1
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Hedberg J, Studebaker A, Smith L, Chen CY, Westfall JJ, Cam M, Gross A, Hernandez-Aguirre I, Martin A, Kim D, Dhital R, Kim Y, Roberts RD, Cripe TP, Mardis ER, Cassady KA, Leonard J, Miller KE. Oncolytic virus-driven immune remodeling revealed in mouse medulloblastomas at single cell resolution. Mol Ther Oncolytics 2023; 30:39-55. [PMID: 37583388 PMCID: PMC10424001 DOI: 10.1016/j.omto.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.
Collapse
Affiliation(s)
- Jack Hedberg
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Adam Studebaker
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Luke Smith
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Chun-Yu Chen
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Jesse J. Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Maren Cam
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Amy Gross
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ilse Hernandez-Aguirre
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Alexia Martin
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Doyeon Kim
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ravi Dhital
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Yeaseul Kim
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ryan D. Roberts
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Timothy P. Cripe
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kevin A. Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jeffrey Leonard
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Zhang HB, Hu Y, Deng JL, Fang GY, Zeng Y. Insights into the involvement of long non-coding RNAs in doxorubicin resistance of cancer. Front Pharmacol 2023; 14:1243934. [PMID: 37781691 PMCID: PMC10540237 DOI: 10.3389/fphar.2023.1243934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Doxorubicin is one of the most classical chemotherapeutic drugs for the treatment of cancer. However, resistance to the cytotoxic effects of doxorubicin in tumor cells remains a major obstacle. Aberrant expression of long non-coding RNAs (lncRNAs) has been associated with tumorigenesis and development via regulation of chromatin remodeling, transcription, and post-transcriptional processing. Emerging studies have also revealed that dysregulation of lncRNAs mediates the development of drug resistance through multiple molecules and pathways. In this review, we focus on the role and mechanism of lncRNAs in the progress of doxorubicin resistance in various cancers, which mainly include cellular drug transport, cell cycle disorder, anti-apoptosis, epithelial-mesenchymal transition, cancer stem cells, autophagy, tumor microenvironment, metabolic reprogramming and signaling pathways. This review is aimed to provide potential therapeutic targets for future cancer therapy, especially for the reversal of chemoresistance.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yang Hu
- Guangzhou Institute of Respiratory Disease and China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
4
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Xie Y, Liu Y, Ding J, Li G, Ni B, Pang H, Hu X, Wu L. Identification of DDX31 as a Potential Oncogene of Invasive Metastasis and Proliferation in PDAC. Front Cell Dev Biol 2022; 10:762372. [PMID: 35237592 PMCID: PMC8883474 DOI: 10.3389/fcell.2022.762372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors worldwide and has poor prognosis. DEAD box proteins31 (DDX31) participate in cellular processes involving RNA secondary structure changes. However, the functions of DDX31 in PDAC remain to be elucidated. Methods: The key gene DDX31 was identified using a combination of a risk model and weighted gene co-expression network analysis (WGCNA) with R software. The biological functions of DDX31 in PDAC were investigated through bioinformatics analysis and in vitro experiments. Results: Combining with WGCNA and risk model, DDX31 was identified as a potential factor of the invasive metastasis properties of PDAC, and its expression was closely related to the malignant differentiation of PDAC. The results of gene set enrichment analysis (GSEA) showed that DDX31 was correlated with cell invasive metastasis and proliferation by activating MAPK signaling pathway. The inhibition of DDX31 inhibited the invasion and migration of PDAC cells. Survival analysis showed that DDX31 expression was negatively associated with the poor prognosis in patients with PDAC. Interpretation:DDX31 may be a potential factor for PDAC. The inhibition of DDX31 may be a potential way to treat PDAC.
Collapse
Affiliation(s)
- Yongjie Xie
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Jinsheng Ding
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Huifang Pang
- Department of Gastroenterology, Digestive Endoscopy Unit, Tongliao City Hospital, Tongliao, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, China
| | - Liangliang Wu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention, Department of Gastric Cancer, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
6
|
Liu F, Yang H, Zhang X, Sun X, Zhou J, Li Y, Liu Y, Zhuang Z, Wang G. Inhibition of Musashi-1 enhances chemotherapeutic sensitivity in gastric cancer patient-derived xenografts. Exp Biol Med (Maywood) 2022; 247:868-879. [PMID: 35135374 DOI: 10.1177/15353702221076793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Musashi-1 (MSI1), a neural RNA-binding protein, is considered a gastric and intestinal stem cell marker. Although the function of MSI1 in gastric cancer has attracted increasing interest, it is not known whether MSI1 can be used as a biomarker to monitor gastric cancer development and response to treatment. Here, the role of MSI1 in the chemotherapeutic sensitivity of gastric cancer was investigated. Patients with high MSI1 levels had poor outcomes, implicating the gene in the development and progression of the disease. We overexpressed and silenced MSI1 in the human gastric cancer cell lines MKN45 and HGC27, finding that knockdown reduced proliferation, invasion, and migration, while promoting apoptosis. A patient-derived xenograft gastric cancer model was constructed in which mice received chemical drugs, si-MSI1, or a drug-si-MSI1 combination. It was found that blocking MSI1 expression reduced gastric cancer drug tolerance. The combination treatment with si-MSI1 was superior to 5F-dUMP and cisplatin, either separately or in combination, indicating that including si-MSI1 was better than drug therapy alone. Transcriptome sequencing analysis showed that MSI1 altered cell cycle regulation and growth signal transduction, including that of blood vessel epicardial substance (BVES). These results suggest that MSI1 reduces the tolerance of gastric cancer to chemical drugs through modulation of MSI1/BVES signaling.
Collapse
Affiliation(s)
- Fan Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huan Yang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xinyu Zhang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xianglin Sun
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Jiamin Zhou
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yuan Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guohua Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Zhang Q, Zhang Y, Guo Y, Tang H, Li M, Liu L. A novel machine learning derived RNA-binding protein gene-based score system predicts prognosis of hepatocellular carcinoma patients. PeerJ 2022; 9:e12572. [PMID: 35036125 PMCID: PMC8697767 DOI: 10.7717/peerj.12572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background Although the expression of RNA-binding protein (RBP) genes in hepatocellular carcinoma (HCC) varies and is associated with tumor progression, there has been no overview study with multiple cohorts and large samples. The HCC-associated RBP genes need to be more accurately identified, and their clinical application value needs to be further explored. Methods First, we used the robust rank aggregation (RRA) algorithm to extract HCC-associated RBP genes from nine HCC microarray datasets and verified them in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort and International Cancer Genome Consortium (ICGC) Japanese liver cancer (ICGC-LIRI-JP) cohort. In addition, the copy number variation (CNV), single-nucleotide variant (SNV), and promoter-region methylation data of HCC-associated RBP genes were analyzed. Using the random forest algorithm, we constructed an RBP gene–based prognostic score system (RBP-score). We then evaluated the ability of RBP-score to predict the prognosis of patients. The relationships between RBP-score and other clinical characteristics of patients were analyzed. Results The RRA algorithm identified 30 RBP mRNAs with consistent expression patterns across the nine HCC microarray datasets. These 30 RBP genes were defined as HCC-associated RBP genes. Their mRNA expression patterns were further verified in the TCGA-LIHC and ICGC-LIRI-JP cohorts. Among these 30 RBP genes, some showed significant copy number gain or loss, while others showed differences in the methylation levels of their promoter regions. Some RBP genes were risk factors or protective factors for the prognosis of patients. We extracted 10 key HCC-associated RBP genes using the random forest algorithm and constructed an RBP-score system. RBP-score effectively predicted the overall survival (OS) and disease-free survival (DFS) of HCC patients and was associated with the tumor, node, metastasis (TNM) stage, α-fetoprotein (AFP), and metastasis risk. The clinical value of RBP-score was validated in datasets from different platforms. Cox analysis suggested that a high RBP-score was an independent risk factor for poor prognosis in HCC patients. We also successfully established a combined RBP-score+TNM LASSO-Cox model that more accurately predicted the prognosis. Conclusion The RBP-score system constructed based on HCC-associated RBP genes is a simple and highly effective prognostic evaluation tool. It is suitable for different subgroups of HCC patients and has cross-platform characteristics. Combining RBP-score with the TNM staging system or other clinical parameters can lead to an even greater clinical benefit. In addition, the identified HCC-associated RBP genes may serve as novel targets for HCC treatment.
Collapse
Affiliation(s)
- Qiangnu Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital).,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | | | | | | | - Mingyue Li
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital).,Shenzhen People's Hospital, Shenzhen, China
| | - Liping Liu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital).,Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
8
|
Veronez LC, das Chagas PF, Corrêa CAP, Baroni M, da Silva KR, Nagano LF, Borges KS, Queiroz RGP, Tone LG, Scrideli CA. MSI2 expression in adrenocortical carcinoma: Association with unfavorable prognosis and correlation with steroid and immune-related pathways. J Cell Biochem 2021; 122:1925-1935. [PMID: 34581457 DOI: 10.1002/jcb.30153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, but highly aggressive cancer of the adrenal cortex with a generally poor prognosis. Despite being rare, completely resected ACCs present a high risk of recurrence. Musashi-2 (MSI2) has recently been recognized as a potential prognostic biomarker and therapeutic target in many cancers. However, no studies have evaluated the clinical significance of MSI2 expression in ACC. Here, we addressed MSI2 expression and its association with ACC prognosis and clinicopathological parameters. MSI2 expression was analyzed in TCGA, GSE12368, GSE33371, and GSE49278 ACC datasets; and its correlation with other genes and immune cell infiltration were investigated by using the R2: Genomics Analysis and Visualization Platform and TIMER databases, respectively. Enrichment analysis was performed with the DAVID Functional Annotation Tool. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were used to explore the prognostic role of MSI2 in ACC. Our findings demonstrated the potential value of MSI2 overexpression as an independent predictor of poor prognosis in patients with completely resected ACC (hazard ratio 6.715, 95% confidence interval 1.266 - 35.620, p =.025). In addition, MSI2 overexpression was associated with characteristics of unfavorable prognosis, such as cortisol excess (p = .002), recurrence (p =.003), and death (p =.015); positively correlated with genes related to steroid biosynthesis (p < .05); and negatively correlated with immune-related pathways (p < .05). Our findings demonstrate that MSI2 has value as a prognostic marker for completely resected ACC and reinforce the investigation of its role as a possible therapeutic target for patients with ACC.
Collapse
Affiliation(s)
- Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo F das Chagas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina A P Corrêa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mirella Baroni
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keteryne R da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis F Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rosane G P Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Ji CM, Zhang X, Fang W, Meng L, Wei X, Lu C. RNA-binding protein RNPC1 acts as an oncogene in gastric cancer by stabilizing aurora kinase B mRNA. Exp Cell Res 2021; 406:112741. [PMID: 34302858 DOI: 10.1016/j.yexcr.2021.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND RNPC1 is reported to act as a tumor suppressor by binding and regulating the expression of target genes in various cancers. However, the role of RNPC1 in gastric cancer and the underlying mechanisms are still unclear. METHODS Gastric cancer cells were stably transfected with lentivirus. Proliferation, migration, invasion, cell cycle in vitro and tumorigenesis in vivo were used to assess the role of RNPC1. Quantitative real-time PCR, western blotting and immunohistochemistry were used to detect the relationship between RNPC1 and aurora kinase B (AURKB). RNA immunoprecipitation (RIP), RNA electrophoretic mobility shift assays (REMSAs), and dual-luciferase reporter assays were used to identify the direct binding sites of RNPC1 with AURKB mRNA. A CCK-8 assay was conducted to confirm the function of AURKB in RNPC1-induced growth promotion. RESULTS High RNPC1 expression was found in gastric cancer tissues and cell lines and was associated with high TNM stage. RNPC1 overexpression significantly promoted the proliferation, migration, and invasion of gastric cancer cells. Knockdown of RNPC1 could impede gastric cancer tumorigenesis in nude mice. AURKB expression was positively related to RNPC1. RNPC1 directly binds to the 3'-untranslated region (3'-UTR) of AURKB and enhances AURKB mRNA stability. AURKB reversed the proliferation induced by RNPC1 in gastric cancer cells. RNPC1 resulted in mitotic defects, aneuploidy and chromosomal instability in gastric cancer cells, similar to AURKB. CONCLUSION RNPC1 acts as an oncogene in gastric cancer by influencing cell mitosis by increasing AURKB mRNA stability, which may provide a potential biomarker and a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chun-Mei Ji
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xu Zhang
- Jiangsu Breast Disease Center, The First Affliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Wentong Fang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ling Meng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Chen Lu
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Qi X, Lin Y, Chen J, Shen B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief Bioinform 2021; 21:441-457. [PMID: 30715152 DOI: 10.1093/bib/bbz006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 02/05/2023] Open
Abstract
Crosstalk between competing endogenous RNAs (ceRNAs) is mediated by shared microRNAs (miRNAs) and plays important roles both in normal physiology and tumorigenesis; thus, it is attractive for systems-level decoding of gene regulation. As ceRNA networks link the function of miRNAs with that of transcripts sharing the same miRNA response elements (MREs), e.g. pseudogenes, competing mRNAs, long non-coding RNAs, and circular RNAs, the perturbation of crucial interactions in ceRNA networks may contribute to carcinogenesis by affecting the balance of cellular regulatory system. Therefore, discovering biomarkers that indicate cancer initiation, development, and/or therapeutic responses via reconstructing and analyzing ceRNA networks is of clinical significance. In this review, the regulatory function of ceRNAs in cancer and crucial determinants of ceRNA crosstalk are firstly discussed to gain a global understanding of ceRNA-mediated carcinogenesis. Then, computational and experimental approaches for ceRNA network reconstruction and ceRNA validation, respectively, are described from a systems biology perspective. We focus on strategies for biomarker identification based on analyzing ceRNA networks and highlight the translational applications of ceRNA biomarkers for cancer management. This article will shed light on the significance of miRNA-mediated ceRNA interactions and provide important clues for discovering ceRNA network-based biomarker in cancer biology, thereby accelerating the pace of precision medicine and healthcare for cancer patients.
Collapse
Affiliation(s)
- Xin Qi
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Lhermitte B, Blandin AF, Coca A, Guerin E, Durand A, Entz-Werlé N. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas. Neurochirurgie 2021; 67:39-45. [PMID: 29776650 DOI: 10.1016/j.neuchi.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies.
Collapse
Affiliation(s)
- B Lhermitte
- Laboratoire de Pathologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A F Blandin
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - A Coca
- Service de Neurochirurgie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - E Guerin
- Laboratoire de biologie moléculaire et plateforme régionale d'oncobiologie d'Alsace, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A Durand
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - N Entz-Werlé
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France; Service de pédiatrie onco-hématologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France.
| |
Collapse
|
12
|
Yang M, Ma J, Chu Z, Cao X, Lu K, Shi X, Tong L, Yan C, Liu H, Wang X, Xiao S, Yang Z. Musashi1 inhibit the release of Newcastle disease viruses through preventing apoptosis of DF-1 cells. Poult Sci 2021; 100:101105. [PMID: 34062443 PMCID: PMC8173301 DOI: 10.1016/j.psj.2021.101105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The efficient proliferation of Newcastle disease virus (NDV) depends on its inhibition of host cell innate immunity. V protein acts as a nonstructural protein which plays a significant role in virus replication, whereas its function remains to be further explored. In this study, Musashi RNA binding protein 1 (MSI1) was selected and its interaction with V protein was further verified by Co-immunoprecipitation (Co-IP) and Immuno-colocalization test. Through the transfection of pCMV-HA-MSI1 in DF-1 cells, the overexpression of MSI1 reduced virus particles in the cell supernatant but not reduced mRNA and virus protein in cells pellet, which suggests that MSI1may act as a new antiviral molecule by inhibiting viral release. Cell early apoptosis was detected by flow cytometry (FCM), the result shows that overexpression of MSI1 inhibit cell apoptosis, implying MSI1 Inhibit virus release may through this way. Taken together, MSI1 and NDV V protein has a detectable interaction, and may block apoptosis to inhibit the release of NDV. However, this is the first report about the interaction between MSI1 and V protein of NDV that can inhibit the NDV replicated.
Collapse
Affiliation(s)
- Mengqing Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhili Chu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xuhong Cao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolei Shi
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lina Tong
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chuanqi Yan
- Bureau of Agriculture and Rural Affairs of Huangdao, Qingdao, Shandong 266400, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Xu G, Xu WY, Xiao Y, Jin B, Du SD, Mao YL, Zhang ZT. The emerging roles of non-coding competing endogenous RNA in hepatocellular carcinoma. Cancer Cell Int 2020; 20:496. [PMID: 33061848 PMCID: PMC7552539 DOI: 10.1186/s12935-020-01581-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence has emerged revealing that noncoding RNAs (ncRNAs) play essential roles in the occurrence and development of hepatocellular carcinoma (HCC). However, the complicated regulatory interactions among various ncRNAs in the development of HCC are not entirely understood. The newly discovered mechanism of competing endogenous RNAs (ceRNAs) uncovered regulatory interactions among different varieties of RNAs. In recent years, a growing number of studies have suggested that ncRNAs, including long ncRNAs, circular RNAs and pseudogenes, play major roles in the biological functions of the ceRNA network in HCC. These ncRNAs can share microRNA response elements to affect microRNA affinity with target RNAs, thus regulating gene expression at the transcriptional level and both physiological and pathological processes. The ncRNAs that function as ceRNAs are involved in diverse biological processes in HCC cells, such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. Based on these findings, ncRNAs that act as ceRNAs may be promising candidates for clinical diagnosis and treatments. In this review, we discuss the mechanisms and research methods of ceRNA networks. We also reviewed the recent advances in studying the roles of ncRNAs as ceRNAs in HCC and highlight possible directions and possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets. Finally, the limitations, gaps in knowledge and opportunities for future research are also discussed.
Collapse
Affiliation(s)
- Gang Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Wei-Yu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| | - Yao Xiao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Shun-Da Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Yi-Lei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| |
Collapse
|
15
|
Li J, Yan K, Yang Y, Li H, Wang Z, Xu X. [Musashi-1 positively regulates growth and proliferation of hepatoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 39:1436-1442. [PMID: 31907147 DOI: 10.12122/j.issn.1673-4254.2019.12.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the regulatory role of Musashi-1 (MSI1) in the proliferation and growth of hepatocellular carcinoma (HCC) cells. METHODS We examined the expression of MSI1 in HCC and paired adjacent tissues from 24 patients using immunohistochemistry and Western blotting. A MSI1-expressing vector was constructed and stably transfected into HepG2 cells, and short hairpin RNAs (shRNAs) that targeted MSI1 mRNA were ligated into the vector and stably transfected in Huh7 cells. The effects of MSI1 overexpression and silencing on the proliferation, viability and cell cycle of HepG2 cells were investigated using flow cytometry or MTT assay. The expressions of PCNA, cyclin D1, APC and β-catenin in the HCC cells were detected with Western blotting. RESULTS MSI1 expression was significantly up-regulated in HCC tissues as compared with that in the adjacent tissues. Overexpression of MSI1 in HepG2 cells resulted in significantly enhanced cell growth (P < 0.01) and significantly reduced G0/G1 phase cells from (58.42±3.18)% to (40.67±1.22)% and increased S phase cells from (28.51± 1.93)% to (40.06±1.92)% (P < 0.01), causing also increases in the expressions of PCNA and Cyclin D1. Knockdown of MSI1 in Huh7 cells obviously inhibited the cell growth and caused cell cycle arrest at the G1/S phase (P < 0.01) with reduced protein expressions of PCNA and cyclin D1. Overexpression of MSI1 in HepG2 cells also down-regulated the expression of APC and up-regulated the expression of β-catenin protein, while MSI1 knockdown caused reverse changes in Huh7 cells. CONCLUSIONS MSI1 promotes the progression of HCC through positive modulation of cell growth and cell cycle via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| | - Kun Yan
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| | - Yi Yang
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| | - Hua Li
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| | - Zhidong Wang
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| | - Xin Xu
- Department of General Surgery, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004
| |
Collapse
|
16
|
Zhang F, Ni H, Li X, Liu H, Xi T, Zheng L. LncRNA FENDRR attenuates adriamycin resistance via suppressing MDR1 expression through sponging HuR and miR-184 in chronic myelogenous leukaemia cells. FEBS Lett 2019; 593:1993-2007. [PMID: 31180580 DOI: 10.1002/1873-3468.13480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/12/2019] [Accepted: 05/31/2019] [Indexed: 07/31/2024]
Abstract
Chemotherapy is a major anticancer therapeutic modality, however, multidrug resistance (MDR) is frequently observed and hinders treatment efficacy. Here, we investigated the role and potential mechanism of the long noncoding RNA (lncRNA) FENDRR in adriamycin resistance of chronic myeloid leukaemia (CML) cells. FENDRR overexpression attenuates adriamycin resistance, as shown by increased Rhodamine 123 accumulation, promotion of cell apoptosis in vitro and suppression of tumour growth in vivo. Mechanistically, we identified that FENDRR reduces the interaction of the RNA-binding protein HuR with MDR1 via acting as a sponge, and miR-184 competitively binds to FENDRR with HuR. Thus, the HuR/FENDRR/miR-184 interaction contributes to MDR1 activity. These findings indicate that FENDRR is a potential target for reversing adriamycin resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- MicroRNAs/genetics
- Neoplasm Transplantation
- RNA, Long Noncoding/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Feng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medical, School of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Herdy B, Mayer C, Varshney D, Marsico G, Murat P, Taylor C, D'Santos C, Tannahill D, Balasubramanian S. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res 2019; 46:11592-11604. [PMID: 30256975 PMCID: PMC6265444 DOI: 10.1093/nar/gky861] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are secondary structures in mRNAs known to influence RNA post-transcriptional mechanisms thereby impacting neurodegenerative disease and cancer. A detailed knowledge of rG4–protein interactions is vital to understand rG4 function. Herein, we describe a systematic affinity proteomics approach that identified 80 high-confidence interactors that assemble on the rG4 located in the 5′-untranslated region (UTR) of the NRAS oncogene. Novel rG4 interactors included DDX3X, DDX5, DDX17, GRSF1 and NSUN5. The majority of identified proteins contained a glycine-arginine (GAR) domain and notably GAR-domain mutation in DDX3X and DDX17 abrogated rG4 binding. Identification of DDX3X targets by transcriptome-wide individual-nucleotide resolution UV-crosslinking and affinity enrichment (iCLAE) revealed a striking association with 5′-UTR rG4-containing transcripts which was reduced upon GAR-domain mutation. Our work highlights hitherto unrecognized features of rG4 structure–protein interactions that highlight new roles of rG4 structures in mRNA post-transcriptional control.
Collapse
Affiliation(s)
- Barbara Herdy
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.,Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK
| | - Dhaval Varshney
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Giovanni Marsico
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Pierre Murat
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.,Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK
| | - Chris Taylor
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.,Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.,Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
18
|
Yang B, Dai JX, Pan YB, Ma YB, Chu SH. Examining the biomarkers and molecular mechanisms of medulloblastoma based on bioinformatics analysis. Oncol Lett 2019; 18:433-441. [PMID: 31289514 PMCID: PMC6540325 DOI: 10.3892/ol.2019.10314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of the present study was to predict biomarkers and reveal their potential molecular mechanisms in MB. The gene expression profiles of GSE35493, GSE50161, GSE74195 and GSE86574 were downloaded from the Gene Expression Omnibus (GEO) database. Using the Limma package in R, a total of 1,006 overlapped differentially expressed genes (DEGs) with the cut-off criteria of P<0.05 and |log2fold-change (FC)|>1 were identified between MB and normal samples, including 540 upregulated and 466 downregulated genes. Furthermore, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool to analyze functional and pathway enrichment. The Search Tool for Retrieval of Interacting Genes database was subsequently used to construct a protein-protein interaction (PPI) network and the network was visualized in Cytoscape. The top 11 hub genes, including CDK1, CCNB1, CCNB2, PLK1, CDC20, MAD2L1, AURKB, CENPE, TOP2A, KIF2C and PCNA, were identified from the PPI network. The survival curves for hub genes in the dataset GSE85217 predicted the association between the genes and survival of patients with MB. The top 3 modules were identified by the Molecular Complex Detection plugin. The results indicated that the pathways of DEGs in module 1 were primarily enriched in cell cycle, progesterone-mediated oocyte maturation and oocyte meiosis; and the most significant functional pathways in modules 2 and 3 were primarily enriched in mismatch repair and ubiquitin-mediated proteolysis, respectively. These results may help elucidate the pathogenesis and design novel treatments for MB.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Jun-Xi Dai
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
19
|
Gao J, Byrd AK, Zybailov BL, Marecki JC, Guderyon MJ, Edwards AD, Chib S, West KL, Waldrip ZJ, Mackintosh SG, Gao Z, Putnam AA, Jankowsky E, Raney KD. DEAD-box RNA helicases Dbp2, Ded1 and Mss116 bind to G-quadruplex nucleic acids and destabilize G-quadruplex RNA. Chem Commun (Camb) 2019; 55:4467-4470. [PMID: 30855040 PMCID: PMC6459694 DOI: 10.1039/c8cc10091h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We identified 29 G-quadruplex binding proteins by affinity purification and quantitative LC-MS/MS. We demonstrated that the DEAD-box RNA helicases Dbp2, Ded1 and Mss116 preferentially bind to G-quadruplex nucleic acids in vitro and destabilize RNA quadruplexes, suggesting new potential roles for these helicases in disruption of quadruplex structures in RNA.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112:108625. [PMID: 30784920 DOI: 10.1016/j.biopha.2019.108625] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with the capacity for self-renewal and differentiation into multiple cell types, exhibit the property of homing towards tumor sites and immunosuppression and have been used as tumor-tropic vectors for tumor therapy. However, few studies have investigated the underlying molecular mechanisms that link MSCs to targeted tumor cells. In this study, we elucidated the inhibitory effects and mechanisms of human bone marrow mesenchymal stem cells (hBMSCs) on human glioma U251 cells using a co-culture system in vitro. The anti-tumor activity of co-cultured hBMSCs was assessed by morphological changes, the MTT assay, and Hoechst 33258 staining. Cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Cell migration and invasion were evaluated using a 24-well Transwell chamber. A proteomics approach was used to identify differentially expressed proteins after hBMSCs treatment in U251 cells, and quantitative polymerase chain reaction was used to validate the results. Bioinformatics analyses were also implemented to better understand the identified proteins, and Western blotting analyses were used to analyze the associated proteins. The results showed that hBMSCs could inhibit cell proliferation and induce cell cycle arrest in the G1 phase, resulting in apoptosis of U251 cells. Transwell and Matrigel invasion assays showed that hBMSCs reduced the migration and invasion of U251 cells. Using proteomics, 11 differentially expressed proteins were identified and observed. Bioinformatics analyses indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Moreover, hBMSCs regulated changes in proteins linked to cell apoptosis and cell cycle progression and inhibited the epithelial-mesenchymal transition (EMT)-like and PI3K/AKT pathway. Taken together, the findings in our study suggest that hBMSCs inhibit U251 cells proliferation and the EMT-like by downregulating the PI3K/AKT signaling pathway, which indicates that hBMSCs have a potential antitumor characteristics and should be further explored in future glioma therapy.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
21
|
The DEAD-Box RNA Helicase DDX3 Interacts with m 6A RNA Demethylase ALKBH5. Stem Cells Int 2017; 2017:8596135. [PMID: 29333169 PMCID: PMC5733242 DOI: 10.1155/2017/8596135] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
DDX3 is a member of the family of DEAD-box RNA helicases. DDX3 is a multifaceted helicase and plays essential roles in key biological processes such as cell cycle, stress response, apoptosis, and RNA metabolism. In this study, we found that DDX3 interacted with ALKBH5, an m6A RNA demethylase. The ATP domain of DDX3 and DSBH domain of ALKBH5 were indispensable to their interaction with each other. Furthermore, DDX3 could modulate the demethylation of mRNAs. We also showed that DDX3 regulated the methylation status of microRNAs and there was an interaction between DDX3 and AGO2. The dynamics of m6A RNA modification is still a field demanding further investigation, and here, we add a link by showing that RNA demethylation can be regulated by proteins such as DDX3.
Collapse
|
22
|
Lee CC, Chang WH, Chang YS, Liu TY, Chen YC, Wu YC, Chang JG. 4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells. Sci Rep 2017; 7:7290. [PMID: 28779122 PMCID: PMC5544667 DOI: 10.1038/s41598-017-07472-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2017] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing is a mechanism for increasing protein diversity from a limited number of genes. Studies have demonstrated that aberrant regulation in the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4β-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana and investigated its biological effect in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of various apoptotic genes, including HIPK3, SMAC/DIABLO, and SURVIVIN. We also discovered that the levels of SRSF1 phospho-isoform were decreased and the levels of H3K36me3 were increased in 4bHWE treatment. Knockdown experiments revealed that the splicing site selection of SMAC/DIABLO could be mediated by changes in the level of H3K36me3 in 4bHWE-treated cells. Furthermore, we extended our study to apoptosis-associated molecules, and detected increased levels of poly ADP-ribose polymerase cleavage and the active form of CASPASE-3 in 4bHWE-induced apoptosis. In vivo experiments indicated that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease in tumor size. This study is the first to demonstrate that 4bHWE affects alternative splicing by modulating splicing factors and histone modifications, and provides a novel view of the antitumor mechanism of 4bHWE.
Collapse
Affiliation(s)
- Chien-Chin Lee
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Chang
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan. .,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan. .,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
23
|
Zhao L, Mao Y, Zhou J, Zhao Y, Cao Y, Chen X. Multifunctional DDX3: dual roles in various cancer development and its related signaling pathways. Am J Cancer Res 2016; 6:387-402. [PMID: 27186411 PMCID: PMC4859668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023] Open
Abstract
DEAD-box RNA helicase 3 (DDX3) is a highly conserved family member of DEAD-box protein, which is a cluster of ATP-dependent and the largest family of RNA helicase. DEAD-box family is characterized by the regulation of ATPase and helicase activities, the modulation of RNA metabolism, and the actors of RNA binding proteins or molecular chaperones to interact with other proteins or RNA. For DDX3, it exerts its multifaceted roles in viral manipulation, stress response, hypoxia, radiation response and apoptosis, and is closely related to cancer development and progression. DDX3 has dual roles in different cancer types and can act as either an oncogene or tumor suppressor gene during cancer progression. In the present review, we mainly provide an overview of current knowledge on dual roles of DDX3 in various types of cancer, including breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, oral squamous cell carcinoma, Ewing sarcoma, glioblastoma multiforme and gallbladder carcinoma, and illustrate the regulatory mechanisms for leading these two controversial biological effects. Furthermore, we summarize the essential signaling pathways that DDX3 participated, especially the Wnt/β-catenin signaling and EMT related signaling (TGF-β, Notch, Hedgehog pathways), which are crucial to DDX3 mediated cancer metastasis process. Thoroughly exploring the dual roles of DDX3 in cancer development and the essential signaling pathways it involved, it will help us open new perspectives to develop novel promising targets to elevate therapeutic effects and facilitate the "Personalized medicine" or "Precision medicine" to come into clinic.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of TechnologyGuangzhou 510640, Guangdong, China
| | - Ya Cao
- Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
24
|
Suthar MK, Purva M, Maherchandani S, Kashyap SK. Identification and in silico analysis of cattle DExH/D box RNA helicases. SPRINGERPLUS 2016; 5:25. [PMID: 26783509 PMCID: PMC4705078 DOI: 10.1186/s40064-015-1640-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022]
Abstract
The helicases are motor proteins participating
in a range of nucleic acid metabolisms. RNA helicase families are characterized by the presence of conserved motifs. This article reports a comprehensive in silico analysis of Bos taurus DExH/D helicase members. Bovine helicases were identified using the helicase domain sequences including 38 DDX (DEAD box) and 16 DHX (DEAH box) members. Signature motifs were used for the validation of these proteins. Putative sub cellular localization and phylogenetic relationship for these RNA helicases were established. Comparative analysis of these proteins with human DDX and DHX members was carried out. These bovine helicase have been assigned putative physiological functions. Present study of cattle DExH/D helicase will provides an invaluable source for the detailed biochemical and physiological research on these members.
Collapse
Affiliation(s)
- Manish Kumar Suthar
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Mukul Purva
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary & Animal Sciences, Bikaner, Rajasthan 334001 India
| |
Collapse
|
25
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet 2015; 52:710-8. [PMID: 26358722 DOI: 10.1136/jmedgenet-2015-103334] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
Competing endogenous RNAs (ceRNAs) are transcripts that can regulate each other at post-transcription level by competing for shared miRNAs. CeRNA networks link the function of protein-coding mRNAs with that of non-coding RNAs such as microRNA, long non-coding RNA, pseudogenic RNA and circular RNA. Given that any transcripts harbouring miRNA response element can theoretically function as ceRNAs, they may represent a widespread form of post-transcriptional regulation of gene expression in both physiology and pathology. CeRNA activity is influenced by multiple factors such as the abundance and subcellular localisation of ceRNA components, binding affinity of miRNAs to their sponges, RNA editing, RNA secondary structures and RNA-binding proteins. Aberrations in these factors may deregulate ceRNA networks and thus lead to human diseases including cancer. In this review, we introduce the mechanisms and molecular bases of ceRNA networks, discuss their roles in the pathogenesis of cancer as well as methods of predicting and validating ceRNA interplay. At last, we discuss the limitations of current ceRNA theory, propose possible directions and envision the possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Da-Hong Zhang
- Department of Clinical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Hua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 2015; 47:1061-6. [PMID: 26192917 DOI: 10.1038/ng.3358] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL.
Collapse
|
27
|
MacNicol AM, Hardy LL, Spencer HJ, MacNicol MC. Neural stem and progenitor cell fate transition requires regulation of Musashi1 function. BMC DEVELOPMENTAL BIOLOGY 2015; 15:15. [PMID: 25888190 PMCID: PMC4369890 DOI: 10.1186/s12861-015-0064-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/26/2015] [Indexed: 12/28/2022]
Abstract
Background There is increasing evidence of a pivotal role for regulated mRNA translation in control of developmental cell fate transitions. Physiological and pathological stem and progenitor cell self-renewal is maintained by the mRNA-binding protein, Musashi1 through repression of translation of key mRNAs encoding cell cycle inhibitory proteins. The mechanism by which Musashi1 function is modified to allow translation of these target mRNAs under conditions that require inhibition of cell cycle progression, is unknown. Results In this study, we demonstrate that differentiation of primary embryonic rat neural stem/progenitor cells (NSPCs) or human neuroblastoma SH-SY5Y cells results in the rapid phosphorylation of Musashi1 on the evolutionarily conserved site serine 337 (S337). Phosphorylation of this site has been shown to be required for cell cycle control during the maturation of Xenopus oocytes. S337 phosphorylation in mammalian NSPCs and human SH-SY5Y cells correlates with the de-repression and translation of a Musashi reporter mRNA and with accumulation of protein from the endogenous Musashi target mRNA, p21WAF1/CIP1. Inhibition of Musashi regulatory phosphorylation, through expression of a phospho-inhibitory mutant Musashi1 S337A or over-expression of the wild-type Musashi, blocked differentiation of both NSPCs and SH-SY5Y cells. Musashi1 was similarly phosphorylated in NSPCs and SH-SY5Y cells under conditions of nutrient deprivation-induced cell cycle arrest. Expression of the Musashi1 S337A mutant protein attenuated nutrient deprivation-induced NSPC and SH-SY5Y cell death. Conclusions Our data suggest that in response to environmental cues that oppose cell cycle progression, regulation of Musashi function is required to promote target mRNA translation and cell fate transition. Forced modulation of Musashi1 function may present a novel therapeutic strategy to oppose pathological stem cell self-renewal.
Collapse
Affiliation(s)
- Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA.
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|