1
|
Salem PP, Chami P, Daou R, Hajj J, Lin H, Chhabra AM, Simone CB, Lee NY, Hajj C. Proton Radiation Therapy: A Systematic Review of Treatment-Related Side Effects and Toxicities. Int J Mol Sci 2024; 25:10969. [PMID: 39456752 PMCID: PMC11506991 DOI: 10.3390/ijms252010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is the second leading cause of death worldwide. Around half of all cancer patients undergo some type of radiation therapy throughout the course of their treatment. Photon radiation remains (RT) the most widely utilized modality of radiotherapy despite recent advancements in proton radiation therapy (PBT). PBT makes use of the particle's biological property known as the Bragg peak to better spare healthy tissue from radiation damage, with data to support that this treatment modality is less toxic than photon RT. Hence, proton radiation dosimetry looks better compared to photon dosimetry; however, due to proton-specific uncertainties, unexpected acute, subacute, and long-term toxicities can be encountered. Reported neurotoxicity resulting from proton radiation treatments include radiation necrosis, moyamoya syndrome, neurosensory toxicities, brain edema, neuromuscular toxicities, and neurocognitive toxicities. Pulmonary toxicities include pneumonitis and fibrosis, pleural effusions, and bronchial toxicities. Pericarditis, pericardial effusions, and atrial fibrillations are among the cardiac toxicities related to proton therapy. Gastrointestinal and hematological toxicities are also found in the literature. Genitourinary toxicities include urinary and reproductive-related toxicities. Osteological, oral, endocrine, and skin toxicities have also been reported. The side effects will be comparable to the ones following photon RT, nonetheless at an expected lower incidence. The toxicities collected mainly from case reports and clinical trials are described based on the organs affected and functions altered.
Collapse
Affiliation(s)
- Peter P. Salem
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Remy Daou
- Family Medicine Department, Hotel Dieu de France Hospital, Beirut 1660, Lebanon;
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon;
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Arpit M. Chhabra
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Nancy Y. Lee
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Carla Hajj
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
2
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
3
|
Hotca A, Sindhu KK, Lehrer EJ, Hartsell WF, Vargas C, Tsai HK, Chang JH, Apisarnthanarax S, Nichols RC, Chhabra AM, Hasan S, Press RH, Lazarev S, Hajj C, Kabarriti R, Rule WG, Simone CB, Choi JI. Reirradiation With Proton Therapy for Recurrent Malignancies of the Esophagus and Gastroesophageal Junction: Results of the Proton Collaborative Group Multi-Institutional Prospective Registry Trial. Adv Radiat Oncol 2024; 9:101459. [PMID: 38596455 PMCID: PMC11002543 DOI: 10.1016/j.adro.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/21/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose Treatment options for recurrent esophageal cancer (EC) previously treated with radiation therapy (RT) are limited. Reirradiation (reRT) with proton beam therapy (PBT) can offer lower toxicities by limiting doses to surrounding tissues. In this study, we present the first multi-institutional series reporting on toxicities and outcomes after reRT for locoregionally recurrent EC with PBT. Methods and Materials Analysis of the prospective, multicenter, Proton Collaborative Group registry of patients with recurrent EC who had previously received photon-based RT and underwent PBT reRT was performed. Patient/tumor characteristics, treatment details, outcomes, and toxicities were collected. Local control (LC), distant metastasis-free survival (DMFS), and overall survival (OS) were estimated using the Kaplan-Meier method. Event time was determined from reRT start. Results Between 2012 and 2020, 31 patients received reRT via uniform scanning/passive scattering (61.3%) or pencil beam scanning (38.7%) PBT at 7 institutions. Median prior RT, PBT reRT, and cumulative doses were 50.4 Gy (range, 37.5-110.4), 48.6 Gy (relative biological effectiveness) (25.2-72.1), and 99.9 Gy (79.1-182.5), respectively. Of these patients, 12.9% had 2 prior RT courses, and 67.7% received PBT with concurrent chemotherapy. Median follow-up was 7.2 months (0.9-64.7). Post-PBT, there were 16.7% locoregional only, 11.1% distant only, and 16.7% locoregional and distant recurrences. Six-month LC, DMFS, and OS were 80.5%, 83.4%, and 69.1%, respectively. One-year LC, DMFS, and OS were 67.1%, 83.4%, and 27%, respectively. Acute grade ≥3 toxicities occurred in 23% of patients, with 1 acute grade 5 toxicity secondary to esophageal hemorrhage, unclear if related to reRT or disease progression. No grade ≥3 late toxicities were reported. Conclusions In the largest report to date of PBT for reRT in patients with recurrent EC, we observed acceptable acute toxicities and encouraging rates of disease control. However, these findings are limited by the poor prognoses of these patients, who are at high risk of mortality. Further research is needed to better assess the long-term benefits and toxicities of PBT in this specific patient population.
Collapse
Affiliation(s)
| | - Kunal K. Sindhu
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Eric J. Lehrer
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Smith Apisarnthanarax
- University of Washington, Fred Hutchinson Cancer Center Proton Therapy, Seattle, Washington
| | - Romaine C. Nichols
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Arpit M. Chhabra
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Shaakir Hasan
- New York Proton Center, New York, New York
- Montefiore Medical Center, Bronx, New York
| | | | - Stanislav Lazarev
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Carla Hajj
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rafi Kabarriti
- New York Proton Center, New York, New York
- Montefiore Medical Center, Bronx, New York
| | | | - Charles B. Simone
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - J. Isabelle Choi
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Barcellini A, Ditto A, Mirandola A, Roccio M, Imparato S, Raspagliesi F, Orlandi E. Is a tailored strategy using proton beam radiotherapy for reirradiation advantageous for elderly women? A case report. TUMORI JOURNAL 2021; 107:NP67-NP72. [PMID: 33896256 DOI: 10.1177/03008916211007930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The management of primary or recurrent vaginal tumours in an aging population is challenging for gynecologic and radiation oncologists. In patients unsuited for surgery and already irradiated on the pelvis, proton beam radiotherapy may be worthwhile due to its ballistic advantages. CASE REPORT We report the case of an 80-year-old woman with a squamous cell carcinoma of the vagina after a history of pelvic radiation and vaginal brachytherapy delivered for a previous endometrial adenocarcinoma. She received proton beam radiotherapy with a complete response after 12 months and mild toxicity. CONCLUSIONS The complexity of reirradiation management in the frail and elderly population requires attention. Efforts should be focused on maintaining autonomy and quality of life in order to improve adherence and clinical compliance to the treatment. In the era of the tailored approach, hadrontherapy can play an important role to minimize toxicity, obtain good local control, and reduce the overall treatment time.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Antonino Ditto
- Gynecologic Oncology Unit, IRCCS National Cancer Institute Foundation, Milan, Italy
| | - Alfredo Mirandola
- Medical Physics, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Sara Imparato
- Diagnostic Imaging Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | | | - Ester Orlandi
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
5
|
Reirradiation for Locoregional Recurrent Breast Cancer. Adv Radiat Oncol 2020; 6:100640. [PMID: 33506143 PMCID: PMC7814100 DOI: 10.1016/j.adro.2020.100640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Reirradiation poses a distinct therapeutic challenge owing to risks associated with exceeding normal tissue tolerances and possibly more therapeutically resistant disease biology. We report our experience with reirradiation for locoregional recurrent or second primary breast cancer. Methods and Materials Between 1999 and 2019, all patients with breast cancer treated with repeat breast/chest wall radiation therapy (RT) at our institution were identified. Adverse events were assessed using the Common Terminology Criteria for Adverse Events v5.0. Fisher exact, Mann-Whitney rank-sum, and unpaired t tests were used for statistical analysis. Freedom from locoregional recurrence and distant metastasis as well as overall survival were calculated using the Kaplan-Meier method. Results Seventy-two patients underwent reirradiation. Median prior RT dose, reirradiation dose, and cumulative dose were 60 Gy (interquartile range [IQR], 50-60.4 Gy), 45 Gy (IQR, 40-50 Gy), and 103.54 Gy2 (IQR, 95.04-109.62 Gy2), respectively. Median time between RT courses was 73 months (IQR, 29-129 months). Thirty-four patients (47%) had gross residual disease at time of reirradiation. Course intent was described as curative in 44 patients (61%) and palliative in 28 (39%). Fifty-two patients (72%) were treated with photons ± electrons and 20 (28%) with protons. With a median follow-up of 22 months (IQR, 10-43 months), grade 3 adverse events were experienced by 13% of patients (10% acute skin toxicity and 3% late skin necrosis). Time between RT courses and reirradiation fields was significantly associated with the development of grade 3 toxicity at any point. Proton therapy conferred a dosimetric advantage without difference in toxicity. At 2 years, locoregional recurrence-free survival was 74.6% and overall survival was 65.5% among all patients, and 93.1% and 76.8%, respectively, among curative intent patients treated without gross disease. Distant metastasis-free survival was 59.0% among all curative intent patients. Conclusions Reirradiation for locoregional recurrent breast cancer is feasible with acceptable rates of toxicity. Disease control and survival are promising among curative intent reirradiation patients without gross disease.
Collapse
|
6
|
Chhabra AM, Choi JI, Hasan S, Press RH, Simone CB. Prioritization of Proton Patients in the COVID-19 Pandemic: Recommendations from The New York Proton Center. Int J Part Ther 2020; 6:38-44. [PMID: 32582818 PMCID: PMC7302729 DOI: 10.14338/ijpt-20-00022.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
It has been well documented from the early days of the 2019 novel coronavirus (COVID-19) pandemic that patients with a diagnosis of cancer are not only at higher risks of contracting a COVID-19 infection but also at higher risks of suffering severe, and possibly fatal, outcomes from the infection. Given that the United States has the greatest number of positive coronavirus cases, it is likely that many, if not all, radiation oncology clinics will be faced with the challenge of safely balancing a patient's risk of contracting COVID-19, while under active radiation treatment, against their risk of cancer progression if treatment is delayed. To address this challenge, the New York Proton Center established an internal algorithm that considers treatment-related, tumor-related, and patient-related characteristics. Despite having suffered staff shortages due to illness, this algorithm has allowed the center to maintain patient treatment volumes while keeping the rate of COVID-19 infection low.
Collapse
|
7
|
Barsky AR, Reddy VK, Plastaras JP, Ben-Josef E, Metz JM, Wojcieszynski AP. Proton beam re-irradiation for gastrointestinal malignancies: a systematic review. J Gastrointest Oncol 2020; 11:187-202. [PMID: 32175122 DOI: 10.21037/jgo.2019.09.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Radiotherapy (RT) is part of the standard of care management of most gastrointestinal (GI) cancers. Even with advanced RT, systemic therapy, and surgical techniques, locoregional recurrences or second primary cancers can still occur within previously irradiated fields, which can present challenges in delivering effective and safe treatment. Options for reirradiation are often limited, but given the favorable dosimetric aspects of proton-beam RT, it may provide an effective and safe re-irradiation option for patients with recurrent or second primary GI cancers. Methods We conducted a systematic review as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement protocol, assessing for reports of proton-beam reirradiation for recurrent or second primary GI cancers, primarily via PubMed. From the initial 373 articles identified, 7 articles were ultimately included in the analysis. Results The 7 included studies reported on proton-beam re-irradiation for the following disease sites: esophageal (n=2), pancreas (n=1), liver (n=2), rectal (n=1), and anal (n=1). Study sizes varied from as few as 1 to as many as 83 patients. Across studies, in patients who presented with tumor-related symptoms, palliation (stability/improvement) was achieved in 80-100% of the cases. Local control rates, with variable follow-up, ranged from 36-100%. All median overall survival values, when reported, were greater than 1 year. Across both liver studies, there were no cases of radiation-induced liver disease (RILD) from proton-beam re-irradiation. Across all studies, there were 2 acute (esophagopleural fistula in esophageal cancer, small bowel perforation in pancreatic cancer) and 1 late (esophageal ulcer in esophageal cancer) grade 5 toxicities, all favored to be due to progressive disease, rather than proton-beam re-irradiation. Two studies (1 esophageal, 1 rectal) generated comparison photon plans. One found that proton therapy reduced mean heart and lung doses, spinal cord dose, and lung V5Gy as compared to photon treatment, while resulting in higher lung V20Gy and V30Gy. The other found that protons decreased bowel V10Gy, V20Gy, and the dose to 200 and 150 cc of bowel, as compared to photons. Conclusions Based upon the published experiences, proton-beam re-irradiation for recurrent or second primary GI cancers appears effective for palliation, with good disease-control, limited toxicity, favorable dosimetry, and overall compares well with published non-proton-beam experiences. Given short follow-up, additional studies are warranted to determine if dosimetric advantages from proton therapy will translate into comparative toxicity benefits.
Collapse
Affiliation(s)
- Andrew R Barsky
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Vishruth K Reddy
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - John P Plastaras
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Andrzej P Wojcieszynski
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kobayashi D, Isobe T, Takada K, Mori Y, Takei H, Kumada H, Kamizawa S, Tomita T, Sato E, Yokota H, Sakae T. Establishment of a New Three-Dimensional Dose Evaluation Method Considering Variable Relative Biological Effectiveness and Dose Fractionation in Proton Therapy Combined with High-Dose-Rate Brachytherapy. J Med Phys 2020; 44:270-275. [PMID: 31908386 PMCID: PMC6936203 DOI: 10.4103/jmp.jmp_117_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 09/18/2019] [Accepted: 11/01/2019] [Indexed: 11/07/2022] Open
Abstract
Purpose: The purpose of this study is to evaluate the influence of variable relative biological effectiveness (RBE) of proton beam and dose fractionation has on dose distribution and to establish a new three-dimensional dose evaluation method for proton therapy combined with high-dose-rate (HDR) brachytherapy. Materials and Methods: To evaluate the influence of variable RBE and dose fractionation on dose distribution in proton beam therapy, the depth-dose distribution of proton therapy was compared with clinical dose, RBE-weighted dose, and equivalent dose in 2 Gy fractions using a linear-quadratic-linear model (EQD2LQL). The clinical dose was calculated by multiplying the physical dose by RBE of 1.1. The RBE-weighted dose is a biological dose that takes into account RBE variation calculated by microdosimetric kinetic model implemented in Monte Carlo code. The EQD2LQL is a biological dose that makes the RBE-weighted dose equivalent to 2 Gy using a linear-quadratic-linear (LQL) model. Finally, we evaluated the three-dimensional dose by taking into account RBE variation and LQL model for proton therapy combined with HDR brachytherapy. Results: The RBE-weighted dose increased at the distal of the spread-out Bragg peak (SOBP). With the difference in the dose fractionation taken into account, the EQD2LQL at the distal of the SOBP increased more than the RBE-weighted dose. In proton therapy combined with HDR brachytherapy, a divergence of 103% or more was observed between the conventional dose estimation method and the dose estimation method we propose. Conclusions: Our dose evaluation method can evaluate the EQD2LQL considering RBE changes in the dose distribution.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tomonori Isobe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kenta Takada
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Yutaro Mori
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hideyuki Takei
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroaki Kumada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Satoshi Kamizawa
- Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tetsuya Tomita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Eisuke Sato
- Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Hiroshi Yokota
- Department of Radiology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Takeji Sakae
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
9
|
Thorpe CS, Niska JR, Girardo ME, Kosiorek HE, McGee LA, Hartsell WF, Larson GL, Tsai HK, Rossi CJ, Rosen LR, Vargas CE. Proton beam therapy reirradiation for breast cancer: Multi-institutional prospective PCG registry analysis. Breast J 2019; 25:1160-1170. [PMID: 31338974 DOI: 10.1111/tbj.13423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Abstract
To investigate adverse events (AEs, CTCAE v4.0) and clinical outcomes for proton beam therapy (PBT) reirradiation (reRT) for breast cancer. From 2011 to 2016, 50 patients received PBT reRT for breast cancer in the prospective Proton Collaborative Group (PCG) registry. Acute AEs occurred within 180 days from start of reRT. Late AEs began or persisted beyond 180 days. Fisher's exact and Mann-Whitney rank-sum tests were utilized. Kaplan-Meier methods were used to estimate overall survival (OS) and local recurrence-free survival (LFRS). Median follow-up was 12.7 months (0-41.8). Median prior RT dose was 60 Gy (10-96.7). Median reRT dose was 55.1 Gy (45.1-76.3). Median cumulative dose was 110.6 Gy (70.6-156.8). Median interval between RT courses was 103.8 months (5.5-430.8). ReRT included regional nodes in 84% (66% internal mammary node [IMN]). Surgery included the following: 44% mastectomy, 22% wide local excision, 6% lumpectomy, 2% reduction mammoplasty, and 26% no surgery. Grade 3 AEs were experienced by 16% of patients (10% acute, 8% late) and were associated with body mass index (BMI) > 30 kg/m2 (P = 0.04), bilateral recurrence (P = 0.02), and bilateral reRT (P = 0.004). All grade 3 AEs occurred in patients receiving IMN reRT (P = 0.08). At 1 year, LRFS was 93%, and OS was 97%. Patients with gross disease at time of PBT trended toward worse 1-year LRFS (100% without vs. 84% with, P = 0.06). PBT reRT is well tolerated with favorable local control. BMI > 30, bilateral disease, and IMN reRT were associated with grade 3 AEs. Toxicity was acceptable despite median cumulative dose > 110 Gy.
Collapse
Affiliation(s)
| | - Joshua R Niska
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Marlene E Girardo
- Division of Biostatistics, Health Sciences Research, Mayo Clinic, Scottsdale, Arizona
| | - Heidi E Kosiorek
- Division of Biostatistics, Health Sciences Research, Mayo Clinic, Scottsdale, Arizona
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Gary L Larson
- ProCure Proton Therapy Center, Oklahoma City, Oklahoma
| | - Henry K Tsai
- ProCure Proton Therapy Center, Somerset, New Jersey
| | - Carl J Rossi
- Scripps Proton Therapy Center, San Diego, California
| | - Lane R Rosen
- Willis-Knighton Proton Therapy Center, Shreveport, Louisiana
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|