1
|
Ho MS. Clearance Pathways for α-Synuclein in Parkinson's Disease. J Neurochem 2025; 169:e70124. [PMID: 40509661 PMCID: PMC12163304 DOI: 10.1111/jnc.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/18/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
Protein aggregation and accumulation are hallmark features of neurodegenerative diseases. In Parkinson's disease, the progressive formation and propagation of α-synuclein aggregates-found in Lewy bodies and Lewy neurites-are closely linked to widespread neuronal dysfunction, dopaminergic neuron loss, and the emergence of both motor and nonmotor symptoms, including anosmia, cognitive decline, and depression. Despite their pathological significance, the mechanisms underlying the formation, spread, and clearance of these aggregates remain incompletely understood. In this review, we examine the cellular and molecular pathways responsible for the elimination of protein aggregates in the diseased brain. We first summarize various experimental models of α-synuclein pathology, followed by a discussion of the degradation mechanisms in neurons and glial cells under pathological conditions. These findings offer new insights into cell type-specific clearance pathways and highlight potential therapeutic targets for mitigating α-synuclein-associated toxicity in Parkinson's disease.
Collapse
Affiliation(s)
- Margaret S. Ho
- Institute of NeuroscienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Yoo DM, Kang HS, Kim JH, Kim JH, Choi HG, Han KM, Kim NY, Bang WJ, Kwon MJ. Reduced Risk of Benign Paroxysmal Positional Vertigo in Patients with Parkinson's Disease: A Nationwide Korean Cohort Study. Healthcare (Basel) 2025; 13:1145. [PMID: 40427981 PMCID: PMC12111398 DOI: 10.3390/healthcare13101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) and benign paroxysmal positional vertigo (BPPV) are both prevalent in the geriatric population. While dizziness is a common non-motor symptom in PD, the relationship between PD and incident BPPV remains unclear. Limited data suggest potential shared mechanisms, including mitochondrial dysfunction and oxidative stress, but large-scale epidemiological evidence is lacking. This investigation focused on assessing the incidence of BPPV in patients with PD compared to matched controls using a nationwide cohort. Methods: Data from the Korean National Health Insurance Service-Health Screening Cohort were used to perform a retrospective cohort analysis. We identified 8232 newly diagnosed PD patients and matched them 1:4 with 32,928 controls based on age, sex, income, and residential region. Stratified Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incident BPPV. Subgroup and Kaplan-Meier analyses were also performed. Results: Over 220,151 person-years of follow-up revealed a lower incidence of BPPV in the PD group relative to the control group (4.98 vs. 5.95 per 1000 person-years); the corresponding adjusted HR was 0.77 (95% CI: 0.66-0.90; p = 0.001), indicating a 23% reduced risk. The inverse association remained consistent across most subgroups, including older adults and rural residents. Kaplan-Meier analysis further illustrated a significant decline in the cumulative incidence of BPPV in PD patients (p = 0.007). Conclusions: PD may contribute to a lower incidence of BPPV, which could be explained by reduced mobility, altered vestibular function, or diagnostic challenges. Clinicians should consider BPPV in PD patients presenting with dizziness.
Collapse
Affiliation(s)
- Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (D.M.Y.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Ho Suk Kang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Hyo Geun Choi
- Suseo Seoul E.N.T. Clinic, 10, Bamgogae-ro 1-gil, Gangnam-gu, Seoul 06349, Republic of Korea;
| | - Kyeong Min Han
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (D.M.Y.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea;
| | - Woo Jin Bang
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Mi Jung Kwon
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
3
|
Krueger ME, Boles JS, Simon ZD, Alvarez SD, McFarland NR, Okun MS, Zimmermann EM, Forsmark CE, Tansey MG. Comparative analysis of Parkinson's and inflammatory bowel disease gut microbiomes reveals shared butyrate-producing bacteria depletion. NPJ Parkinsons Dis 2025; 11:50. [PMID: 40108151 PMCID: PMC11923181 DOI: 10.1038/s41531-025-00894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Epidemiological studies reveal that inflammatory bowel disease (IBD) is associated with an increased risk of Parkinson's disease (PD). Gut dysbiosis has been documented in both PD and IBD, however it is currently unknown whether gut dysbiosis underlies the epidemiological association between both diseases. To identify shared and distinct features of the PD and IBD microbiome, we recruited 54 PD, 26 IBD, and 16 healthy control individuals and performed the first joint analysis of gut metagenomes. Larger, publicly available PD and IBD metagenomic datasets were also analyzed to validate and extend our findings. Depletions in short-chain fatty acid (SCFA)-producing bacteria, including Roseburia intestinalis, Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium rectale, as well depletion in SCFA-synthesis pathways were detected across PD and IBD datasets, suggesting that depletion of these microbes in IBD may influence the risk for PD development.
Collapse
Affiliation(s)
- Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zachary D Simon
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stephan D Alvarez
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher E Forsmark
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Basri AM, Turki AF. Evaluating Heart Rate Variability as a Biomarker for Autonomic Function in Parkinson's Disease Rehabilitation: A Clustering-Based Analysis of Exercise-Induced Changes. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:527. [PMID: 40142338 PMCID: PMC11944220 DOI: 10.3390/medicina61030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Background: Heart rate variability (HRV) is a key biomarker reflecting autonomic nervous system (ANS) function and neurocardiac regulation. Reduced HRV has been associated with cardiovascular risk, neurodegenerative disorders, and autonomic dysfunction. In Parkinson's disease (PD), HRV impairments indicate altered autonomic balance, which may be modifiable through structured exercise interventions. This study investigates the effects of aerobic exercise on HRV in patients with PD and evaluates autonomic adaptations to rehabilitation. Methods: A total of 110 patients with PD (55 male, 55 female) participated in a supervised three-month aerobic exercise program. HRV was assessed pre- and post-intervention using electrocardiogram (ECG) recordings. Time-domain and frequency-domain HRV metrics, including standard deviation of RR intervals (SDRR), very-low-frequency (VLF), low-frequency (LF), high-frequency (HF) power, and LF/HF ratio, were analyzed. Principal Component Analysis (PCA) and clustering techniques were applied to identify subgroups of HRV responders based on autonomic adaptation. Results: Significant improvements in HRV were observed post-intervention, with a reduction in LF/HF ratio (p < 0.05), indicating improved autonomic balance. Cluster analysis identified four distinct HRV response subgroups: Strong Responders, Moderate Responders, Mixed/Irregular Responders, and Low Responders. These findings highlight individual variability in autonomic adaptations to exercise. PCA revealed that key HRV parameters contribute differently to autonomic regulation, emphasizing the complexity of HRV changes in PD rehabilitation. Conclusions: This study demonstrates that aerobic exercise induces beneficial autonomic adaptations in PD patients, as reflected by HRV changes. The identification of response subgroups suggests the need for personalized rehabilitation strategies to optimize autonomic function. Further research is warranted to explore the long-term impact of HRV-guided rehabilitation interventions in PD management.
Collapse
Affiliation(s)
- Ahmed M. Basri
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmad F. Turki
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Avagliano C, De Caro C, Cuozzo M, Roberti R, Russo E, La Rana G, Russo R. Sodium Butyrate ameliorates pain and mood disorders in a mouse model of Parkinson disease. Biomed Pharmacother 2025; 184:117903. [PMID: 39938349 DOI: 10.1016/j.biopha.2025.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Pain is one of non-motor features of Parkinson's disease (PD) that significantly impacts on patients' quality of life and increases the risk of developing psychiatric disorders. The mechanisms underlying pain in PD are poorly understood and the classic pharmacological treatments supplying to dopamine depletion have limited therapeutic effects on this symptom. It has been demonstrated that short chain fatty acids (SCFAs) play a key role in several central nervous system diseases including PD; low serum and faecal levels of SCFAs have been described in PD patients. Among SCFAs, the gut microbial metabolite butyrate has a neuroprotective and anti-inflammatory effect, influencing neurological and behavioural processes. Using a 6-hydroxydopamine (6-OHDA) induced-PD mouse model, we evaluated the effects of sodium butyrate (BuNa) treatment on pain and mood-related behaviour, exporing the role of PPARs, opioid and endocannabinoid systems. Our results demonstrated that repeated BuNa treatment (100 mg/kg po) in PD-mice reduced pain hypersensitivity as well as depressive- and anxiety-lke behaviour both on day 7 and day 14 after 6-OHDA injection. Moreover, AM281(CB1R antagonist), GW6471 (PPAR-alpha antagonist), and naloxone (opioid receptor antagonist), reduced BuNa efficacy. Finally, BuNa treatment was associated with a significant reduction of pro-inflammatory cytokines at spinal and supraspinal levels. In conclusion, our results demonstrate that increasing endogenous butyrate concentration reduces PD comorbidities such as pain and psychiatric symptoms, restoring opioidergic and endocannabinergic pathways.
Collapse
Affiliation(s)
- Carmen Avagliano
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Mariarosaria Cuozzo
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Anatomy and Neuroscience, APC Microbiome, University Collage of Cork, Ireland.
| | - Roberta Roberti
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| |
Collapse
|
6
|
Beauchamp LC, Ellett LJ, Juan SMA, Liu XM, Hunt CPJ, Parish CL, Jacobson LH, Shepherd CE, Halliday GM, Bush AI, Vella LJ, Finkelstein DI, Barnham KJ. Evidence of COMT dysfunction in the olfactory bulb in Parkinson's disease. Acta Neuropathol 2025; 149:21. [PMID: 40024917 PMCID: PMC11872990 DOI: 10.1007/s00401-025-02861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hyposmia is one of the most prevalent non-motor symptoms of Parkinson's disease and antecedes motor dysfunction by up to a decade. However, the underlying pathophysiology remains poorly understood. In this study, we investigated the mechanisms of dopamine metabolism in post-mortem olfactory bulbs from ten Parkinson's disease and ten neurologic control subjects. In contrast to the loss of dopaminergic neurons in the midbrain, we observed an increase in tyrosine hydroxylase-positive neurons in the Parkinson's disease olfactory bulb, suggesting a potential role for dopamine in the hyposmia associated with the condition. Using immunohistochemistry, high-performance liquid chromatography, western blot, and enzyme-linked immunosorbent assays, we demonstrate a reduction in catechol-O-methyltransferase catabolism of dopamine to homovanillic acid, potentially due to a depletion of the methyl donor substrate S-adenosyl methionine. We hypothesized that reduction in catechol-O-methyltransferase activity would result in increased dopamine occupation of the D2 receptor, and consequent inhibition of olfactory processing. Next, we conducted pharmacological interventions to modify dopamine dynamics in hyposmic tau knockout mice, which exhibit altered dopamine metabolism. Our hypothesis was supported by the observation that the D2 receptor antagonist haloperidol temporarily alleviated olfactory deficits in these tau knockout mice. This study implicates a potential role of catechol-O-methyltransferase-mediated dopamine metabolism in the early olfactory impairments associated with Parkinson's disease.
Collapse
Affiliation(s)
- Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Ellett
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiang M Liu
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney Brain and Mind Centre, Camperdown, NSW, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Surgery, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kevin J Barnham
- The Florey Institute of Neuroscience and Mental Health, and The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
7
|
Tait P, Graham L, Vitorio R, Watermeyer T, Timm EC, O'Keefe J, Stuart S, Morris R. Neuroimaging and cognitive correlates of postural control in Parkinson's disease: a systematic review. J Neuroeng Rehabil 2025; 22:24. [PMID: 39920722 PMCID: PMC11806873 DOI: 10.1186/s12984-024-01539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025] Open
Abstract
Parkinson's disease (PD) can cause postural instability, which may result in falls. These issues have been associated with motor and non-motor symptoms (NMS), including cognitive dysfunction. Several techniques have been employed to investigate the underlying neural mechanisms involved in postural control in PD. These include behavioural studies assessing associations between cognition and postural control, functional neuroimaging studies, and resting-state neural correlates. This review provides an overview of these emerging bodies of research. Scopus, PubMed, and ProQuest were searched and detailed the brain-imaging technique, cohort, and postural control measures. A total of 79 studies were identified. Findings supported the notion of cortical involvement in postural control function to compensate for subcortical damage resulting from PD. Future studies should standardise their outcome measures and data analysis to allow comparisons of results across studies and ensure more comprehensive and robust data collection to enhance the reliability and validity of these findings.
Collapse
Affiliation(s)
- Patrick Tait
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
| | - Lisa Graham
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Rodrigo Vitorio
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Tamlyn Watermeyer
- Department of Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - Emily C Timm
- Department of Anatomy & Cell Biology, RUSH University Medical Center, Chicago, IL, USA
| | - Joan O'Keefe
- Department of Anatomy & Cell Biology, RUSH University Medical Center, Chicago, IL, USA
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
- Department of Neurology, Oregon Health & Science University, Oregon, UK
| | - Rosie Morris
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK.
| |
Collapse
|
8
|
Tenchov R, Sasso JM, Zhou QA. Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives. ACS OMEGA 2025; 10:1864-1892. [PMID: 39866628 PMCID: PMC11755173 DOI: 10.1021/acsomega.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors. The therapies available at present alleviate symptoms but do not stop the disease's advancement. Research endeavors are currently directed at inventing disease-controlling therapies that aim at the inherent mechanisms of PD. PD biomarker breakthroughs hold enormous potential: earlier diagnosis, better monitoring, and targeted treatment based on individual response could significantly improve patient outcomes and ease the burden of this disease. PD research is an active and evolving field, focusing on understanding disease mechanisms, identifying biomarkers, developing new treatments, and improving care. In this report, we explore data from the CAS Content Collection to outline the research progress in PD. We analyze the publication landscape to offer perspective into the latest expertise advancements. Key emerging concepts are reviewed and strategies to fight disease evaluated. Pharmacological targets, genetic risk factors, as well as comorbid diseases are explored, and clinical usage of products against PD with their production pipelines and trials for drug repurposing are examined. This review aims to offer a comprehensive overview of the advancing landscape of the current understanding about PD, to define challenges, and to assess growth prospects to stimulate efforts in battling the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
9
|
Lee HM, Lee DH, Lee HG, Kwon S, Cho SY, Jung WS, Moon SK, Park JM, Ko CN, Park SU. Functional neural substrates of Parkinson's disease and potential underpinnings of acute responses to acupuncture stimulation. Neuroscience 2024; 562:148-159. [PMID: 39447671 DOI: 10.1016/j.neuroscience.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Parkinson's disease is a heterogenous neurodegenerative disorder with a wide variety of motor and non-motor symptoms. This study used resting-state fMRI to identify the neural substrates of PD and explore the acute neural response to acupuncture stimulation in 74 participants (50 patients with PD and 24 healthy controls). All participants with PD were evaluated for the severity of symptoms using the Unified Parkinson's Disease Rating Scale and Balance Master. The z-transformed fractional amplitude of low-frequency fluctuation analysis showed significant differences between the PD and healthy controls in the cerebellar regions, which are thought to play a crucial role in PD pathology. Subsequently, seed-based functional connectivity of the cerebellum with the frontal, parietal, and limbic regions was identified as a potential diagnostic marker for PD. In addition, spontaneous neural activity in the precentral gyrus and thalamus was significantly associated with the severity of PD symptoms. Neural activity in the precentral gyrus, precuneus, and superior temporal gyrus showed a significant correlation with Balance Master indicators. Finally, acupuncture stimulation at GB34 significantly reduced the activity of the occipital regions in patients with PD, but this effect was not observed in healthy controls. The mixed-effects analysis revealed an interaction effects between group and acupuncture stimulation, suggesting that the modulatory effects of acupuncture could differ depending on disease status. Therefore, this study suggests the neural substrates of PD and potential underpinnings of acute neural response to acupuncture stimulation.
Collapse
Affiliation(s)
- Hyoung-Min Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 02453 Seoul, South Korea
| | - Dong-Hyuk Lee
- Department of Anatomy, College of Korean Medicine, Sangji University, 26339 Wonju, South Korea; Research Institute of Korean Medicine, Sangji University, 26339 Wonju, South Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, 02453 Seoul, South Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, 02453 Seoul, South Korea; Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea; Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 05278 Seoul, South Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, 02453 Seoul, South Korea; Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, 02453 Seoul, South Korea; Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea; Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 05278 Seoul, South Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea; Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 05278 Seoul, South Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 02453 Seoul, South Korea; Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 05278 Seoul, South Korea.
| |
Collapse
|
10
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
11
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
12
|
Soares NM, da Silva PHR, Pereira GM, Leoni RF, Rieder CRDM, Alva TAP. Diffusion tensor metrics, motor and non-motor symptoms in de novo Parkinson's disease. Neuroradiology 2024; 66:1955-1966. [PMID: 39190159 DOI: 10.1007/s00234-024-03452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons' degeneration of the substantia nigra, presenting with motor and non-motor symptoms. We hypothesized that altered diffusion metrics are associated with clinical symptoms in de novo PD patients. METHODS Fractional Anisotropy (FA) and Mean (MD), Axial (AD), and Radial Diffusivity (RD) were assessed in 55 de novo PD patients (58.62 ± 9.85 years, 37 men) and 55 age-matched healthy controls (59.92 ± 11.25 years, 34 men). Diffusion-weighted images and clinical variables were collected from the Parkinson's Progression Markers Initiative study. Tract-based spatial statistics were used to identify white matter (WM) changes, and fiber tracts were localized using the JHU-WM tractography atlas. Motor and non-motor symptoms were evaluated in patients. RESULTS We observed higher FA values and lower RD values in patients than controls in various fiber tracts (p-TFCE < 0.05). No significant MD or AD difference was observed between groups. Diffusion metrics of several regions significantly correlated with non-motor (state and trait anxiety and daytime sleepiness) and axial motor symptoms in the de novo PD group. No correlations were observed between diffusion metrics and other clinical symptoms evaluated. CONCLUSION Our findings suggest microstructural changes in de novo PD fiber tracts; however, limited associations with clinical symptoms reveal the complexity of PD pathology. They may contribute to understanding the neurobiological changes underlying PD and have implications for developing targeted interventions. However, further longitudinal research with larger cohorts and consideration of confounding factors are necessary to elucidate the underlying mechanisms of these diffusion alterations in de novo PD.
Collapse
Affiliation(s)
- Nayron Medeiros Soares
- Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil.
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil.
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, RS, Brazil.
| | - Pedro Henrique Rodrigues da Silva
- Serviço Interdisciplinar de Neuromodulação do Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Gabriela Magalhães Pereira
- Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, RS, Brazil
| | - Renata Ferranti Leoni
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, USP, Ribeirao Preto, SP, Brazil
| | - Carlos Roberto de Mello Rieder
- Departamento de Clínica Médica, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
- Serviço de Neurologia, Irmandade Santa Casa de Misericórdia de Porto Alegre, ISCMPA, Porto Alegre, RS, Brazil
| | - Thatiane Alves Pianoschi Alva
- Departamento de Ciências Exatas e Sociais Aplicadas, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Onder H, Comoglu S. Prevalence and clinical correlates of nonmotor symptoms in Parkinson's disease in a tertiary health-care center in Turkey. Neurol Res 2024; 46:1054-1062. [PMID: 39193879 DOI: 10.1080/01616412.2024.2381162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE The objective was to determine the prevalence and clinical correlates of nonmotor symptoms in Parkinson's disease patients in movement disorders outpatient clinics. METHODS We enrolled all consecutive PD patients who visited our movement disorders outpatient clinics between January and December 2023; and agreed to participate in the study. In addition to the evaluation of demographic and clinical features, clinical scales, including the MDS-UPDRS, NMSS, and FOOGQ, were performed. RESULTS Overall, we enrolled 163 PD subjects with a mean age of 63.9 ± 10.4 (F/M = 27/136). The disease duration was 3.5 (20) y [median (range)]. The median score of the NMSS was 41 points. The NMSs burden levels were severe in 25.2%, and very severe in 25.2% of the subjects. The subitems with the highest scores were sleep/fatigue, mood/cognition, urinary, and miscellaneous. The analyses within the patient group with newly diagnosed PD also revealed high NMSS scores. Comparisons of the NMSS between distinct PD stages revealed greater NMSS scores in the severe stage than in the mild stage (p = 0.001). Correlation analyses between the clinical scores and the NMSS scores revealed positive correlations between the NMSS scores and the scores on all the clinical scales including the MDS-UPDRS 1-4, and FOGQ. CONCLUSION We reported the first data regarding the NMS burden in PD patients from Turkey. We found a high prevalence and severity of various domains of NMSs, most of which were sleep/fatigue, mood/cognition, urinary, and miscellaneous. More than half of the patients had severe to very severe NMS burden. Although NMSs were more common severe-stage disease, they were also prevalent in the subgroup with newly diagnosed patients.
Collapse
Affiliation(s)
- H Onder
- Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - S Comoglu
- Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
14
|
Shen B, Yao Q, Zhang Y, Jiang Y, Wang Y, Jiang X, Zhao Y, Zhang H, Dong S, Li D, Chen Y, Pan Y, Yan J, Han F, Li S, Zhu Q, Zhang D, Zhang L, Wu Y. Static and Dynamic Functional Network Connectivity in Parkinson's Disease Patients With Postural Instability and Gait Disorder. CNS Neurosci Ther 2024; 30:e70115. [PMID: 39523453 PMCID: PMC11551039 DOI: 10.1111/cns.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS The exact cause of the parkinsonism gait remains uncertain. We first focus on understanding the underlying neurological reasons for these symptoms through the examination of both static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC). METHODS We recruited 64 postural instability and gait disorder-dominated Parkinson's disease (PIGD-PD) patients, 31 non-PIGD-PD (nPIGD-PD) patients, and 54 healthy controls (HC) from Nanjing Brain Hospital. The GIFT software identified five distinct independent components: the basal ganglia (BG), cerebellum (CB), sensory networks (SMN), default mode network (DMN), and central executive network (CEN). We conducted a comparison between the SFNC and DFNC of the five networks and analyzed their correlations with postural instability and gait disorder (PIGD) symptoms. RESULTS Compared with nPIGD-PD patients, the PIGD-PD patients demonstrated reduced connectivity between CEN and DMN while spending less mean dwell time (MDT) in state 4. This is characterized by strong connections. Compared with HC, PIGD-PD patients exhibited enhanced connectivity in the SFNC between CB and CEN, as well as the network between CB and DMN. Patients with PIGD-PD spent more MDT in state 1, which is characterized by few connections, and less MDT in state 4. In state 3, there was an increase in the functional connectivity between the CB and DMN in patients with PIGD-PD. The nPIGD patients showed increased SFNC connectivity between CB and DMN compared to HC. These patients spent more MDT in state 1 and less in state 4. The MDT and fractional windows of state 2 showed a positive link with PIGD scores. CONCLUSION Patients with PIGD-PD exhibit a higher likelihood of experiencing reduced brain connectivity and impaired information processing. The enhanced connection between the cerebellum and DMN networks is considered a type of dynamic compensation.
Collapse
Affiliation(s)
- Bo Shen
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- Department of NeurologyShanghai General Hospital of Nanjing Medical UniversityShanghaiChina
| | - Qun Yao
- Department of NeurologyAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yixuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationChina
- International Joint Laboratory for Drug Target of Critical Illnesses, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yinyin Jiang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaxi Wang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xu Jiang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Zhao
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Haiying Zhang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuangshuang Dong
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Dongfeng Li
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaning Chen
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Pan
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun Yan
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Feng Han
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- International Joint Laboratory for Drug Target of Critical Illnesses, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Shengrong Li
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Qi Zhu
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Daoqiang Zhang
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Li Zhang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yun‐cheng Wu
- Department of NeurologyShanghai General Hospital of Nanjing Medical UniversityShanghaiChina
| |
Collapse
|
15
|
Stamenović J, Živadinović B, Đurić V. Clinical characteristics and treatment of psychosis in Parkinson's disease: A narrative review. J Chin Med Assoc 2024; 87:972-979. [PMID: 39118220 DOI: 10.1097/jcma.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive, neurodegenerative disorder whose clinical presentation consists of motor and non-motor signs and symptoms. Among the non-motor symptoms, psychosis can occur in the later stages of the disease. Psychosis in PD (PDP) is a common, complex, and significantly disabling disorder associated with poorer quality of life, accelerated cognitive decline, need for hospitalization or institutionalization, and mortality. Hallucinations are a significant symptom of PDP, sporadic at first but more frequent in the later course of the disease, and significantly disrupt daily activities. Appropriate and timely screening of psychotic manifestations is necessary for adequate therapeutic procedures. After the exclusion of comorbid conditions as a possible cause of psychosis, correction of antiparkinsonian therapy may be required, and if necessary, the introduction of antipsychotics. The latest therapeutic recommendations include the use of pimavanserin, if available, otherwise second-generation or atypical antipsychotics. Although PDP has long been recognized as a possible complication in the course of the disease, further clinical studies are needed to fully understand its etiopathogenesis and pathophysiological mechanisms.
Collapse
Affiliation(s)
- Jelena Stamenović
- Medical Faculty, Department of Neurology, University of Niš, Niš, Serbia
- Clinic of Neurology, University Clinical Center of Niš, Niš, Serbia
| | - Biljana Živadinović
- Medical Faculty, Department of Neurology, University of Niš, Niš, Serbia
- Clinic of Neurology, University Clinical Center of Niš, Niš, Serbia
| | | |
Collapse
|
16
|
Zaigham SB, Paeng DG. Effects of Mucuna pruriens (L.) DC. and Levodopa in Improving Parkinson's Disease in Rotenone Intoxicated Mice. Curr Issues Mol Biol 2024; 46:9234-9244. [PMID: 39194762 DOI: 10.3390/cimb46080545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease after Alzheimer's disease. Mucuna pruriens (L.) DC. (MP) is a plant that contains Levodopa (L-DOPA) and has been known to improve the symptoms of PD. In this preliminary study, we investigated the anti-parkinsonian potential of MP to compare the effects of L-DOPA. We first developed an in vivo model of the PD in C57BL/6 male mice using rotenone. A total of twelve mice were used for this experiment. Nine mice were injected with rotenone (28 mg/kg) daily for 28 days. The mice experiments were performed to validate the effectiveness of MP to treat PD. Synthetic L-DOPA in a ratio of 1:20 with MP was used as MP contains 5% L-DOPA by weight in it. MP and L-DOPA were injected for 19 days on a daily basis. Cognitive function was evaluated using beam balance and olfactory tests. Serum analysis was performed using serum enzyme-linked immunosorbent assay (ELISA) analysis test. IL-12, IL-6, and TGF-β 1 were evaluated to validate the PD inducement and treatment. The levels of IL-12, IL-6, and TGF-β1 (p < 0.0001) in the PD mice group were significantly higher than those in the control group. The PD mice also showed higher latencies in beam balance and olfactory tests (p < 0.0001) compared to the control group. Both MP and L-DOPA-treated groups showed alleviation in latencies in beam balance and olfactory tests and decreased neuroinflammation in ELISA analysis (p < 0.001). The results treated by MP and L-DOPA showed insignificant differences in their values (p > 0.05). This proved that the MP and L-DOPA had similar effects in improving the symptoms of PD when used in the ratio of 1:20. Furthermore, both MP and L-DOPA reduced the level of IL-6 and TGF-β1 in this study. It may be inferred that a reduction in the level of IL-6 and TGF-β1 eventually leads to a reduction in the Th17 cells. The pathogenic Th17 is thought to be present in virtually all chronic inflammatory disorders. This can be an interesting area of research in further understanding the immunological effect of MP in ameliorating PD symptoms.
Collapse
Affiliation(s)
- Sheher Bano Zaigham
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
17
|
Turcu-Stiolica A, Naidin MS, Halmagean S, Ionescu AM, Pirici I. The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson's Disease-A Pilot Study in Romania. Diagnostics (Basel) 2024; 14:1609. [PMID: 39125485 PMCID: PMC11311973 DOI: 10.3390/diagnostics14151609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies have shown that the levodopa treatment of Parkinson's disease (PD) elevates circulating homocysteine levels, which are associated with an increased risk of cardiovascular and neurological disorders, or thrombosis. The present trial aimed to examine whether the intake of vitamin B12, folic acid, and vitamin D3 supplements improved homocysteine level and quality of life (QoL). MATERIALS AND METHODS An interventional prospective trial was conducted in multiple centers across Romania. Participants with clinically established PD taking at least 300 mg/day of levodopa for more than 1 year received a daily tablet of a supplement containing 800 UI of vitamin D3, 1000 µg of folic acid, and 15 µg of vitamin B12. They were followed for 6 months and their serum homocysteine, vitamin B12, vitamin D, and QoL scores were measured at baseline and at 6 months of treatment. QoL was measured using a 15D questionnaire, which assesses mobility, vision, hearing, breathing, sleeping, eating, speech, excretion, usual activities, mental function, discomfort and symptoms, depression, distress, vitality, and sexual activity. RESULTS Twenty-four PD patients with a mean age of 71 ± 5.04 years (54.2% male and 45.8% female) finished the study. After the intervention, the mean score of speech, mental function, discomfort and symptoms, depression, and QoL significantly increased (p < 0.05 for all). Also, the serum homocysteine and vitamin D were significantly enhanced (p < 0.0001 and p = 0.025, respectively). Changes in vitamin B12 were not statistically significant at 6 months of treatment (p = 0.996). No gender differences were found among the changes that we have demonstrated for homocysteine, vitamin B12, vitamin D, and QoL levels (p < 0.05 for all). CONCLUSIONS The findings of this study showed that the dietary intake of vitamin B12, folic acid, and vitamin D3 remarkably decreased the dimensions of homocysteine and finally increased the total score of QoL in PD patients. We have successfully captured the potential benefits of the supplementation regimen over time and provided insights into the broader implications for managing PD with a focus on nutritional support.
Collapse
Affiliation(s)
- Adina Turcu-Stiolica
- Pharmaceutical Management and Marketing, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela-Simona Naidin
- Pharmaceutical Management and Marketing, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Ana Maria Ionescu
- Department of Neurology, Ovidius University, 900123 Constanta, Romania;
| | - Ionica Pirici
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
18
|
Selvaraj DB, Panneerselvam A, Vergil Andrews JF, Kandasamy M. Cysteamine HCl Administration Impedes Motor and Olfactory Functions, Accompanied by a Reduced Number of Dopaminergic Neurons, in Experimental Mice: A Preclinical Mimetic Relevant to Parkinson's Disease. Brain Sci 2024; 14:632. [PMID: 39061373 PMCID: PMC11275195 DOI: 10.3390/brainsci14070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Cysteamine hydrochloride (Cys-HCl) has been established as a potent ulcerogenic agent of the gastrointestinal (GI) system. GI dysfunction and olfactory deficits are the most common clinical symptoms of many movement disorders, including Parkinson's disease (PD). Cys-HCl has been shown to interfere with dopamine, a neurotransmitter crucial for motor, olfactory, and cognitive functions. However, the reports on the effect of Cys-HCl treatment on the behavioral aspects and functions of the dopamine system appear to be inconsistent. Therefore, we revisited the impact of Cys-HCl on the motor function in experimental mice using a battery of behavioral tests, such as the pole test (PT), beam-walking test (BWT), and rotarod test (RDT), while the olfactory ability and cognitive functions were examined through the buried-food test (BFT) and Y-maze test. Furthermore, we investigated the effect of Cys-HCl on the number of dopaminergic tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and olfactory bulb (OB) of the experimental mice using immunohistochemistry. The results revealed that Cys-HCl administration in the mice induced significant impairments in their motor balance and coordination, as their movement-related performances were markedly reduced in terms of the behavioral tasks. Mice exposed to Cys-HCl showed pronounced reductions in their odor discrimination abilities as well as cognitive impairments. Strikingly, the number of TH-positive neurons was found to be reduced in the SN and OB of the Cys-HCl-treated group, which is a bonafide neuropathogenic hallmark of PD. This study highlights the potential neurotoxic effects of Cys-HCl in experimental brains and suggests further investigation into its role in the pathogenesis of Parkinsonism.
Collapse
Affiliation(s)
- Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (D.B.S.); (J.F.V.A.)
| | - Anusiya Panneerselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (D.B.S.); (J.F.V.A.)
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (D.B.S.); (J.F.V.A.)
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
19
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
20
|
Lyu S, Zhang CS, Mao Z, Guo X, Li Z, Luo X, Sun J, Su Q. Real-world Chinese herbal medicine for Parkinson's disease: a hospital-based retrospective analysis of electronic medical records. Front Aging Neurosci 2024; 16:1362948. [PMID: 38756536 PMCID: PMC11096516 DOI: 10.3389/fnagi.2024.1362948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition. Chinese medicine therapies have demonstrated effectiveness for PD in controlled settings. However, the utilization of Chinese medicine therapies for PD in real-world clinical practice and the characteristics of patients seeking these therapies have not been thoroughly summarized. Method The study retrospectively analyzed initial patient encounters (PEs) with a first-listed diagnosis of PD, based on electronic medical records from Guangdong Provincial Hospital of Chinese Medicine between July 2018 and July 2023. Results A total of 3,206 PEs, each corresponding to an individual patient, were eligible for analyses. Approximately 60% of patients made initial visits to the Chinese medicine hospital after receiving a PD diagnosis, around 4.59 years after the onset of motor symptoms. Over 75% of the patients visited the Internal Medicine Outpatient Clinic at their initial visits, while a mere 13.85% visited PD Chronic Care Clinic. Rest tremor (61.98%) and bradykinesia (52.34%) are the most commonly reported motor symptoms, followed by rigidity (40.70%). The most commonly recorded non-motor symptoms included constipation (31.88%) and sleep disturbance (25.27%). Integration of Chinese medicine and conventional medicine therapies was the most common treatment method (39.15%), followed by single use of Chinese herbal medicine (27.14%). The most frequently prescribed herbs for PD included Glycyrrhiza uralensis Fisch. (gan cao), Astragalus mongholicus Bunge (huang qi), Atractylodes macrocephala Koidz. (bai zhu), Angelica sinensis (Oliv.) Diels (dang gui), Rehmannia glutinosa (Gaertn.) DC. (di huang), Paeonia lactiflora Pall. (bai shao), Bupleurum chinense DC. (chai hu), Citrus aurantium L. (zhi qiao/zhi shi/chen pi), Panax ginseng C. A. Mey. (ren shen), and Poria cocos (Schw.) Wolf (fu ling). These herbs contribute to formulation of Bu zhong yi qi tang (BZYQT). Conclusion Patients typically initiated Chinese medical care after the establishment of PD diagnosis, ~4.59 years post-onset of motor symptoms. The prevalent utilization of CHM decoctions and patented Chinese herbal medicine products, underscores its potential in addressing both motor and non-motor symptoms. Despite available evidence, rigorous clinical trials are needed to validate and optimize the integration of CHM, particularly BZYQT, into therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shaohua Lyu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Claire Shuiqing Zhang
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Zhenhui Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhe Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiaozhen Su
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
21
|
Kazemi D, Chadeganipour AS, Dehghani M, Ghorbali F. Associations of dual-task walking costs with cognition in Parkinson's disease. Gait Posture 2024; 110:48-52. [PMID: 38484647 DOI: 10.1016/j.gaitpost.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gait and cognition are closely associated in Parkinson's disease (PD), with specific cognitive domains being associated with different motor symptoms. By identifying gait parameters affected by cognition, clinicians can develop targeted interventions that address cognitive impairment, improve gait, and reduce the risk of injury in PD patients. RESEARCH QUESTION What gait parameters are affected by cognition in PD patients during dual-task walking, and how are these parameters related to cognitive function as measured by the Montreal Cognitive Assessment (MoCA)? METHODS 36 patients with available gait data and cognitive assessments were enrolled. Gait data of usual and dual-task walking sessions were recorded using lightweight wireless wearable sensors attached to trunk, lower, and upper extremities. Dual-task costs were calculated from usual and dual-task measures. Statistical analysis included non-parametric tests, Wilcoxon signed-rank test, Spearman's correlation, and stepwise linear regression models. RESULTS Walking speed, cadence, asymmetry in arm swing (ASA), between arms' amplitude symmetry (BAS), average stride time, and jerk of the acceleration movement of the legs were found to be affected during the dual-task walking session (P<0.05). Spearman's correlation showed significant correlations between MoCA scores and ASA (ρ=-0.469, P=0.036) and BAS (ρ=-0.448, P=0.036) costs. Stepwise linear regression models found that MoCA scores were significant predictors of BAS and ASA costs (P<0.05). SIGNIFICANCE This study found a significant association between global cognitive ability and several gait parameters costs under cognitive load caused by dual-task walking in PD patients. The study identified the gait parameters that were affected by cognitive load and found that MoCA scores were significant predictors of those gait parameters. Identifying gait parameters affected by cognition can lead to more targeted interventions for improving gait and reducing injury risk in PD patients.
Collapse
Affiliation(s)
- Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Ghorbali
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Lee DH, Woo BS, Park YH, Lee JH. General Treatments Promoting Independent Living in Parkinson's Patients and Physical Therapy Approaches for Improving Gait-A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:711. [PMID: 38792894 PMCID: PMC11123276 DOI: 10.3390/medicina60050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
This study delves into the multifaceted approaches to treating Parkinson's disease (PD), a neurodegenerative disorder primarily affecting motor function but also manifesting in a variety of symptoms that vary greatly among individuals. The complexity of PD symptoms necessitates a comprehensive treatment strategy that integrates surgical interventions, pharmacotherapy, and physical therapy to tailor to the unique needs of each patient. Surgical options, such as deep brain stimulation (DBS), have been pivotal for patients not responding adequately to medication, offering significant symptom relief. Pharmacotherapy remains a cornerstone of PD management, utilizing drugs like levodopa, dopamine agonists, and others to manage symptoms and, in some cases, slow down disease progression. However, these treatments often lead to complications over time, such as motor fluctuations and dyskinesias, highlighting the need for precise dosage adjustments and sometimes combination therapies to optimize patient outcomes. Physical therapy plays a critical role in addressing the motor symptoms of PD, including bradykinesia, muscle rigidity, tremors, postural instability, and akinesia. PT techniques are tailored to improve mobility, balance, strength, and overall quality of life. Strategies such as gait and balance training, strengthening exercises, stretching, and functional training are employed to mitigate symptoms and enhance functional independence. Specialized approaches like proprioceptive neuromuscular facilitation (PNF), the Bobath concept, and the use of assistive devices are also integral to the rehabilitation process, aimed at improving patients' ability to perform daily activities and reducing the risk of falls. Innovations in technology have introduced robotic-assisted gait training (RAGT) and other assistive devices, offering new possibilities for patient care. These tools provide targeted support and feedback, allowing for more intensive and personalized rehabilitation sessions. Despite these advancements, high costs and accessibility issues remain challenges that need addressing. The inclusion of exercise and activity beyond structured PT sessions is encouraged, with evidence suggesting that regular physical activity can have neuroprotective effects, potentially slowing disease progression. Activities such as treadmill walking, cycling, and aquatic exercises not only improve physical symptoms but also contribute to emotional well-being and social interactions. In conclusion, treating PD requires a holistic approach that combines medical, surgical, and therapeutic strategies. While there is no cure, the goal is to maximize patients' functional abilities and quality of life through personalized treatment plans. This integrated approach, along with ongoing research and development of new therapies, offers hope for improving the management of PD and the lives of those affected by this challenging disease.
Collapse
Affiliation(s)
- Dae-Hwan Lee
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Bong-Sik Woo
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Yong-Hwa Park
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Jung-Ho Lee
- Department of Physical Therapy, University of Kyungdong, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gangwon-do, Republic of Korea
| |
Collapse
|
23
|
Elford JD, Becht N, Garssen J, Kraneveld AD, Perez-Pardo P. Buty and the beast: the complex role of butyrate in Parkinson's disease. Front Pharmacol 2024; 15:1388401. [PMID: 38694925 PMCID: PMC11061429 DOI: 10.3389/fphar.2024.1388401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.
Collapse
Affiliation(s)
- Joshua D. Elford
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nanette Becht
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit, Amsterdam, Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Aldaajani Z, Khalil H. Challenges in Managing Nonmotor Symptoms of Parkinson's Disease in Low-Resourced Settings with Unavailability of Newer Drugs. Mov Disord Clin Pract 2024; 11:123-128. [PMID: 38168114 PMCID: PMC10883395 DOI: 10.1002/mdc3.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Zakiyah Aldaajani
- Neurology Unit, Internal Medicine DepartmentKing Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Hanan Khalil
- Department of Rehabilitation SciencesCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| |
Collapse
|
25
|
Paola Caminiti S, Gallo S, Menegon F, Naldi A, Comi C, Tondo G. Lifestyle Modulators of Neuroplasticity in Parkinson's Disease: Evidence in Human Neuroimaging Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:602-613. [PMID: 37326116 DOI: 10.2174/1871527322666230616121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by both motor and non-motor symptoms. A progressive neuronal loss and the consequent clinical impairment lead to deleterious effects on daily living and quality of life. Despite effective symptomatic therapeutic approaches, no disease-modifying therapies are currently available. Emerging evidence suggests that adopting a healthy lifestyle can improve the quality of life of PD patients. In addition, modulating lifestyle factors can positively affect the microstructural and macrostructural brain levels, corresponding to clinical improvement. Neuroimaging studies may help to identify the mechanisms through which physical exercise, dietary changes, cognitive enrichment, and exposure to substances modulate neuroprotection. All these factors have been associated with a modified risk of developing PD, with attenuation or exacerbation of motor and non-motor symptomatology, and possibly with structural and molecular changes. In the present work, we review the current knowledge on how lifestyle factors influence PD development and progression and the neuroimaging evidence for the brain structural, functional, and molecular changes induced by the adoption of positive or negative lifestyle behaviours.
Collapse
Affiliation(s)
| | - Silvia Gallo
- Neurology Unit, Department of Translational Medicine, Movement Disorders Centre, University of Piemonte Orientale, 28100 Novara, Italy
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Movement Disorders Centre, University of Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Naldi
- Neurology Unit, San Giovanni Bosco Hospital, 10154 Turin, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| |
Collapse
|
26
|
Camacho-Ordonez A, Cervantes-Arriaga A, Rodríguez-Violante M, Hernandez-Medrano AJ, Somilleda-Ventura SA, Pérez-Cano HJ, Nava-Castañeda Á, Guerrero-Berger O. Is there any correlation between alpha-synuclein levels in tears and retinal layer thickness in Parkinson's disease? Eur J Ophthalmol 2024; 34:252-259. [PMID: 37151018 DOI: 10.1177/11206721231173725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PURPOSE To determine the total alpha-synuclein (αSyn) reflex tears and its association with retinal layers thickness in Parkinson's disease (PD). METHODS Fifty-two eyes of 26 PD subjects and 52 eyes of age-and sex-matched healthy controls were included. Total αSyn in reflex tears was quantified using a human total αSyn enzyme-linked immunosorbent assay (ELISA) kit. The retinal thickness was evaluated with spectral-domain optical coherence tomography. The Movement Disorder Society-Unified Parkinsońs Disease Rating Scale (MDS-UPDRS), Non-Motor Symptoms Scale (NMSS), and Montreal Cognitive Assessment (MoCA) were used to assess motor, non-motor, and cognition. RESULTS In PD, total αSyn levels were increased compared to control subjects [1.76pg/mL (IQR 1.74-1.80) vs 1.73pg/mL (IQR 1.70-1.77), p < 0.004]. The nerve fiber layer, ganglion cell layer, internal plexiform layer, inner nuclear layer, and outer nuclear layer were thinner in PD in comparison with controls (p < 0.05). The outer plexiform layer and retinal pigment epithelium were thicker in PD (p < 0.05). The total αSyn levels positively correlated with the central volume of the inner nuclear layer (r = 0.357, p = 0.009). CONCLUSION Total αSyn reflex tear levels were increased in subjects with PD compared to controls. PD patients showed significant thinning of the inner retinal layers and thickening of outer retinal layers in comparison with controls. Total αSyn levels positively correlate with the central volume of the inner nuclear layer in PD. The combination of these biomarkers might have a possible role as a diagnostic tool in PD subjects.
Collapse
Affiliation(s)
- Azyadeh Camacho-Ordonez
- Neuro-ophthalmology Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
- Anterior Segment Department, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| | - Amin Cervantes-Arriaga
- Movement Disorder Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | | | | | - Hector J Pérez-Cano
- Biomedical Research Center, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| | - Ángel Nava-Castañeda
- Oculoplastics Department, Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico
| | - Oscar Guerrero-Berger
- Anterior Segment Department, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| |
Collapse
|
27
|
Nieto-Escamez F, Obrero-Gaitán E, García-López H, Cortés-Pérez I. Unveiling the Hidden Challenges: Non-Motor Disorders in Parkinson's Disease. Brain Sci 2023; 13:1710. [PMID: 38137158 PMCID: PMC10741623 DOI: 10.3390/brainsci13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is not just a motor disorder, it is a complex condition that affects every aspect of a patient's life, from cognitive impairment and psychiatric disturbances to autonomic dysfunction and sleep disturbances [...].
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- CIBIS Research Center (Centro de Investigación para el Bienestar y la Inclusión Social), University of Almeria, 04120 Almeria, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| | - Héctor García-López
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain;
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| |
Collapse
|
28
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
29
|
Salaramoli S, Amiri H, Joshaghani HR, Hosseini M, Hashemy SI. Bio-synthesized selenium nanoparticles ameliorate Brain oxidative stress in Parkinson disease rat models. Metab Brain Dis 2023; 38:2055-2064. [PMID: 37133801 DOI: 10.1007/s11011-023-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
AIM Parkinson disease (PD) is a prevalent central nervous system degenerative condition that impacts elderly people. Recent clinical and experimental study findings have established oxidative stress as one of the main pathogeneses of PD. Selenium, a trace metals with antioxidant effects, might reverse the neurobehavioral impairments and oxidative stress in rats. Thus, the goal of this study was to ascertain if Selenium Nano Particles (SeNPs) are also effective to protect brain cells from oxidative stress or not. MAIN METHODS SeNPs were synthesized utilizing Ascorbic acid and chitosan as a reducing and stabilizing agent. Next, eight groups (N: 6) of male Wistar rats were randomly assigned and injected by different dosage (0.1, 0,2, and 0.3 mg/kg) of Se and SeNP. Finally, to ascertain the protective benefits of SeNP on PD rats, behavioral evaluation, clinical symptoms, antioxidant activity, and oxidant levels were examined. KEY FINDINGS According to the findings, PD rats' motor functions had developed by SeNP injection. Higher MDA levels and inhibited antioxidant activities (SOD, CAT, and GPX) in lesion group are highlighting the significant role of oxidative stress in dopaminergic neuron death and neurobehavioral abnormalities. SeNP also protect against oxidative stress as compared to the lesion group. The levels of MDA had greatly reduced while the activities of enzymes, TAC, and SeNP both had significantly increased. SIGNIFICANCE By enhancing antioxidant activity, administration of SeNP can reduce the hazardous consequences of oxidative stress.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Geerlings AD, Janssen Daalen JM, Ypinga JHL, Bloem BR, Meinders MJ, Munneke M, Darweesh SKL. Case management interventions in chronic disease reduce anxiety and depressive symptoms: A systematic review and meta-analysis. PLoS One 2023; 18:e0282590. [PMID: 37058492 PMCID: PMC10104285 DOI: 10.1371/journal.pone.0282590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/18/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND There is no systematic insight into the effect of case management on common complications of chronic diseases, including depressive symptoms and symptoms of anxiety. This is a significant knowledge gap, given that people with a chronic disease such as Parkinson Disease or Alzheimer's Disease have identified care coordination as one of their highest priorities. Furthermore, it remains unclear whether the putative beneficial effects of case management would vary by crucial patient characteristics, such as their age, gender, or disease characteristics. Such insights would shift from "one size fits all" healthcare resource allocation to personalized medicine. OBJECTIVE We systematically examined the effectiveness of case management interventions on two common complications associated PD and other chronic health conditions: Depressive symptoms and symptoms of anxiety. METHODS We identified studies published until November 2022 from PubMed and Embase databases using predefined inclusion criteria. For each study, data were extracted independently by two researchers. First, descriptive and qualitative analyses of all included studies were performed, followed by random-effects meta-analyses to assess the impact of case management interventions on anxiety and depressive symptoms. Second, meta-regression was performed to analyze potential modifying effects of demographic characteristics, disease characteristics and case management components. RESULTS 23 randomized controlled trials and four non-randomized studies reported data on the effect of case management on symptoms of anxiety (8 studies) or depressive symptoms (26 studies). Across meta-analyses, we observed a statistically significant effect of case management on reducing symptoms of anxiety (Standardized Mean Difference [SMD] = - 0.47; 95% confidence interval [CI]: -0.69, -0.32) and depressive symptoms (SMD = - 0.48; CI: -0.71, -0.25). We found large heterogeneity in effect estimates across studies, but this was not explained by patient population or intervention characteristics. CONCLUSIONS Among people with chronic health conditions, case management has beneficial effects on symptoms of depressive symptoms and symptoms of anxiety. Currently, research on case management interventions are rare. Future studies should assess the utility of case management for potentially preventative and common complications, focusing on the optimal content, frequency, and intensity of case management.
Collapse
Affiliation(s)
- Angelika D. Geerlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jules M. Janssen Daalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan H. L. Ypinga
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J. Meinders
- Scientific Center for Quality of Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marten Munneke
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sirwan K. L. Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Omar Ahmad S, Longhurst J, Stiles D, Downard L, Martin S. A meta-analysis of exercise intervention and the effect on Parkinson's Disease symptoms. Neurosci Lett 2023; 801:137162. [PMID: 36863557 DOI: 10.1016/j.neulet.2023.137162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that is distinguished by tremors at rest, bradykinesia, hypokinesia, and postural instability, resulting in a progressive decline in performance of everyday activities. The non-motor symptoms that occur can include pain, depression, cognitive dysfunction, sleep issues, and anxiety (among others). Functionality is tremendously impaired by physical as well as non-motor symptoms. Recent treatment has begun to incorporate non-conventional interventions that are more functional and tailored to the patients with PD. The purpose of this meta-analysis was to determine the effectiveness of exercise interventions at alleviating PD symptoms, as measured by the Unified Parkinson's Disease Rating Scale (UPDRS). Additionally, this review qualitatively explored whether endurance-based or non-endurance based exercise interventions were more beneficial at alleviating PD symptoms. Two reviewers screened the title and abstract records (n = 668) found in the initial search. Subsequently the reviewers completed full-text screening of the remaining articles for inclusion.. Following this, a total of 25 articles were considered to be eligible and included in the review and data was extracted for meta-analysis. The interventions lasted from 4 to 26 weeks. Results indicated a positive overall effect of therapeutic exercise on patients with PD, where the overall d-index was 0.155. Qualitatively no difference was observed between aerobic and non-aerobic forms of exercise.
Collapse
Affiliation(s)
- Syed Omar Ahmad
- Department of Occupational Science and Occupational Therapy, Saint Louis University, Doisy College of Health Sciences, Saint Louis, MO 63104, USA.
| | - Jason Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, Doisy College of Health Sciences, Saint Louis, MO 63104, USA.
| | - Dana Stiles
- Saint Louis University, Department of Psychology, Doisy College of Health Sciences, Saint Louis, MO 63108, USA.
| | - Lana Downard
- Department of Occupational Science and Occupational Therapy, Saint Louis University, Doisy College of Health Sciences, Saint Louis, MO 63104, USA.
| | - Stephanie Martin
- Department of Occupational Science and Occupational Therapy, Saint Louis University, Doisy College of Health Sciences, Saint Louis, MO 63104, USA.
| |
Collapse
|
32
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
33
|
Jun P, Zhao H, Jung IC, Kwon O, Han CH, Won J, Jang JH. Efficacy of herbal medicine treatment based on syndrome differentiation for Parkinson's disease: A systematic review and meta-analysis of randomized placebo-controlled clinical trials. Front Pharmacol 2023; 14:1108407. [PMID: 36925641 PMCID: PMC10012343 DOI: 10.3389/fphar.2023.1108407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Parkinson's disease (PD), the second most common progressive neurodegenerative disease, causes heterogeneous clinical symptoms. Patients experience a range of motor and non-motor symptoms, and personalized diagnosis and treatment are needed. In traditional East Asian medicine, syndrome differentiation (SD) is a diagnostic approach for customized therapy that uses a comprehensive analysis and varies for the same disease. We aimed to evaluate the efficacy of herbal medicine (HM) prescribed according to the SD of PD. Methods: Ten electronic databases were searched from inception to August 2021 without language limitations. All randomized controlled trials (RCTs) involving HM for SD of PD were included. Assessment of Cochrane's risk of bias and meta-analysis and Grading of Recommendations Assessment, Development, and Evaluation was also performed. Effect measurement was summarized using the mean difference (MD) with 95% confidence interval, through a meta-analysis. Results: Thirteen RCTs involving 843 participants were included. The overall risk of bias was either low or unclear. Compared with the placebo, a combined therapy of HM and Western medicine (WM) significantly improved the total Unified Parkinson's Disease Rating Scale (UPDRS) (MD = -8.03, [-10.27, -5.79], p < 0.00001; I2 = 0%) and was more beneficial, as assessed using the UPDRS (I-III), the Parkinson's Disease Questionnaire-39, and the Non-Motor Symptoms Scale. Adverse events did not differ between the groups. Conclusion: The findings suggest that the combined treatment of WM and HM based on SD diagnosis has additional benefits in PD treatment. However, the methodological quality of the included RCTs was suboptimal. Nevertheless, this systematic review is the first to investigate the efficacy of HM treatment according to the SD diagnosis in PD. The clinically meaningful improvement in HM according to SD in PD needs to be tested in further studies with rigorous designs and longer follow-up periods. Systematic Review Registration: [https://inplasy.com/inplasy-2021-10-0020/], identifier [INPLASY2021100020].
Collapse
Affiliation(s)
- Purumea Jun
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - HuiYan Zhao
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- University of Science & Technology, Campus of Korea Institute of Oriental Medicine, Korean Convergence Medical Science Major, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Ojin Kwon
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Chang-Hyun Han
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jiyoon Won
- Department of Meridian & Acupoint, College of Korean Medicine, Dong-Eui University, Busan, Republic of Korea
| | - Jung-Hee Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
35
|
Vastegani SM, Khoshnam SE, Mansouri E, Hajipour S, Ghafouri S, Bakhtiari N, Sarkaki A, Farbood Y. Neuroprotective effect of anethole against rotenone induced non-motor deficits and oxidative stress in rat model of Parkinson's disease. Behav Brain Res 2023; 437:114100. [PMID: 36075399 DOI: 10.1016/j.bbr.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Non-motor symptoms (NMS) have high prevalence in patients with Parkinson's disease (PD). These symptoms are mainly the result of increased oxidative stress and neuronal damage. In this study we investigated the possible neuroprotective effects of anethole as a potent antioxidant on rotenone-induced behavioral deficits, hippocampal neuronal death, and oxidative stress profile in rats. METHODS Male Wistar rats were administered with anethole (62.5, 125, and 250 mg/kg, i.g) concomitantly with rotenone (2 mg/kg, s.c) for 35 days. Shuttle box and novel object recognition tests were performed to determine cognitive functions, and tail flick test was used to measure pain sensitivity. The levels of BDNF, MDA, SOD, and GPx were assayed in the hippocampus. Hippocampal neuronal damage was evaluated using cresyl violet staining technique. RESULTS Chronic administration of rotenone induced cognitive deficit and reduced thermal pain threshold. Rotenone also decreased SOD and GPx activities, increased MDA level, and reduced the expression of BDNF in the hippocampus. In addition, hippocampal neuronal loss was increased in rotenone treated rats. Treatment with high dose of anethole (250 mg/kg) improved cognitive function and increased pain threshold in all three doses (62.5, 125, and 250 mg/kg). Despite the unchanged SOD and GPx activities, hippocampal levels of MDA was significantly decreased after high-dose anethole treatment. Moreover, High dose of anethole increased the number of surviving neurons in the hippocampus, but couldn't increase the BDNF expression. CONCLUSION Our findings indicated that anethole has antioxidant and neuroprotective effects against non-motor disorders induced by rotenone toxicity.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
36
|
Mehrabani S, Khorvash F, Heidari Z, Tajabadi-Ebrahimi M, Amani R. The effects of synbiotic supplementation on oxidative stress markers, mental status, and quality of life in patients with Parkinson’s disease: A double-blind, placebo-controlled, randomized controlled trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
37
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
38
|
Non-motor manifestation of Parkinson's disease: a cross-sectional study in a teaching hospital in Jordan. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Parkinson's disease (PD) is the most common degenerative movement disorder. It is featured by motor manifestations and up till now the clinical diagnosis is based on them. Since the progress in the symptomatic treatment of PD and the longer survival of patients, non-motor manifestations (NMM) were more recognized and considered to be significant. The importance of NMM is that they reflect the more diffuse pathology of PD and may represent an opportunity of earlier diagnosis and treatment. Here in this cross-sectional study, we try to estimate the frequency of such manifestations in PD patients in the country. Using slightly modified PD non-motor (28 of 30 responses) questionnaire (NMS Quest), we studied the incidence of NMM in 100 PD patients attending one major teaching hospital and compared their occurrence in 130 age- and gender-matched non-PD controls.
Results
Out of 100 PD patients (40% females) mean age 67.4 ± 12 with disease duration of 7.3 ± 5.8, range < 1–33.2 years), and 130 control subjects (48.5% females), mean age 65.0 ± 7.0. PD patients had 8.6 ± 5.3 NMM while controls had 3.4 ± 3.3 NMM, respectively (p < 0.00001 t test). Constipation, urgency, insomnia, sad feeling, panic, light headedness and recent memory impairment were the most prevalent NMM in PD compared to controls, while nocturia, restless legs, encopresis and falling were not different in the two groups. The number of NMM ranged from 0 to 21 in PD patients with 50% having ≥ 8 manifestations. The number of NMM did not correlate with age, gender, or disease duration as defined by the classical motor symptoms. Frequency of 23 of these 28 manifestations differed significantly in PD patients compared to controls.
Conclusions
This study confirms that NMM in Jordanian PD patients are very common as reported in other populations. This signifies the universal prevalence of such NMM reflecting their important impact on their daily life and their relevant contribution to better understanding of this disease.
Collapse
|
39
|
Park Y, Kim SR, So HY, Jo S, Lee SH, Hwang YS, Kim MS, Chung SJ. Effect of mobile health intervention for self-management on self-efficacy, motor and non-motor symptoms, self-management, and quality of life in people with Parkinson's disease: Randomized controlled trial. Geriatr Nurs 2022; 46:90-97. [DOI: 10.1016/j.gerinurse.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
|
40
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
41
|
Shin HW, Hong SW, Youn YC. Clinical Aspects of the Differential Diagnosis of Parkinson's Disease and Parkinsonism. J Clin Neurol 2022; 18:259-270. [PMID: 35589315 PMCID: PMC9163948 DOI: 10.3988/jcn.2022.18.3.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinsonism is a clinical syndrome presenting with bradykinesia, tremor, rigidity, and postural instability. Nonmotor symptoms have recently been included in the parkinsonian syndrome, which was traditionally associated with motor symptoms only. Various pathologically distinct and unrelated diseases have the same clinical manifestations as parkinsonism or parkinsonian syndrome. The etiologies of parkinsonism are classified as neurodegenerative diseases related to the accumulation of toxic protein molecules or diseases that are not neurodegenerative. The former class includes Parkinson's disease (PD), multiple-system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Over the past decade, clinical diagnostic criteria have been validated and updated to improve the accuracy of diagnosing these diseases. The latter class of disorders unrelated to neurodegenerative diseases are classified as secondary parkinsonism, and include drug-induced parkinsonism (DIP), vascular parkinsonism, and idiopathic normal-pressure hydrocephalus (iNPH). DIP and iNPH are regarded as reversible and treatable forms of parkinsonism. However, studies have suggested that the absence of protein accumulation in the nervous system as well as managing the underlying causes do not guarantee recovery. Here we review the differential diagnosis of PD and parkinsonism, mainly focusing on the clinical aspects. In addition, we describe recent updates to the clinical criteria of various disorders sharing clinical symptoms with parkinsonism.
Collapse
Affiliation(s)
- Hae-Won Shin
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sang-Wook Hong
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Guo T, Chen L. Gut microbiota and inflammation in Parkinson’s disease: Pathogenetic and therapeutic insights. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221083763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuronal loss and α-synuclein (α-syn) aggregation. With the acceleration of population aging process, the incidence of PD is expected to increase, putting a heavy burden on the whole society. Recent studies have found the alterations of gut microbiota (GM) in PD patients and the clinical relevance of these changes, indicating the underlying relationship between GM and PD. Additionally, elevated inflammatory responses originating from the gut play a crucial role in the initiation and progression of PD, which is closely associated with GM. In this review, we will summarize recent studies on the correlation between GM and PD, and discuss the possible pathogenesis of PD mediated by GM and subsequent inflammatory cascades. We will also focus on the promising GM-based therapeutic strategies of PD, including antibiotics, probiotics and/or prebiotics, fecal microbiota transplantation, and dietary interventions, aiming to provide some new therapeutic insights for PD.
Collapse
Affiliation(s)
- Tong Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Diffusion Tensor Imaging Reveals Deep Brain Structure Changes in Early Parkinson's Disease Patients with Various Sleep Disorders. Brain Sci 2022; 12:brainsci12040463. [PMID: 35447994 PMCID: PMC9025175 DOI: 10.3390/brainsci12040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive age-related movement disorder caused by dopaminergic neuron loss in the substantia nigra. Diffusion-based magnetic resonance imaging (MRI) studies—namely, diffusion tensor imaging (DTI)—have been performed in the context of PD, either with or without the involvement of sleep disorders (SDs), to deepen our understanding of cerebral microstructural alterations. Analyzing the clinical characteristics and neuroimaging features of SDs in early PD patients is beneficial for early diagnosis and timely invention. In our present study, we enrolled 36 early PD patients (31 patients with SDs and 5 patients without) and 22 healthy controls. Different types of SDs were assessed using the Rapid Eye Movement Sleep Behavior Disorder Questionnaire—Hong Kong, Epworth Sleepiness Scale, International Restless Legs Scale and PD Sleep Scale-2. Brain MRI examinations were carried out in all the participants, and a region-of-interest (ROI) analysis was used to determine the DTI-based fractional anisotropy (FA) values in the substantia nigra (SN), thalamus (Thal) and hypothalamus (HT). The results illustrate that SDs showed a higher prevalence in the early PD patients than in the healthy controls (86.11% vs. 27.27%). Early PD patients with nighttime problems (NPs) had longer courses of PD than those without (5.097 ± 2.925 vs. 2.200 ± 1.095; p < 0.05), and these patients with excessive daytime sleepiness (EDS) or restless legs syndrome (RLS) had more advanced Hoehn and Yahr stages (HY stage) than those without (1.522 ± 0.511 and 1.526 ± 0.513, respectively; both p < 0.05). Compared with the early PD patients without probable rapid eye movement sleep behavior disorder (pRBD), those with pRBD had longer courses, more advanced HY stages and worse motor and non-motor symptoms of PD (course(years), 3.385 ± 1.895 vs. 5.435 ± 3.160; HY stages, 1.462 ± 0.477 vs. 1.848 ± 0.553; UPDRS, 13.538 ± 7.333 vs. 21.783 ± 10.766; UPDRS, 6.538 ± 1.898 vs. 7.957 ± 2.345; all p < 0.05). In addition, the different number of SD types in early PD patients was significantly inversely associated with the severity of damage in the SN and HT. All of the early PD patients with various SDs had injuries in the SN, in whom the damage was more pronounced in patients with NP than those without. Moreover, early PD patients with NP, RLS or pRBD had worse degrees of HT damage than those without. The current study demonstrated the pathophysiological features and neuroimaging changes in early PD patients with various types of sleep disorders, which will help in early diagnosis and therapy.
Collapse
|
44
|
Chu HS, Jang HY. Exploring Unmet Information Needs of People with Parkinson's Disease and Their Families: Focusing on Information Sharing in an Online Patient Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052521. [PMID: 35270211 PMCID: PMC8909842 DOI: 10.3390/ijerph19052521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to examine the unmet information needs of people with Parkinson’s disease and their family members by analyzing Parkinson’s disease-related posts in online communities. Data were collected from one of the largest online people with Parkinson’s disease communities used in South Korea. The word cloud, the main questions from the free-posting messages, as well as the frequently asked symptoms and side effects of the medication, were analyzed using content analysis. The commonly mentioned main questions from the free-posting messages have pertained to treatment-related information, such as effects and side effects of medication, deep brain stimulation, and complementary and alternative medicine. People with Parkinson’s disease and their families depend not only on health care providers but also on using online communities to find the information that they need. However, there is a need for treatment-specific information, such as anti-Parkinson drugs, deep brain stimulation, and complementary alternative therapies. As for the method of providing information for people with Parkinson’s disease and their families, it will be effective to provide tailored education services using online communities and social media by using their information needs and preferred resources.
Collapse
|
45
|
Paul B, Bansal N, Paul G, Singh G. Gender Differences and Impact of Autonomic Disturbance on Fatigue and Quality of Life in Parkinson's Disease. Neurol India 2022; 70:203-208. [DOI: 10.4103/0028-3886.336334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Sebastian I, Kate MP, Khatter H, Singh B, Pandian JD. Spectrum of Cardiovascular Autonomic Dysfunction and 24-hour Blood Pressure Variability in Idiopathic Parkinson's Disease. Ann Indian Acad Neurol 2022; 25:902-908. [PMID: 36561008 PMCID: PMC9764881 DOI: 10.4103/aian.aian_289_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Background Uncertainty prevails regarding the patterns of autonomic dysfunction in patients with idiopathic Parkinson's disease (IPD). This study was undertaken with the aim of assessing the complete spectrum of cardiovascular autonomic function tests (CAFTs) and blood pressure variability patterns in IPD patients while comparing the same with age-matched controls. Methods Patients with IPD presenting to the Christian Medical College and Hospital from December 2016 to November 2018 along with age-matched controls were prospectively evaluated using CAFTs. The IPD patients also underwent ambulatory blood pressure (BP) monitoring (ABPM), and the diurnal systolic BP differences were used to classify into dippers (10-20%), non-dippers (0-10%), reverse dippers (<0%), and extreme dippers (>20%). Results Autonomic dysfunction (AD) was prevalent in 41 (68.3%) IPD patients even in early disease (median (inter-quartile range) symptom duration 2 (1-4) years, mean Hoehn and Yahr (H&Y) stage 2 (1.5-2.8). Both sympathetic and parasympathetic parameters were impaired among IPD patients when compared to healthy controls. (E: I ratio 1.17 ± 0.12 vs 1.26 ± 0.14 (P < 0.001), Valsalva ratio (VR) 1.33 ± 0.27 vs 1.55 ± 0.25 (P < 0.001), PRT100 9.6 ± 8.0 vs 3.1 ± 1.8 (P < 0.001), tilt-up SBPAvg change 8.8 (4.2-13.8) vs 1.8 (-2.9-6.1) (P < 0.001), tilt-up HRAvg change 4.8 (2.2-8.2) vs 1.9 (-0.7-5.1) (P < 0.001). BP variability was demonstrated in 47 (79.7%) of IPD patients, with reverse dipping pattern in 28 (47.5%) seen more frequently in this cohort. Conclusions Timely detection of AD may be helpful not only in recognizing IPD in its pre-motor stages but also in optimizing management for this population of patients. BP variability and abnormal dipping patterns on ABPM can be a potential marker of dysautonomia.
Collapse
Affiliation(s)
- Ivy Sebastian
- Department of Neurology, Christian Medical College and Hospital, Ludhiana, Punjab, India
| | - Mahesh P. Kate
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Himani Khatter
- Department of Neurology, Christian Medical College and Hospital, Ludhiana, Punjab, India
| | - Bharat Singh
- Department of Neurology, Christian Medical College and Hospital, Ludhiana, Punjab, India
| | - Jeyaraj D. Pandian
- Department of Neurology, Christian Medical College and Hospital, Ludhiana, Punjab, India,Address for correspondence: Dr. Jeyaraj D. Pandian, Professor and Principal, Department of Neurology, Christian Medical College and Hospital, Ludhiana - 141 008, Punjab, India. E-mail:
| |
Collapse
|
47
|
Yin K, Zhou C, Zhu Y, Yin W, Yin L, Liu B, Ren H, Xu Z, Yang X. REM sleep behavioral disorder may be an independent risk factor for orthostatic hypotension in Parkinson's disease. Aging Clin Exp Res 2022; 34:159-166. [PMID: 34021898 DOI: 10.1007/s40520-021-01887-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the association between clinically possible rapid eye movement (REM) sleep behavioral disorder (pRBD) and orthostatic hypotension (OH) in PD patients, as well as to explore the mechanisms underlying the association. METHODS PD patients (n = 116) were assigned to a group with OH (PD-OH) or without OH (PD-NOH). General demographic and clinical data were collected. A series of scales were used to assess the clinical symptoms in the two groups. RESULTS A total of 27 patients (23.3%) had OH. The PD-OH group showed significantly higher H-Y staging score and significantly higher frequencies of pRBD, anxiety, depression, and cognitive impairment than the PD-NOH group. Binary logistic regression analysis identified the following factors as independently associated with PD-OH: H-Y staging [odds ratio (OR) 2.565, 95% confidence interval (CI) 1.160-5.673; P = 0.020], RBD (OR 7.680, 95% CI 1.944-30.346; P = 0.004), UPDRS II (OR 1.021, 95% CI 0.980-1.063; P = 0.020), depression (OR 7.601, 95% CI 1.492-38.718; P = 0.015), and cognitive impairment (OR 0.824, 95% CI 0.696-0.976; P = 0.025). CONCLUSIONS Our results suggest that pRBD is an independent risk factor for OH in patients with PD. We speculate that there may be a close relationship between RBD and OH, which requires attention. Early diagnosis of RBD may help predict the appearance of OH in PD patients.
Collapse
|
48
|
Da Cunha CP, Rao PT, Karthikbabu S. Clinical features contributing to the sit-to-stand transfer in people with Parkinson’s disease: a systematic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
The aim of this systematic review is to present the existing literature on the clinical motor, and non-motor factors contributing to sit-to-stand transfer in individuals with Parkinson's disease.
Data synthesis
Five databases (PubMed, PEDro, Cochrane, SCOPUS, and Ovid) were searched for literature on the contributing factors to sit-to-stand performance in Parkinson's disease. A quality check of these observational studies was done using the 'strengthening the reporting of observational studies in epidemiology' (STROBE) statement and the tool of the 'National Heart, Lung, and Blood Institute' (NHLBI). Descriptive and quantitative data were extracted and compiled, and a meta-analysis was performed to compute the standardised mean difference.
Results
Thirteen studies were selected; a majority of them provided a high-to-moderate level of evidence. Ten were cross-sectional, while the other three were case–control studies. Collectively, individuals with Parkinson's disease had a prolonged transfer time than those of age-matched healthy peers, particularly from peak horizontal velocity phase to seat-off phase, implying bradykinesia. A reduction in peak and rate to peak joint torques was also related to the decreased pace and stability of the sit-to-stand movement in individuals with Parkinson's disease. Additionally, they demonstrated exaggerated trunk flexion as a postural stabilisation strategy, allowing them to maintain and manoeuvre the relative positions of their centre of mass through the transitional phase of the transfer.
Conclusion
As per the existing literature, an alteration in strength, overall body bradykinesia, balance, posture, as well as cognition may result in an impaired sit-to-stand transfer in individuals with Parkinson's disease.
Collapse
|
49
|
Tirassa P, Schirinzi T, Raspa M, Ralli M, Greco A, Polimeni A, Possenti R, Mercuri NB, Severini C. What substance P might tell us about the prognosis and mechanism of Parkinson's disease? Neurosci Biobehav Rev 2021; 131:899-911. [PMID: 34653503 DOI: 10.1016/j.neubiorev.2021.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide substance P (SP) plays an important role in neurodegenerative disorders, among which Parkinson's disease (PD). In the present work we have reviewed the involvement of SP and its preferred receptor (NK1-R) in motor and non-motor PD symptoms, in both PD animal models and patients. Despite PD is primarily a motor disorder, non-motor abnormalities, including olfactory deficits and gastrointestinal dysfunctions, can represent diagnostic PD predictors, according to the hypothesis that the olfactory and the enteric nervous system represent starting points of neurodegeneration, ascending to the brain via the sympathetic fibers and the vagus nerve. In PD patients, the α-synuclein aggregates in the olfactory bulb and the gastrointestinal tract, as well as in the dorsal motor nucleus of the vagus nerve often co-localize with SP, indicating SP-positive neurons as highly vulnerable sites of degeneration. Considering the involvement of the SP/NK1-R in both the periphery and specific brain areas, this system might represent a neuronal substrate for the symptom and disease progression, as well as a therapeutic target for PD.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonella Polimeni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
50
|
Zheng R, Qiao S, Chen Y, Jin C, Fang Y, Lin Z, Xue N, Yan Y, Gu L, Gao T, Tian J, Yan Y, Yin X, Pu J, Zhang B. Association analysis and polygenic risk score evaluation of 38 GWAS-identified Loci in a Chinese population with Parkinson's disease. Neurosci Lett 2021; 762:136150. [PMID: 34352340 DOI: 10.1016/j.neulet.2021.136150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Recently, a meta-analysis of genome-wide association studies (GWASs) has identified 38 novel independent loci associated with risk of Parkinson's disease (PD) in European populations. We sought to investigate whether these genetic susceptibility variants could be replicated in the Chinese Han population. METHODS We genotyped 38 independent loci in 495 Chinese sporadic PD patients and 470 unrelated controls and performed allelic and genotypic association test using chi-square tests or Armitage test for trend. Polygenic risk score (PRS) models were built to evaluate the cumulative effects of the selected SNPs. RESULTS We found that the rs11610045 of FBRSL1 (p = 0.02, OR = 0.63, allele model), rs76116224 of KCNS3 (p < 0.01, OR = 0.09, allele model), and the rs2248244 of DYRK1A (p = 0.02, OR = 1.35, allele model) were significantly associated with PD. The PRS model of cumulative effects of the SNPs associated with PD in our study had the area under the curve (AUC) of 0.61. CONCLUSIONS Our study revealed that rs11610045 of FBRSL1, rs76116224 of KCNS3 and rs2248244 of DYRK1A showed an impact on the risk of PD, and the GWAS-derived PRS models we built had predictive value for PD risk in the Chinese population. Further studies are needed to explore the pathogenesis of these potentially risk-associated variants.
Collapse
Affiliation(s)
- Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chongyao Jin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhihao Lin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Naijia Xue
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yiqun Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Luyan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|