1
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
3
|
Ferrari E, Naponelli V, Bettuzzi S. Lemur Tyrosine Kinases and Prostate Cancer: A Literature Review. Int J Mol Sci 2021; 22:ijms22115453. [PMID: 34064250 PMCID: PMC8196904 DOI: 10.3390/ijms22115453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The members of the Lemur Tyrosine Kinases (LMTK1-3) subfamily constitute a group of three membrane-anchored kinases. They are known to influence a wide variety of key cellular events, often affecting cell proliferation and apoptosis. They have been discovered to be involved in cancer, in that they impact various signalling pathways that influence cell proliferation, migration, and invasiveness. Notably, in the context of genome-wide association studies, one member of the LMTK family has been identified as a candidate gene which could contribute to the development of prostate cancer. In this review, of published literature, we present evidence on the role of LMTKs in human prostate cancer and model systems, focusing on the complex network of interacting partners involved in signalling cascades that are frequently activated in prostate cancer malignancy. We speculate that the modulators of LMTK enzyme expression and activity would be of high clinical relevance for the design of innovative prostate cancer treatment.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- Correspondence: ; Tel.: +39-0521-033-822
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
4
|
Cruz DF, Mitash N, Mu F, Farinha CM, Swiatecka-Urban A. Differential Gene Expression Analysis Reveals Global LMTK2 Regulatory Network and Its Role in TGF-β1 Signaling. Front Oncol 2021; 11:596861. [PMID: 33816229 PMCID: PMC8013980 DOI: 10.3389/fonc.2021.596861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Lemur tyrosine kinase 2 (LMTK2) is a transmembrane Ser/Thr kinase whose role has been increasingly recognized; however, when compared to other kinases, understanding of the LMTK2 networks and biological functions is still limited. Recent data have shown that transforming growth factor (TGF)-β1 plays a role in modulating LMTK2 function by controlling its endocytic trafficking in human bronchial epithelial cells. Here, we aimed to unveil the LMTK2 regulatory network and elucidate how it affects cellular functions and disease pathways in either TGF-β1 dependent or independent manner. To understand how the LMTK2 and TGF-β1 pathways interconnect, we knocked down (KD) LMTK2 using small(si)RNA-mediated silencing in human bronchial epithelial CFBE41o- cells, treated cells with TGF-β1 or vehicle control, and performed differential gene expression analysis by RNA sequencing (RNAseq). In vehicle-treated cells, LMTK2 KD affected expression of 2,506 genes while it affected 4,162 genes after TGF-β1 stimulation. Bioinformatics analysis shows that LMTK2 is involved in diverse cellular functions and disease pathways, such as cell death and survival, cellular development, and cancer susceptibility. In summary, our study increases current knowledge about the LMTK2 network and its intersection with the TGF-β1 signaling pathway. These findings will serve as basis for future exploration of the predicted LMTK2 interactions and signaling pathways.
Collapse
Affiliation(s)
- Daniel F Cruz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nilay Mitash
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
7
|
LMTK2 as Potential Biomarker for Stratification between Clinically Insignificant and Clinically Significant Prostate Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8820366. [PMID: 33488712 PMCID: PMC7803409 DOI: 10.1155/2021/8820366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
A set of prostate tumors tend to grow slowly and do not require active treatment. Therefore, stratification between patients with clinically significant and clinically insignificant prostate cancer (PC) remains a vital issue to avoid overtreatment. Fast development of genetic technologies accelerated development of next-generation molecular tools for reliable PC diagnosis. The aim of this study is to evaluate the diagnostic value of molecular biomarkers (CRISP3, LMTK2, and MSMB) for separation of PC cases from benign prostatic changes and more specifically for identification of clinically significant PC from all pool of PC cases in patients with rising PSA levels. Patients (n = 200) who had rising PSA (PSA II) after negative transrectal systematic prostate biopsy due to elevated PSA (PSA I) were eligible to the study. In addition to PSA concentration, PSA density was calculated for each patient. Gene expression level was measured in peripheral blood samples of cases applying RT-PCR, while MSMB (−57 C/T) polymorphism was identified by pyrosequencing. LMTK2 and MSMB significantly differentiated control group from both BPD and PC groups. MSMB expression tended to increase from the major alleles of the CC genotype to the minor alleles of the TT genotype. PSA density was the only clinical characteristic that significantly differentiated clinically significant PC from clinically insignificant PC. Therefore, LMTK2 expression and PSA density were significantly distinguished between clinically significant PC and clinically insignificant PC. PSA density rather than PSA can differentiate PC from the benign prostate disease and, in combination with LMTK2, assist in stratification between clinically insignificant and clinically significant PC.
Collapse
|
8
|
Bencze J, Szarka M, Bencs V, Szabó RN, Módis LV, Aarsland D, Hortobágyi T. Lemur Tyrosine Kinase 2 (LMTK2) Level Inversely Correlates with Phospho-Tau in Neuropathological Stages of Alzheimer's Disease. Brain Sci 2020; 10:E68. [PMID: 32012723 PMCID: PMC7071479 DOI: 10.3390/brainsci10020068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
: Alzheimer's disease (AD) is the most common neurodegenerative dementia. Mapping the pathomechanism and providing novel therapeutic options have paramount significance. Recent studies have proposed the role of LMTK2 in AD. However, its expression pattern and association with the pathognomonic neurofibrillary tangles (NFTs) in different brain regions and neuropathological stages of AD is not clear. We performed chromogenic (CHR) LMTK2 and fluorescent phospho-tau/LMTK2 double-labelling (FDL) immunohistochemistry (IHC) on 10-10 postmortem middle frontal gyrus (MFG) and anterior hippocampus (aHPC) samples with early and late neuropathological Braak tau stages of AD. MFG in early stage was our 'endogenous control' region as it is not affected by NFTs. Semiquantitative CHR-IHC intensity scoring revealed significantly higher (p < 0.001) LMTK2 values in this group compared to NFT-affected regions. FDL-IHC demonstrated LMTK2 predominance in the endogenous control region, while phospho-tau overburden and decreased LMTK2 immunolabelling were detected in NFT-affected groups (aHPC in early and both regions in late stage). Spearman's correlation coefficient showed strong negative correlation between phospho-tau/LMTK2 signals within each group. According to our results, LMTK2 expression is inversely proportionate to the extent of NFT pathology, and decreased LMTK2 level is not a general feature in AD brain, rather it is characteristic of the NFT-affected regions.
Collapse
Affiliation(s)
- János Bencze
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Szarka
- Horvath Csaba Memorial Institute of Bioanalytical Research, Research Centre for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Vitrolink Ltd., 4033 Debrecen, Hungary
- Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Hungary
| | - Viktor Bencs
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Nóra Szabó
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - László V. Módis
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| |
Collapse
|
9
|
Bencze J, Szarka M, Bencs V, Szabó RN, Smajda M, Aarsland D, Hortobágyi T. Neuropathological characterization of Lemur tyrosine kinase 2 (LMTK2) in Alzheimer's disease and neocortical Lewy body disease. Sci Rep 2019; 9:17222. [PMID: 31748522 PMCID: PMC6868282 DOI: 10.1038/s41598-019-53638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and neocortical Lewy body disease (LBD) are the most common neurodegenerative dementias, with no available curative treatment. Elucidating pathomechanism and identifying novel therapeutic targets are of paramount importance. Lemur tyrosine kinase 2 (LMTK2) is involved in several physiological and pathological cellular processes. Herewith a neuropathological characterization is presented in AD and neocortical LBD samples using chromogenic and fluorescent LMTK2 immunohistochemistry on post-mortem brain tissues and compared them to age-matched controls (CNTs). LMTK2 immunopositivity was limited to the neuronal cytoplasm. Neurons, including tau-positive tangle-bearing ones, showed decreased chromogenic and immunofluorescent labelling in AD in every cortical layer compared to CNT and neocortical LBD. Digital image analysis was performed to measure the average immunopositivity of groups. Mean grey values were calculated for each group after measuring the grey scale LMTK2 signal intensity of each individual neuron. There was significant difference between the mean grey values of CNT vs. AD and neocortical LBD vs. AD. The moderate decrease in neocortical LBD suggests the effect of coexisting AD pathology. We provide neuropathological evidence on decreased neuronal LMTK2 immunolabelling in AD, with implications for pathogenesis.
Collapse
Affiliation(s)
- János Bencze
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Máté Szarka
- Horvath Csaba Memorial Institute of Bioanalytical Research, Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Vitrolink Ltd., Debrecen, Hungary
| | - Viktor Bencs
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renáta Nóra Szabó
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary.
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
10
|
Cruz DF, Farinha CM, Swiatecka-Urban A. Unraveling the Function of Lemur Tyrosine Kinase 2 Network. Front Pharmacol 2019; 10:24. [PMID: 30761001 PMCID: PMC6361741 DOI: 10.3389/fphar.2019.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Lemur Tyrosine Kinase 2 (LMTK2) is a recently cloned transmembrane protein, actually a serine/threonine kinase named after the Madagascar primate lemur due to the long intracellular C-terminal tail. LMTK2 is relatively little known, compared to other kinases but its role has been increasingly recognized. Published data show that LMTK2 regulates key cellular events, including endocytic trafficking, nerve growth factor signaling, apoptosis, and Cl- transport. Abnormalities in the expression and function of LMTK2 are associated with human disease, such as neurodegeneration, cancer and infertility. We summarized the current state of knowledge on LMTK2 structure, regulation, interactome, intracellular localization, and tissue expression and point out future research directions to better understand the role of LMTK2.
Collapse
Affiliation(s)
- Daniel F. Cruz
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
- Department of Nephrology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M. Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
| | | |
Collapse
|
11
|
Bencze J, Mórotz GM, Seo W, Bencs V, Kálmán J, Miller CCJ, Hortobágyi T. Biological function of Lemur tyrosine kinase 2 (LMTK2): implications in neurodegeneration. Mol Brain 2018; 11:20. [PMID: 29631601 PMCID: PMC5891947 DOI: 10.1186/s13041-018-0363-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family. Although it was described more than a decade ago, our knowledge on LMTK2’s biological functions is still insufficient. Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an Alzheimer’s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near future. However, further investigations are required to clarify the exact biological functions of this unique protein.
Collapse
Affiliation(s)
- János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Gábor Miklós Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Woosung Seo
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Viktor Bencs
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - János Kálmán
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Christopher Charles John Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary. .,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary. .,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
12
|
Ferrari N, Granata I, Capaia M, Piccirillo M, Guarracino MR, Venè R, Brizzolara A, Petretto A, Inglese E, Morini M, Astigiano S, Amaro AA, Boccardo F, Balbi C, Barboro P. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun Signal 2017; 15:51. [PMID: 29216878 PMCID: PMC5721601 DOI: 10.1186/s12964-017-0206-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. Methods Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. Results Treating the androgen-responsive LNCaP cell line for over a year with 10 μM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. Conclusions Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value. Electronic supplementary material The online version of this article (10.1186/s12964-017-0206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Marina Piccirillo
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Antonella Brizzolara
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Simonetta Astigiano
- Immunology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Adriana Agnese Amaro
- Molecular Pathology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Balbi
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
13
|
Butler EC, Bradbury NA. Signal dependent ER export of lemur tyrosine kinase 2. BMC Cell Biol 2015; 16:26. [PMID: 26559041 PMCID: PMC4642647 DOI: 10.1186/s12860-015-0072-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The membrane anchored kinase, LMTK2, is a serine/threonine kinase predominantly localized to endosomal compartments. LMTK2 has been shown to be involved in the trafficking of the CFTR ion channel, the androgen receptor, as well as modulating neurodegeneration. As a membrane anchored protein, LMTK2 must be exported from the ER, yet the mechanisms whereby LMTK2 is sequestered within the ER for efficient export are unknown. METHODS Sequence analysis of the carboxyl tail of LMTK2 revealed a putative di-acidic ER export motif. Site-directed mutagenesis was utilized to ablate this potential motif. Subcellular fractionation, immunofluorescence microscopy, and transferrin recycling assays were used to determine the consequence of mutating LMTK2's export motif. RESULTS Mutation of the di-acidic export motif led to ER retention of LMTK2, and an increase in protein half-life and a concomitant loss of LMTK2 from its appropriate terminal destination. Loss of LMTK2 from endosomal compartments by preventing its release from the ER is linked to a reduction in transferrin recycling. CONCLUSIONS We have identified a di-acidic ER export motif within the carboxyl tail of the membrane anchored kinase LMTK2. This sequence is used by LMTK2 for its efficient export from the ER.
Collapse
Affiliation(s)
- E C Butler
- Department of Physiology and Biophysics, Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|