1
|
Morelli MP, Del Medico Zajac MP, Pellegrini JM, Amiano NO, Tateosian NL, Calamante G, Gherardi MM, García VE. IL-12 DNA Displays Efficient Adjuvant Effects Improving Immunogenicity of Ag85A in DNA Prime/MVA Boost Immunizations. Front Cell Infect Microbiol 2020; 10:581812. [PMID: 33072631 PMCID: PMC7538621 DOI: 10.3389/fcimb.2020.581812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection is one of the leading causes of death worldwide. The Modified Vaccinia Ankara (MVA) vaccine vector expressing the mycobacterial antigen 85A (MVA85A) was demonstrated to be safe, although it did not improve BCG efficacy, denoting the need to search for improved tuberculosis vaccines. In this work, we investigated the effect of IL-12 DNA -as an adjuvant- on an Ag85A DNA prime/MVA85A boost vaccination regimen. We evaluated the immune response profile elicited in mice and the protection conferred against intratracheal Mtb H37Rv challenge. We observed that the immunization scheme including DNA-A85A+DNA-IL-12/MVA85A induced a strong IFN-γ production to Ag85A in vitro, with a significant expansion of IFN-γ+CD4+ and IFN-γ+CD8+ anti-Ag85A lymphocytes. Furthermore, we also detected a significant increase in the proportion of specific CD8+CD107+ T cells against Ag85A. Additionally, inclusion of IL-12 DNA in the DNA-A85A/MVA85A vaccine scheme induced a marked augment in anti-Ag85A IgG levels. Interestingly, after 30 days of infection with Mtb H37Rv, DNA-A85A+DNA-IL-12/MVA85A vaccinated mice displayed a significant reduction in lung bacterial burden. Together, our findings suggest that IL-12 DNA might be useful as a molecular adjuvant in an Ag85A DNA/MVA prime-boost vaccine against Mtb infection.
Collapse
Affiliation(s)
- María Paula Morelli
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Joaquín Miguel Pellegrini
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity. PLoS One 2014; 9:e107524. [PMID: 25215887 PMCID: PMC4162600 DOI: 10.1371/journal.pone.0107524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022] Open
Abstract
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.
Collapse
|
3
|
Osada T, Berglund P, Morse MA, Hubby B, Lewis W, Niedzwiecki D, Yang XY, Hobeika A, Burnett B, Devi GR, Clay TM, Smith J, Kim Lyerly H. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects. Cancer Immunol Immunother 2012; 61:1941-51. [PMID: 22488274 PMCID: PMC3873731 DOI: 10.1007/s00262-012-1248-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/14/2012] [Indexed: 11/29/2022]
Abstract
We recently demonstrated that Venezuelan equine encephalitis virus-based replicon particle (VRPs) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP-expressing interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and antitumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)), and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12, and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP-IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing antitumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than that of VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
| | | | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC USA
- Duke Comprehensive Cancer Center, Durham, NC 27710 USA
| | - Bolyn Hubby
- Liquidia Technologies, RTP, Durham, NC 27709 USA
| | | | | | - Xiao Yi Yang
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
| | - Bruce Burnett
- Duke Comprehensive Cancer Center, Durham, NC 27710 USA
| | - Gayathri R. Devi
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
- Duke Comprehensive Cancer Center, Durham, NC 27710 USA
| | - Timothy M. Clay
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
- Department of Immunology, Duke University Medical Center, Durham, NC USA
- Duke Comprehensive Cancer Center, Durham, NC 27710 USA
| | | | - H. Kim Lyerly
- Department of Surgery, Duke University Medical Center, Box 2606 MSRB1 Rm 433b Research Dr, Durham, NC 27710 USA
- Department of Immunology, Duke University Medical Center, Durham, NC USA
- Duke Comprehensive Cancer Center, Durham, NC 27710 USA
| |
Collapse
|
4
|
Harms JS, Durward MA, Magnani DM, Splitter GA. Evaluation of recombinant invasive, non-pathogenic Eschericia coli as a vaccine vector against the intracellular pathogen, Brucella. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:1. [PMID: 19126207 PMCID: PMC2633335 DOI: 10.1186/1476-8518-7-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/06/2009] [Indexed: 01/18/2023]
Abstract
Background There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. Methods E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. Results The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). Conclusion Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
Collapse
Affiliation(s)
- Jerome S Harms
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
5
|
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon-Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 2008; 38:706-19. [PMID: 18286565 DOI: 10.1002/eji.200737660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).
Collapse
Affiliation(s)
- Blaise Dondji
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ansari AA, Mayne AE, Onlamoon N, Pattanapanyasat K, Mori K, Villinger F. Use of recombinant cytokines for optimized induction of antiviral immunity against SIV in the nonhuman primate model of human AIDS. Immunol Res 2004; 29:1-18. [PMID: 15181266 PMCID: PMC7090896 DOI: 10.1385/ir:29:1-3:001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Outbreaks of infectious diseases such as HIV and the much televised and attention-getting outbreaks of diseases such as Ebola, Hantaviruses, and the most recent outbreak of SARS have induced a significant new interest in the formulations and more importantly the science of vaccinology, which has previously to a large extent been conducted empirically. Our laboratory has focused on the use of recombinant nonhuman primate cytokines as adjunctive therapies for inducing antigen-specific immune responses in monkeys because most recombinant human cytokines appear to be immunogenic. This article provides a summary of our work with such cytokines, which includes attempts to define optimum dosing schedules that lead to optimal primary and lasting memory antigen-specific immune responses.
Collapse
Affiliation(s)
- Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Gherardi MM, Nájera JL, Pérez-Jiménez E, Guerra S, García-Sastre A, Esteban M. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 2003; 77:7048-57. [PMID: 12768024 PMCID: PMC156204 DOI: 10.1128/jvi.77.12.7048-7057.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses.
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, Okumura K, Takeuchi T, Kamiyama T, Ohwada A, Fukuchi Y, Aoki T. Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect Immun 2002; 70:4833-40. [PMID: 12183527 PMCID: PMC128276 DOI: 10.1128/iai.70.9.4833-4840.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested the immunogenicity of two Trypanosoma cruzi antigens injected into mice in the form of DNA vaccine. Immunization with DNA encoding dihydroorotate dehydrogenase did not confer protective immunity in all mouse strains tested. Immunization with DNA encoding trans-sialidase surface antigen (TSSA) protected C57BL/6 (H-2(b)) mice but not BALB/c (H-2(d)) or C3H/Hej (H-2(k)) mice against lethal T. cruzi infection. In vivo depletion of CD4(+) or CD8(+) T cells abolished the protective immunity elicited by TSSA gene in C57BL/6 mice. Enzyme-linked immunospot assay with splenocytes from T. cruzi-infected mice or TSSA gene-vaccinated mice identified an H-2K(b)-restricted antigenic peptide, ANYNFTLV. The CD8(+)-T-cell line specific for this peptide could recognize T. cruzi-infected cells in vitro and could protect naive mice from lethal infection when adoptively transferred. Coadministration of the interleukin-12 (IL-12) gene with the TSSA gene facilitated the induction of ANYNFTLV-specific CD8(+) T cells and improved the vaccine efficacy against lethal T. cruzi infection. These results reinforced the utility of immunomodulatory adjuvants such as IL-12 gene for eliciting protective immunity against intracellular parasites by DNA vaccination.
Collapse
Affiliation(s)
- Masaharu Katae
- Department of Respiratory Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ansari AA, Mayne AE, Sundstrom JB, Bostik P, Grimm B, Altman JD, Villinger F. Administration of recombinant rhesus interleukin-12 during acute simian immunodeficiency virus (SIV) infection leads to decreased viral loads associated with prolonged survival in SIVmac251-infected rhesus macaques. J Virol 2002; 76:1731-43. [PMID: 11799168 PMCID: PMC135900 DOI: 10.1128/jvi.76.4.1731-1743.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of recombinant rhesus interleukin-12 (rMamu-IL-12) administration during acute simian immunodeficiency virus SIVmac251 infection to influence the quality of the antiviral immune responses was assessed in rhesus macaques. Group I (n = 4) was the virus-only control group. Group II and III received a conditioning regimen of rMamu-IL-12 (10 and 20 microg/kg, respectively, subcutaneously [s.c.]) on days -2 and 0. Thereafter, group II received 2 microg of IL-12 per kg and group III received 10 microg/kg s.c. twice a week for 8 weeks. On day 0 all animals were infected with SIVmac251 intravenously. While all four group I animals and three of four group II animals died by 8 and 10 months post infection (p.i.), all four group III animals remained alive for >20 months p.i. The higher IL-12 dose led to lower plasma viral loads and markedly lower peripheral blood mononuclear cell and lymph node proviral DNA loads. During the acute viremia phase, the high-IL-12-dose monkeys showed an increase in CD3(-) CD8 alpha/alpha(+) and CD3(+) CD8 alpha/alpha(+) cells and, unlike the control and low-IL-12-dose animals, did not demonstrate an increase in CD4(+) CD45RA(+) CD62L(+) naive cells. The high-IL-12-dose animals also demonstrated that both CD8 alpha/alpha(+) and CD8 alpha/beta(+) cells produced antiviral factors early p.i., whereas only CD8 alpha/beta(+) cells retained this function late p.i. Long-term survival correlated with sustained high levels of SIV gag/pol and SIV env cytotoxic T lymphocytes and retention of high memory responses against nominal antigens. This is the first study to demonstrate the capacity of IL-12 to significantly protect macaques from SIV-induced disease, and it provides a useful model to more precisely identify correlates of virus-specific disease-protective responses.
Collapse
Affiliation(s)
- A A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|