was revealed that nobiletin fulfills the criteria for all of the drug-likeness rules (Veber, Lipinski, Ghose, Muegge, and Egan) and has neither PAINS nor structural alerts (Brenks). In conclusion, nobiletin demonstrated a possible promising neuroprotectant activities compared to other selected phytochemicals. Further, it can be evaluated in the laboratory for promising therapeutic approaches for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
- Correspondence: or ; Tel.: +966-500590133
| | - Neeru Singh Redhu
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 55476, Saudi Arabia; (A.J.S.); (M.A.)
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 55476, Saudi Arabia; (A.J.S.); (M.A.)
| | - Aditya Bhushan Pant
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India;
| |
Collapse
|
12
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Zhou ZD, Saw WT, Ho PGH, Zhang ZW, Zeng L, Chang YY, Sun AXY, Ma DR, Wang HY, Zhou L, Lim KL, Tan EK. The role of tyrosine hydroxylase-dopamine pathway in Parkinson's disease pathogenesis. Cell Mol Life Sci 2022; 79:599. [PMID: 36409355 PMCID: PMC9678997 DOI: 10.1007/s00018-022-04574-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by selective and progressive dopamine (DA) neuron loss in the substantia nigra and other brain regions, with the presence of Lewy body formation. Most PD cases are sporadic, whereas monogenic forms of PD have been linked to multiple genes, including Leucine kinase repeat 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two protein kinase genes involved in multiple signaling pathways. There is increasing evidence to suggest that endogenous DA and DA-dependent neurodegeneration have a pathophysiologic role in sporadic and familial PD. METHODS We generated patient-derived dopaminergic neurons and human midbrain-like organoids (hMLOs), transgenic (TG) mouse and Drosophila models, expressing both mutant and wild-type (WT) LRRK2 and PINK1. Using these models, we examined the effect of LRRK2 and PINK1 on tyrosine hydroxylase (TH)-DA pathway. RESULTS We demonstrated that PD-linked LRRK2 mutations were able to modulate TH-DA pathway, resulting in up-regulation of DA early in the disease which subsequently led to neurodegeneration. The LRRK2-induced DA toxicity and degeneration were abrogated by wild-type (WT) PINK1 (but not PINK1 mutations), and early treatment with a clinical-grade drug, α-methyl-L-tyrosine (α-MT), a TH inhibitor, was able to reverse the pathologies in human neurons and TG Drosophila models. We also identified opposing effects between LRRK2 and PINK1 on TH expression, suggesting that functional balance between these two genes may regulate the TH-DA pathway. CONCLUSIONS Our findings highlight the vital role of the TH-DA pathway in PD pathogenesis. LRRK2 and PINK1 have opposing effects on the TH-DA pathway, and its balance affects DA neuron survival. LRRK2 or PINK1 mutations can disrupt this balance, promoting DA neuron demise. Our findings provide support for potential clinical trials using TH-DA pathway inhibitors in early or prodromic PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Wuan Ting Saw
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Patrick Ghim Hoe Ho
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Zhi Wei Zhang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Li Zeng
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ya Yin Chang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Alfred Xu Yang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Dong Rui Ma
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Hong Yan Wang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Lei Zhou
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore, 169856 Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Developmental of Stem Cell Biology and Regenerative Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Outram Road, Singapore, 169608 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| |
Collapse
|