1
|
Wang W, Min J, Luo Q, Gu X, Li M, Liu X. Lysine Acetyltransferase TIP60 Restricts Nerve Injury by Activating IKKβ/SNAP23 Axis-Mediated Autophagosome-Lysosome Fusion in Alzheimer's Disease. CNS Neurosci Ther 2024; 30:e70095. [PMID: 39500626 PMCID: PMC11537769 DOI: 10.1111/cns.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE The hyperphosphorylation of Tau protein is considered an important cause of neuronal degeneration in Alzheimer's disease (AD). The disruption of neuronal histone acetylation homeostasis mediated by Tip60 HAT is a common early event in neurodegenerative diseases, but the deeper regulatory mechanism on β-amyloid peptide (Aβ)-induced neurotoxicity and autophagic function in AD is still unclear. METHODS AD models were established both in APP/PS1 mice and Aβ1-42-treated SH-SY5Y cells. The Morris water maze test (MWM) was performed to examine mouse cognitive function. Neurological damage in the hippocampus was observed by hematoxylin-eosin (H&E), Nissl's, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and NeuN staining. Autophagosome-lysosome fusion was detected by immunohistochemistry, immunofluorescence, and Lyso-Tracker Red staining. Cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry. The molecular interactions were verified by co-immunoprecipitation (Co-IP), dual luciferase assays, and ChIP detections. The RNA and autophagy-lysosome-related proteins were assessed by Western blot and RT-qPCR. RESULTS TIP60 overexpression improved cognitive deficits and neurological damage and restored the impairment of autophagy-lysosomes fusion in vivo. Similarly, the upregulation of TIP60 in Aβ1-42-treated SH-SY5Y cells suppressed neuronal apoptosis and tau phosphorylation through the activating autophagy-lysosome pathway. Mechanistically, TIP60 activated IKKβ transcription by promoting SOX4 acetylation, thus leading to the translocation of SNAP23 to STX17-contained autophagosomes. Moreover, the protective roles of TIP60 in neuron damage were abolished by the inhibition of SOX4/IKKβ signaling. CONCLUSION Collectively, our results highlighted the potential of the TIP60 target for AD and provided new insights into the mechanisms underlying neuroprotection in this disorder.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Jun Min
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Qinghua Luo
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xunhu Gu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Min Li
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xu Liu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| |
Collapse
|
2
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Norambuena L, Ruiz-Lara S. A SNARE-like protein from Solanum lycopersicum increases salt tolerance by modulating vesicular trafficking in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1212806. [PMID: 37593042 PMCID: PMC10431929 DOI: 10.3389/fpls.2023.1212806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Intracellular vesicular trafficking ensures the exchange of lipids and proteins between endomembrane compartments. This is relevant under high salinity conditions, since both the removal of transporters and ion channels from the plasma membrane and the compartmentalization of toxic ions require the formation of vesicles, which can be maintained as multivesicular bodies or be fused to the central vacuole. SNARE proteins (Soluble N-ethylmaleimide-sensitive factor attachment receptor) participate in the vesicle fusion process and give specificity to their destination. Plant genome studies have revealed a superfamily of genes that encode for proteins called SNARE-like. These proteins appear to be participating in vesicular trafficking with similar functions to those of SNARE proteins. A SNARE-like, named SlSLSP6, in Solanum lycopersicum plants has been shown to be induced under high salinity conditions. A phylogenetic relationship of SlSLSP6 with SNARE-like proteins of salinity-tolerant plants, including Salicornia brachiata, Zostera marina and Solanum pennelli, was determined. Considering its amino acid sequence, a putative clathrin adapter complex domain and palmitoylation site was predicted. Subcellular localization analysis evidenced that SlSLSP6 is mostly localized in the plasma membrane. Using transgenic tomato plants, we identified that overexpression of SlSLSP6 increased tolerance to salt stress. This tolerance was evident when we quantified an improvement in physiological and biochemical parameters, such as higher chlorophyll content, performance index, efficiency of photosystem II and relative water content, and lower malondialdehyde content, compared to control plants. At the subcellular level, the overexpression of SlSLSP6 reduced the presence of H2O2 in roots and increased the compartmentalization of sodium in vacuoles during salt stress. These effects appear to be associated with the higher endocytic rate of FM4-64, determined in the plant root cells. Taken together, these results indicate that SlSLSP6 increases tolerance to salt stress by modulating vesicular trafficking through over-induction of the endocytic pathway. This work contributes to understanding the role of this type of SNARE-like protein during salt stress and could be a potential candidate in breeding programs for tolerance to salt stress in tomato plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Lorena Norambuena
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Li B, Zhou G, Li Y, Chen X, Yang H, Li Y, Zhu M, Li L. Genome-wide identification of R-SNARE gene family in upland cotton and function analysis of GhVAMP72l response to drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1147932. [PMID: 37465385 PMCID: PMC10351383 DOI: 10.3389/fpls.2023.1147932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) mainly promoted the assembly of the SNARE complex to drive the final membrane fusion step of membrane transport. Previous research on R-SNAREs has mainly focused on development and growth and has rarely been involved in abiotic stress, especially in cotton. Here, we performed a comprehensive analysis of R-SNARE genes in upland cotton. In total, 51 Gh-R-SNARE genes across six phylogenetic groups were unevenly distributed on 21 chromosomes. Cis elements related to plant growth and response to abiotic stress responses were found in the promoter region of Gh-R-SNAREs. Nine Gh-R-SNARE genes were obviously upregulated under drought stress conditions by RNA-seq and qRT-PCR analysis. Among them, GhVAMP72l might be the key candidate gene contributing to drought stress tolerance in cotton by virus-induced gene silencing (VIGS) assay. These results provide valuable insights for the functional analysis of cotton R-SNAREs in response to drought stress and highlight potential beneficial genes for genetic improvement and breeding in cotton.
Collapse
Affiliation(s)
- Bingxuan Li
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Gen Zhou
- Key laboratory of Quality Improvement of Agriculture Products of Zhejiang Province, College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yanbin Li
- College of Life Sciences, Xiamen University, Xiamen, China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, China
| | - Huiting Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Li
- Basic Medicine Department, Heze Medical College, Heze, China
| | - Minhua Zhu
- Key laboratory of Quality Improvement of Agriculture Products of Zhejiang Province, College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
| | - Libei Li
- Key laboratory of Quality Improvement of Agriculture Products of Zhejiang Province, College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Neuhaus JM, Pimpl P, Zhao Q, Wang H. Editorial: Regulation of plant organelle biogenesis and trafficking. FRONTIERS IN PLANT SCIENCE 2023; 14:1211807. [PMID: 37304708 PMCID: PMC10250707 DOI: 10.3389/fpls.2023.1211807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Peter Pimpl
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
6
|
Dhar S, Lee JY. How Does Global Warming Sabotage Plant Immunity? Mol Cells 2022; 45:883-885. [PMID: 36572558 PMCID: PMC9794557 DOI: 10.14348/molcells.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Souvik Dhar
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Young Lee
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
8
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
9
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Pérez-Díaz J, Martín-Davison AS, Norambuena L, Ruiz-Lara S. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato. PLANTS 2021; 10:plants10071322. [PMID: 34209492 PMCID: PMC8309203 DOI: 10.3390/plants10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membrane fusion and guarantee cargo delivery to the correct cellular compartments. SNAREs from the Qbc subfamily are the best-characterized plasma membrane SNAREs, where they control exocytosis during cell division and defense response. The Solanum lycopersicum gene SlSNAP33.2 encodes a Qbc-SNARE protein and is induced under salt stress conditions. SlSNAP33.2 localizes on the plasma membrane of root cells of Arabidopsis thaliana. In order to study its role in endocytosis and salt stress response, we overexpressed the SlSNAP33.2 cDNA in a tomato cultivar. Constitutive overexpression promoted endocytosis along with the accumulation of sodium (Na+) in the vacuoles. It also protected the plant from cell damage by decreasing the accumulation of hydrogen peroxide (H2O2) in the cytoplasm of stressed root cells. Subsequently, the higher level of SlSNAP33.2 conferred tolerance to salt stress in tomato plants. The analysis of physiological and biochemical parameters such as relative water content, the efficiency of the photosystem II, performance index, chlorophyll, and MDA contents showed that tomato plants overexpressing SlSNAP33.2 displayed a better performance under salt stress than wild type plants. These results reveal a role for SlSNAP33.2 in the endocytosis pathway involved in plant response to salt stress. This research shows that SlSNAP33.2 can be an effective tool for the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Jorge Pérez-Díaz
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Alex San Martín-Davison
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Lorena Norambuena
- Facultad de Ciencias, Universidad de Chile, Santiago, Ñuñoa 7750000, Chile;
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
- Correspondence:
| |
Collapse
|