1
|
Li X, Liu W, Jin T, Zhang T. Diet-derived circulating antioxidants and functional outcome after ischemic stroke: Evidence from genetic studies. J Stroke Cerebrovasc Dis 2024; 33:108039. [PMID: 39332544 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE Diet-derived circulating antioxidants have been associated with functional outcome after ischemic stroke (IS), but the causality remains unclear. The aim of our study is to explore the potential causal effect of diet-derived circulating antioxidants on long-term functional outcome (at 3 months) following IS through the utilization of the Mendelian randomization (MR) approach. MATERIALS AND METHODS For this two-sample MR analysis, genetic variants associated with the diet-derived circulating antioxidants, including selenium, zinc, vitamin A (retinol), vitamin C, and vitamin E (α-tocopherol and γ-tocopherol), were identified in a large-scale Genome-Wide Association Studies (GWAS) database and utilized as instrumental variables (IVs). Summary data for long-term functional outcome after IS were obtained from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network of 6021 patients. Our study used the Inverse-variance weighting method as our primary MR method and also performed a series of sensitivity analyses for pleiotropy and heterogeneity. RESULTS We observed that selenium (odds ratio (OR)=0.81; 95 % confidence interval (CI): 0.68-0.97; p=0.02) was significantly associated with poor functional outcome (modified Rankin Scale score≥3) after IS. Genetic liabilities to other diet-derived circulating antioxidants were not strongly associated with functional outcome after IS (all p>0.05). Sensitivity analyses confirmed the reliability of these results. CONCLUSION This MR study suggested the positive effect of selenium on the long-term functional outcome after IS. Giving a longer period of selenium exposure can be used as a potential treatment to improve recovery after IS.
Collapse
Affiliation(s)
- Xudong Li
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo' ai Hospital, China Rehabilitation Research Center, Beijing, China.
| | - Wei Liu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China.
| | - Tianyu Jin
- Department of Rehabilitation, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Tong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo' ai Hospital, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|
2
|
Wang Y, Pan L, Guan R. Mechanism of Insomnia After Stroke Based on Intestinal Flora. Int J Gen Med 2024; 17:5493-5502. [PMID: 39628982 PMCID: PMC11611988 DOI: 10.2147/ijgm.s488714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/17/2024] [Indexed: 12/06/2024] Open
Abstract
Stroke has emerged as the second leading cause of mortality. Insomnia after stroke is a highly prevalent complication of stroke with a complex mechanism, impacting daily activities and hindering neurological function rehabilitation while also increasing the risk of stroke recurrence. With the development of molecular biology, intestinal flora has garnered considerable interest in the past few years because of its significant implications for human physiology and pathology. Numerous studies have emphasized the crucial function of intestinal flora in the pathological changes associated with insomnia after stroke. It can influence sleep patterns following a stroke by modulating various pathways, including the hypothalamic-pituitary-adrenal (HPA) axis, immune responses, and neural mechanisms. Disruption of intestinal flora can adversely affect post-stroke sleep quality, while sleep after stroke can also lead to intestinal flora imbalance. Based on the intestinal flora, this paper explores the involvement of hypothalamic-pituitary-adrenal axis (HPA axis), immune pathway and neural pathway in insomnia after stroke, aiming to offer insights for the prevention, treatment, and research of post-stroke insomnia.
Collapse
Affiliation(s)
- Yibo Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Limin Pan
- Out-Patient Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Ruiqian Guan
- Massage Department, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
3
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
4
|
Li T, Li H, Zhang S, Wang Y, He J, Kang J. Transcriptome Sequencing-Based Screening of Key Melatonin-Related Genes in Ischemic Stroke. Int J Mol Sci 2024; 25:11620. [PMID: 39519172 PMCID: PMC11547107 DOI: 10.3390/ijms252111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemic stroke (IS) is a complex syndrome of neurological deficits due to stenosis or occlusion of the carotid and vertebral arteries for which there is still no effective treatment. Melatonin, a hormone secreted by the pineal gland, has multiple biological effects, such as antioxidant and anti-inflammatory properties, circadian rhythm regulation, and tissue regeneration, demonstrating potential applications in the treatment of IS. The aim of this study was to investigate key melatonin-regulated genes associated with IS using transcriptome sequencing and bioinformatics analyses and to explore their potential mechanisms of action in the disease process. We obtained gene expression data related to ischemic stroke (IS) from the Gene Expression Omnibus (GEO) database and identified candidate genes using machine learning algorithms. We then assessed the predictive power of these genes using PPI network analysis and diagnostic models. Finally, a series of enrichment analyses identified four key genes: ADM, PTGS2, MMP9, and VCAN. In addition, we determined the mRNA levels of these four key genes in an IS rat model using qPCR and found that all of these genes were significantly upregulated in the IS model compared to the control group, which is consistent with the results of previous analyses. Meanwhile, these genes have biological functions such as regulating vascular tone, participating in the inflammatory response, influencing tissue remodeling, and regulating cell adhesion and proliferation, playing key roles in the pathogenesis of IS. Therefore, we suggest that these four key genes may serve as prospective biomarkers for IS and help predict the risk of developing IS. In conclusion, this study elucidates for the first time the potential role of melatonin in the pathogenesis of IS and lays the foundation for in-depth studies on the functions of these key genes in the pathophysiology of IS and their potential applications in clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingsong Kang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (T.L.); (H.L.); (S.Z.); (Y.W.); (J.H.)
| |
Collapse
|
5
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
6
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
7
|
Abdelaal SM, Abdel Rahman MM, Mahmoud LM, Rashed LA, Abd El-Galil TI, Mahmoud MM. Combined swimming with melatonin protects against behavioural deficit in cerebral ischemia-reperfusion injury induced rats associated with modulation of Mst1- MAPK -ERK signalling pathway. Arch Physiol Biochem 2024:1-16. [PMID: 39152720 DOI: 10.1080/13813455.2024.2392186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The inconvenience of social and behavioural deficits after cerebral ischaemia reperfusion (I/R) injury is still not well documented. AIM We aimed to study the protective effect of preconditioning swimming exercise combined with melatonin against cerebral I/R induced injury. METHODOLOGY Sixty rats were allocated into 6 groups; groups I and II served as control. Groups 3,4,5,6 subjected to bilateral carotid ligation for 30 minutes (min.) followed by reperfusion. Group 3 left untreated while groups 4 and 6; underwent swimming exercise 30 min/day, five days a week for three weeks before the surgery. Groups 5 and 6 treated with melatonin 30 minutes before the operation, then, all rats in groups 4, 5,6 were subjected to I/R. After that, groups 5 and 6 treated with 2nd dose of melatonin 30 minutes after reperfusion. RESULTS Combined strategy exhibited the most neuroprotective effect through prevention of cerebral I/R induced inflammation, oxidative stress and apoptosis with subsequent improvement in socio behaviour deficits and enhanced Glial cell proliferative capacity. CONCLUSION The protective contribution of combined strategy is associated with modulation in Macrophage-stimulating 1/mitogen-activated protein kinase/extracellular signal-regulated kinase (MST1/MAPK/ERK) pathway which may explain, at least in part, its protective potential.
Collapse
Affiliation(s)
| | | | | | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
8
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
9
|
Aghebat-Bekheir S, Abdollahi M. Discovering the most impactful treatments for aluminum phosphide cardiotoxicity gleaned from systematic review of animal studies. Hum Exp Toxicol 2024; 43:9603271241290922. [PMID: 39378909 DOI: 10.1177/09603271241290922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Aluminum phosphide (AlP) is a chemical compound that can cause death in some countries. AlP inhibits the functioning of cytochrome C oxidase in the mitochondria of cardiomyocytes, leading to toxicity. Oxidative stress and ROS production, as well as inflammatory signaling, mediate the mechanisms of AlP-related toxicity in the poisoned patient. Unfortunately, there are no approved medicines available to treat AlP poisoning yet. To address this issue, researchers have explored various interventions to reduce the toxicity associated with AlP tablets. METHODS We systematically searched relevant databases for English articles published between 2013 and 2024. RESULTS The evaluated treatments included correcting oxidative stress parameters, enhancing exogenous antioxidant capacity, modifying electrocardiographic abnormalities, and improving heart contraction strength. Our evaluation indicated that compounds like Triiodothyronine, Vasopressin and milrinone, Iron sucrose, Acetyl-l-carnitine, Melatonin, Fresh red blood cell transfusion, Minocycline, Moringa oleifera extract, Dihydroxyacetone, Selegiline, Nanocurcumin, Levosimendan, Exenatide, Taurine, Cannabidiol and Edaravone are effective in lessening AlP-induced cardiotoxicity. CONCLUSION Based on the present study's findings and the evaluation of clinical studies, dihydroxyacetone, fresh red blood cell infusion, Oil-based disinfection, and gastric lavage have the most potential to save patients' lives and treat acute aluminum phosphide. However, there is a need for more research in this regard.
Collapse
Affiliation(s)
- Saeed Aghebat-Bekheir
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sheng N, He C, Jin X, Meng Q, Gu P, Ding S, Liu H, Xu Y. A comprehensive study of oxidative stress-related effects on the prognosis and drug therapy of cervical cancer. J Gene Med 2024; 26:e3581. [PMID: 37605936 DOI: 10.1002/jgm.3581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is a serious global disease with poor prognoses and a significant recurrence rate in patients with advanced disease. Oxidative stress (OS) greatly influences many types of human cancers, making it crucial to understand the functional mechanisms of OS-related genes in CC. METHODS The transcriptome and clinical data of three normal samples and 306 patients with CC were obtained from The Cancer Genome Atlas dataset. The GSE44001 dataset was acquired from the Gene Expression Omnibus database. OS-related subtypes in the cohort with CC were identified using unsupervised hierarchical clustering, univariate Cox analysis, gene set enrichment analysis (GSEA), and least absolute shrinkage and selection operator regression analysis. Additionally, molecular pathways that differ across subtypes were determined and OS-related genes linked to the prognosis of patients of CC were determined. Finally, a clinical prognostic gene signature was developed and validated. The relative infiltration level of immune cell subpopulations in different risk groups and subtypes was evaluated using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERPORT) algorithm and single-sample GSEA (ssGSEA) techniques. RESULTS The present study established two distinct OS subtypes (OS clusters A and B). Analysis using ssGSEA and CIBERSPORT revealed that OS cluster B exhibited a significant level of immune infiltration. A clinical prognostic gene signature was established using OS-related characteristic genes identified by examining the differentially expressed genes across both subtypes. Furthermore, patients with CC were grouped into high- and low-risk groups, with the low-risk group showing higher survival rates. Additionally, these individuals exhibited significant advantages in terms of survival and immunotherapy. Receiver operating characteristic curve analysis demonstrated the higher predictive value of the clinical prognostic gene signature. The outcomes of the validation group depicted congruence with those recorded in the training group. CONCLUSIONS A new model was constructed based on eight OS-related characteristic genes to aid the prediction of the survival rates of individuals with CC. The present study contributes to the existing literature on the mechanisms of OS genes in CC and offers a fresh perspective for future advancements in immunotherapy for such individuals.
Collapse
Affiliation(s)
- Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyun He
- Department of Gynecology Oncology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xiaoxia Jin
- Department of Pathology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qi Meng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Panyun Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci 2023; 24:ijms24076389. [PMID: 37047362 PMCID: PMC10094154 DOI: 10.3390/ijms24076389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ischemic strokes occur when the blood supply to a part of the brain is interrupted or reduced due to arterial blockage, and it often leads to damage to brain cells or death. According to a myriad of experimental studies, oxidative stress is an important pathophysiological mechanism of ischemic stroke. In this narrative review, we aimed to identify how the alterations of oxidative stress biomarkers could suggest a severity-reflecting diagnosis of ischemic stroke and how these interactions may provide new molecular targets for neuroprotective therapies. We performed an eligibility criteria-based search on three main scientific databases. We found that patients with acute ischemic stroke are characterized by increased oxidative stress markers levels, such as the total antioxidant capacity, F2-isoprostanes, hydroxynonenal, total and perchloric acid oxygen radical absorbance capacity (ORACTOT and ORACPCA), malondialdehyde (MDA), myeloperoxidase, and urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Thus, acute ischemic stroke is causing significant oxidative stress and associated molecular and cellular damage. The assessment of these molecular markers could be useful in diagnosing ischemic stroke, finding its causes, predicting its severity and outcomes, reducing its impact on the cellular structures of the brain, and guiding preventive treatment towards antioxidant-based therapy as novel therapeutic alternatives.
Collapse
|
14
|
Lin X, Wang H, Huang S, Chen L, Yang S, Zhao P, Lin Z, Yang J, Ruan L, Ni H, Wang K, Wen M, Jin K, Zhuge Q. A Reliable Nonhuman Primate Model of Ischemic Stroke with Reproducible Infarct Size and Long-term Sensorimotor Deficits. Aging Dis 2023; 14:245-255. [PMID: 36818571 PMCID: PMC9937702 DOI: 10.14336/ad.2022.0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
A nonhuman primate model of ischemic stroke is considered as an ideal preclinical model to replicate various aspects of human stroke because of their similarity to humans in genetics, neuroanatomy, physiology, and immunology. However, it remains challenging to produce a reliable and reproducible stroke model in nonhuman primates due to high mortality and variable outcomes. Here, we developed a focal cerebral ischemic model induced by topical application of 50% ferric chloride (FeCl3) onto the MCA-M1 segment through a cranial window in the cynomolgus monkeys. We found that FeCl3 rapidly produced a stable intraarterial thrombus that caused complete occlusion of the MCA, leading to the quick decrease of the regional cerebral blood flow in 10 min. A typical cortical infarct was detected 24 hours by magnetic resonance imaging (MRI) and was stable at least for 1 month after surgery. The sensorimotor deficit assessed by nonhuman primate stroke scale was observed at 1 day and up to 3 months after ischemic stroke. No spontaneous revascularization or autolysis of thrombus was observed, and vital signs were not affected. All operated cynomolgus monkeys survived. Our data suggested that FeCl3-induced stroke in nonhuman primates was a replicable and reliable model that is necessary for the correct prediction of the relevance of experimental therapeutic approaches in human beings.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Hua Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Shengwei Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Lefu Chen
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Peiqi Zhao
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Zhongxiao Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Jianjing Yang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Linhui Ruan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Haoqi Ni
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Kankai Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.
| | - Min Wen
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Qichuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou Medical University, Wenzhou, China.,Correspondence should be addressed to: Dr. Qichuan Zhuge, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .
| |
Collapse
|
15
|
Increased Oxidative Stress Markers in Acute Ischemic Stroke Patients Treated with Thrombolytics. Int J Mol Sci 2022; 23:ijms232415625. [PMID: 36555265 PMCID: PMC9779811 DOI: 10.3390/ijms232415625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common neurological disorders involving oxidative stress is stroke. During a stroke, the balance of redox potential in the cell is disturbed, and, consequently, protein oxidation or other intracellular damage occurs, ultimately leading to apoptosis. The pineal gland hormone, melatonin, is one of the non-enzymatic antioxidants. It not only modulates the perianal rhythm but also has anti-inflammatory properties and protects against stress-induced changes. The focus of this research was to evaluate the concentration of the carbonyl groups and melatonin metabolite in time in patients with acute ischemic stroke that were treated with intravenous thrombolysis. This included a comparison of the functional status of patients assessed according to neurological scales with the control sample comprising healthy people. The studies showed that the serum concentrations of carbonyl groups, which were elevated in patients with ischemic stroke (AIS) in comparison to the control samples, had an impact on the patients' outcome. A urine concentration of the melatonin metabolite, which was lower in patients than controls, was related to functional status after 24 h from cerebral thrombolysis. It shows that determination of carbonyl groups at different time intervals may be an important potential marker of protein damage in patients with AIS treated with cerebral thrombolysis, and that impaired melatonin metabolism induces a low antioxidant protection. Thus, due to the neuroprotective effects of melatonin, attention should also be paid to the design and conduct of clinical trials and hormone supplementation in AIS patients to understand the interactions between exogenous melatonin and its endogenous rhythm, as well as how these relationships may affect patient outcomes.
Collapse
|