1
|
Zaidalkilani AT, Al‐kuraishy HM, Fahad EH, Al‐Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, AL‐Farga A, Batiha GE. Autophagy modulators in type 2 diabetes: A new perspective. J Diabetes 2024; 16:e70010. [PMID: 39676616 PMCID: PMC11647182 DOI: 10.1111/1753-0407.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder caused by defective insulin signaling, insulin resistance, and impairment of insulin secretion. Autophagy is a conserved lysosomal-dependent catabolic cellular pathway involved in the pathogenesis of T2D and its complications. Basal autophagy regulates pancreatic β-cell function by enhancing insulin release and peripheral insulin sensitivity. Therefore, defective autophagy is associated with impairment of pancreatic β-cell function and the development of insulin rersistance (IR). However, over-activated autophagy increases apoptosis of pancreatic β-cells leading to pancreatic β-cell dysfunction. Hence, autophagy plays a double-edged sword role in T2D. Therefore, the use of autophagy modulators including inhibitors and activators may affect the pathogenesis of T2D. Hence, this review aims to clarify the potential role of autophagy inhibitors and activators in T2D.
Collapse
Affiliation(s)
- Ayah Talal Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical SciencesUniversity of PetraAmmanJordan
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Esraa H. Fahad
- Department of Pharmacology and ToxicologyCollege of Pharmacy, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Ammar AL‐Farga
- Department of BiochemistryCollege of Science University of JeddahJeddahSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurAlBeheiraEgypt
| |
Collapse
|
2
|
Marzoog BA. Endothelial Cell Aging and Autophagy Dysregulation. Cardiovasc Hematol Agents Med Chem 2024; 22:413-420. [PMID: 38265402 DOI: 10.2174/0118715257275690231129101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
Entropy is a natural process that affects all living cells, including senescence, an irreversible physiological process that impairs cell homeostasis. Age is a significant factor in disease development, and the pathogenesis of endothelial cell aging is multifactorial. Autophagy dysfunction accelerates endothelial cell aging and cell death, while autophagy preserves endothelial cell youthfulness through intracellular homeostasis and gene expression regulation. Sirt, mTORC1, and AMPK are youthfulness genes that induce autophagy by inhibiting mTOR and upregulating FIP200/Atg13/ULK1. Aged endothelial cells have decreased levels of Lamin B1, γH2AX, Ki67, BrdU, PCNA, and SA β-Gal. Maintaining healthy young endothelial cells can prevent most cardiovascular diseases. Autophagy targeting is a potential future therapeutic strategy to modify endothelial cell age and potentially slow or reverse the aging process. This article provides state-of-the-art research on the role of autophagy in endothelial cell aging. Hypothesizing that autophagy dysregulation is associated with early endothelial cell dysfunction and further clinical sequelae, including atherosclerosis formation, leading to various cardiovascular diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Postal Address, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| |
Collapse
|
3
|
Marzoog BA. Autophagy as an Anti-senescent in Aging Neurocytes. Curr Mol Med 2024; 24:182-190. [PMID: 36683318 DOI: 10.2174/1566524023666230120102718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023]
Abstract
Neuron homeostasis is crucial for the organism, and its maintenance is multifactorial, including autophagy. The turnover of aberrant intracellular components is a fundamental pathogenetic mechanism for cell aging. Autophagy is involved in the acceleration of the neurocyte aging process and the modification of cell longevity. Neurocyte aging is a process of loss of cell identity through cellular and subcellular changes that include molecular loss of epigenetics, transcriptomic, proteomic, and autophagy dysfunction. Autophagy dysfunction is the hallmark of neurocyte aging. Cell aging is the credential feature of neurodegenerative diseases. Pathophysiologically, aged neurocytes are characterized by dysregulated autophagy and subsequently neurocyte metabolic stress, resulting in accelerated neurocyte aging. In particular, chaperone- mediated autophagy perturbation results in upregulated expression of aging and apoptosis genes. Aged neurocytes are also characterized by the down-regulation of autophagy-related genes, such as ATG5-ATG12, LC3-II / LC3-I ratio, Beclin-1, and p62. Slowing aging through autophagy targeting is sufficient to improve prognosis in neurodegenerative diseases. Three primary anti-senescent molecules are involved in the aging process: mTOR, AMPK, and Sirtuins. Autophagy therapeutic effects can be applied to reverse and slow aging. This article discusses current advances in the role of autophagy in neurocyte homeostasis, aging, and potential therapeutic strategies to reduce aging and increase cell longevity.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, 430005, Rep. Mordovia, Russia
| |
Collapse
|
4
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
5
|
Marzoog BA. Autophagy Behavior in Endothelial Cell Regeneration. Curr Aging Sci 2024; 17:58-67. [PMID: 37861048 DOI: 10.2174/0118746098260689231002044435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
6
|
Marzoog BA. Nicotinamide Mononucleotide in the Context of Myocardiocyte Longevity. Curr Aging Sci 2024; 17:103-108. [PMID: 38151845 DOI: 10.2174/0118746098266041231212105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023]
Abstract
Cellular and subcellular metabolic activities are crucial processes involved in the regulation of intracellular homeostasis, including cellular and subcellular signaling pathways. Dysregulation of intracellular regulation mechanisms is catastrophic and cumulates into cell death. To overcome the issue of dysregulation of intracellular regulation mechanisms, the preservation of subcellular and extracellular components is essential to maintain healthy cells with increased longevity. Several physiopathological changes occur during cell ageing, one of which is the dysregulation of intracellular physiology of the oxidative phosphorylation process. Nicotinamide mononucleotide (NMN) remains in the debut of anti-aging therapeutic effect. Aged myocardiocyte characterized by disrupted NMN and or its precursors or signaling pathways. Simultaneously, several other pathophysiological occur that collectively impair intracellular homeostasis. The NMN role in the antiaging effect remains unclear and several hypotheses have been introduced into describing the mechanism and the potential outcomes from NMN exogenous supply. Correction of the impaired intracellular homeostasis includes correction to the NMN metabolism. Additionally, autophagy correction, which is the key element in the regulation of intracellular intoxication, including oxidative stress, unfolding protein response, and other degradation of intracellular metabolites. Several signaling pathways are involved in the regulation mechanism of NMN effects on myocardiocyte health and further longevity. NMN protects myocardiocytes from ischemic injury by reducing anabolism and, increasing catabolism and further passing the myocardiocytes into dormant status. NMN applications include ischemic heart, disease, and failed heart, as well as dilated cardiomyopathies. Cytosolic and mitochondrial NADPH are independently functioning and regulating. Each of these plays a role in the determination of the longevity of the myocardiocytes. NMN has a cornerstone in the functionality of Sirtuins, which are an essential anti-senescent intrinsic molecule. The study aims to assess the role of NMN in the longevity and antisenescent of myocardiocytes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
7
|
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56:16-24. [PMID: 36267005 PMCID: PMC9989784 DOI: 10.5115/acb.22.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.
Collapse
|
8
|
Marzoog BA, Vlasova TI. Autophagy in Cancer Cell Transformation; A Potential Novel Therapeutic Strategy. Curr Cancer Drug Targets 2022; 22:749-756. [PMID: 36062863 DOI: 10.2174/1568009622666220428102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023]
Abstract
Abstract:
Basal autophagy plays a crucial role in maintaining intracellular homeostasis and prevents the cell from escaping the cell cycle regulation mechanisms and being cancerous. Mitophagy and nucleophagy are essential for cell health. Autophagy plays a pivotal role in cancer cell transformation, where upregulated precancerous autophagy induces apoptosis. Impaired autophagy has been shown to upregulate cancer cell transformation. However, tumor cells upregulate autophagy to escape elimination and survive the unfavorable conditions and resistance to chemotherapy. Cancer cells promote autophagy through modulation of autophagy regulation mechanisms and increase expression of the autophagy-related genes. Whereas, autophagy regulation mechanisms involved microRNAs, transcription factors, and the internalized signaling pathways such as AMPK, mTOR, III PI3K and ULK-1. Disrupted regulatory mechanisms are various as the cancer cell polymorphism. Targeting a higher level of autophagy regulation is more effective, such as gene expression, transcription factors, or epigenetic modification that are responsible for up-regulation of autophagy in cancer cells. Currently, the CRISPR-CAS9 technique is available and can be applied to demonstrate the potential effects of autophagy in cancerous cells.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University. Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31
| | - Tatyana Ivanovna Vlasova
- National Research Mordovia State University. Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31
| |
Collapse
|