1
|
Yoo H, Kim HJ, Yang SH, Son GH, Gim JA, Lee HW, Kim H. Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress. Mol Cells 2022; 45:306-316. [PMID: 35534192 PMCID: PMC9095505 DOI: 10.14348/molcells.2022.2257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.
Collapse
Affiliation(s)
- Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Gi Hoon Son
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Biomedical Sciences, BrainKorea21 Four, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Roles of Transcription Factors in the Development and Reprogramming of the Dopaminergic Neurons. Int J Mol Sci 2022; 23:ijms23020845. [PMID: 35055043 PMCID: PMC8775916 DOI: 10.3390/ijms23020845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.
Collapse
|
3
|
Català-Solsona J, Miñano-Molina AJ, Rodríguez-Álvarez J. Nr4a2 Transcription Factor in Hippocampal Synaptic Plasticity, Memory and Cognitive Dysfunction: A Perspective Review. Front Mol Neurosci 2021; 14:786226. [PMID: 34880728 PMCID: PMC8645690 DOI: 10.3389/fnmol.2021.786226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Long-lasting changes of synaptic efficacy are largely mediated by activity-induced gene transcription and are essential for neuronal plasticity and memory. In this scenario, transcription factors have emerged as pivotal players underlying synaptic plasticity and the modification of neural networks required for memory formation and consolidation. Hippocampal synaptic dysfunction is widely accepted to underlie the cognitive decline observed in some neurodegenerative disorders including Alzheimer’s disease. Therefore, understanding the molecular pathways regulating gene expression profiles may help to identify new synaptic therapeutic targets. The nuclear receptor 4A subfamily (Nr4a) of transcription factors has been involved in a variety of physiological processes within the hippocampus, ranging from inflammation to neuroprotection. Recent studies have also pointed out a role for the activity-dependent nuclear receptor subfamily 4, group A, member 2 (Nr4a2/Nurr1) in hippocampal synaptic plasticity and cognitive functions, although the underlying molecular mechanisms are still poorly understood. In this review, we highlight the specific effects of Nr4a2 in hippocampal synaptic plasticity and memory formation and we discuss whether the dysregulation of this transcription factor could contribute to hippocampal synaptic dysfunction, altogether suggesting the possibility that Nr4a2 may emerge as a novel synaptic therapeutic target in brain pathologies associated to cognitive dysfunctions.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alfredo J Miñano-Molina
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Álvarez
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021; 10:cells10061442. [PMID: 34207710 PMCID: PMC8228416 DOI: 10.3390/cells10061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson’s disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.
Collapse
|