1
|
Cho HW, Jin HS, Kim SS, Eom YB. Forensic height estimation using polygenic score in Korean population. Mol Genet Genomics 2024; 299:78. [PMID: 39120737 DOI: 10.1007/s00438-024-02172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Height is known to be a classically heritable trait controlled by complex polygenic factors. Numerous height-associated genetic variants across the genome have been identified so far. It is also a representative of externally visible characteristics (EVC) for predicting appearance in forensic science. When biological evidence at a crime scene is deficient in identifying an individual, the examination of forensic DNA phenotyping using some genetic variants could be considered. In this study, we aimed to predict 'height', a representative forensic phenotype, by using a small number of genetic variants when short tandem repeat (STR) analysis is hard with insufficient biological samples. Our results not only replicated previous genetic signals but also indicated an upward trend in polygenic score (PGS) with increasing height in the validation and replication stages for both genders. These results demonstrate that the established SNP sets in this study could be used for height estimation in the Korean population. Specifically, since the PGS model constructed in this study targets only a small number of SNPs, it contributes to enabling forensic DNA phenotyping even at crime scenes with a minimal amount of biological evidence. To the best of our knowledge, this was the first study to evaluate a PGS model for height estimation in the Korean population using GWAS signals. Our study offers insight into the polygenic effect of height in East Asians, incorporating genetic variants from non-Asian populations.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, 31538, Chungnam, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Republic of Korea
| | - Sung-Soo Kim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, 31538, Chungnam, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Sinchang-myeon, Asan-si, 31538, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Fu G, Ma G, Wang C, Wang Q, Lu C, Fu L, Zhang X, Cong B, Li S. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet 2024; 143:401-421. [PMID: 38507014 DOI: 10.1007/s00439-024-02659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
As a vital anthropometric characteristic, human height information not only helps to understand overall developmental status and genetic risk factors, but is also important for forensic DNA phenotyping. We utilized linear regression analysis to test the association between each CpG probe and the height phenotype. Next, we designed a methylation sequencing panel targeting 959 CpGs and subsequent height inference models were constructed for the Chinese population. A total of 11,730 height-associated sites were identified. By employing KPCA and deep neural networks, a prediction model was developed, of which the cross-validation RMSE, MAE and R2 were 5.62 cm, 4.45 cm and 0.64, respectively. Genetic factors could explain 39.4% of the methylation level variance of sites used in the height inference models. Collectively, we demonstrated an association between height and DNA methylation status through an EWAS analysis. Targeted methylation sequencing of only 959 CpGs combined with deep learning techniques could provide a model to estimate human height with higher accuracy than SNP-based prediction models.
Collapse
Affiliation(s)
- Zhonghua Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guangping Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Mason W, Levin AM, Buhl K, Ouchi T, Parker B, Tan J, Ashammakhi N, Jones LR. Translational Research Techniques for the Facial Plastic Surgeon: An Overview. Facial Plast Surg 2023; 39:466-473. [PMID: 37339663 DOI: 10.1055/a-2113-5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The field of facial plastic and reconstructive surgery (FPRS) is an incredibly diverse, multispecialty field that seeks innovative and novel solutions for the management of physical defects on the head and neck. To aid in the advancement of medical and surgical treatments for these defects, there has been a recent emphasis on the importance of translational research. With recent technological advancements, there are now a myriad of research techniques that are widely accessible for physician and scientist use in translational research. Such techniques include integrated multiomics, advanced cell culture and microfluidic tissue models, established animal models, and emerging computer models generated using bioinformatics. This study discusses these various research techniques and how they have and can be used for research in the context of various important diseases within the field of FPRS.
Collapse
Affiliation(s)
- William Mason
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Science, Henry Ford Health, Detroit, Michigan
- Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - Katherine Buhl
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Takahiro Ouchi
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Bianca Parker
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Jessica Tan
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan
- College of Human Medicine, Michigan State University, Michigan
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
4
|
Issarapu P, Arumalla M, Elliott HR, Nongmaithem SS, Sankareswaran A, Betts M, Sajjadi S, Kessler NJ, Bayyana S, Mansuri SR, Derakhshan M, Krishnaveni GV, Shrestha S, Kumaran K, Di Gravio C, Sahariah SA, Sanderson E, Relton CL, Ward KA, Moore SE, Prentice AM, Lillycrop KA, Fall CHD, Silver MJ, Chandak GR. DNA methylation at the suppressor of cytokine signaling 3 (SOCS3) gene influences height in childhood. Nat Commun 2023; 14:5200. [PMID: 37626025 PMCID: PMC10457295 DOI: 10.1038/s41467-023-40607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.
Collapse
Affiliation(s)
- Prachand Issarapu
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Manisha Arumalla
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Alagu Sankareswaran
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Modupeh Betts
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Sara Sajjadi
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Swati Bayyana
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Sohail R Mansuri
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Maria Derakhshan
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - G V Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka, India
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka, India
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Chiara Di Gravio
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate A Ward
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Sophie E Moore
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Karen A Lillycrop
- School of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, University of Southampton, Southampton, UK
| | - Caroline H D Fall
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Matt J Silver
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK.
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India.
| |
Collapse
|
5
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
6
|
Region-related patterns of the main physical development indicators observed in northerners in the ontogenetic aspect. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Indicators of physical development appear to be environmentally sensitive and thus we can consider them the main characteristics of the population health.The aim. To assess the line of physical development main variables in the ontogenetic aspect (data from the North born male subjects aged from 8 to 77).Material and methods. Three thousand seven hundred and ninety-four male Caucasians from 17 age groups were examined to analyse their physical development.Results. The study showed longer body length variables as the region-related somatometric picture which is characteristic of male Caucasian northerners in comparison with those from other regions of the Russian Federation, as well as from other countries. Besides, they exhibited significantly lower body mass index and reported to have had lower body weight since the age of 17. We can see the modern northerners’ somatotype being influenced by regional extremes. That also includes the end of the body growth processes by the start of ontogenesis in the youth. The line pattern of annual growth observed in the body length and weight variables indicates a combined pronounced dynamics in the 11 to 16 age period. By the age of 60–77 years subjects tend to decrease in the body length with a significant increase in the body weight and body mass index by the age of 31–36.Conclusion. The study suggests that identifying risks for the development of noninfectious and cardiovascular diseases caused by accelerated BMI in older populations requires monitoring of the North inhabitants’ main physical development indicators as well as the body annual growth variables.
Collapse
|
7
|
Łopuszańska-Dawid M, Szklarska A. Growth change in Polish women: Reduction of the secular trends? PLoS One 2020; 15:e0242074. [PMID: 33253200 PMCID: PMC7703883 DOI: 10.1371/journal.pone.0242074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to analyse changes in the average height of adult Polish women born in 1931-2001 in the aspect of dynamically changing economic and socio-economic conditions of the living environment. An ethnically homogeneous group of 6,028 adult women from large Polish cities, born in 1931-2001, living between 1931 and 2020, were examined using the same research methods and research equipment. All women were divided into eight birth cohorts. The Kruskal-Wallis test and multiple regression analyses were used. Root Mean Square Standardized Effect (RMSSE), critical value of the test, and test power were calculated. The average height of women born during 70 years of the study increased by 9.63 cm, from 158.22 cm (SD = 5.57 cm) to 167.85 cm (SD = 6.91 cm) (H = 1084.84, p<0.001). The intensity of the intergenerational trend in subsequent cohorts of years of birth varied strongly between decades, averaging 1.34 cm/decade. The body height in women increased significantly up to the height of those born between 1970 and 1979 and then the trend weakened noticeably, although it remained positive. The observed secular trend confirms positive changes in the standard of living of Polish women between 1931 and 2020. Improving living conditions allow people to fully achieve their genetically determined growth potential.
Collapse
Affiliation(s)
- Monika Łopuszańska-Dawid
- Józef Pilsudski University of Physical Education in Warsaw, Faculty of Physical Education, Department of Human Biology, Warsaw, Poland
| | - Alicja Szklarska
- Polish Academy of Sciences, Poland, Palace of Culture and Science, Warsaw, Poland
| |
Collapse
|
8
|
Kantake M, Ikeda N, Nakaoka H, Ohkawa N, Tanaka T, Miyabayashi K, Shoji H, Shimizu T. IGF1 gene is epigenetically activated in preterm infants with intrauterine growth restriction. Clin Epigenetics 2020; 12:108. [PMID: 32678007 PMCID: PMC7364555 DOI: 10.1186/s13148-020-00901-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background IGF1 is a key molecule in the regulation of growth and metabolism. Low IGF1 secretion is known to cause growth restriction in childhood, as well as deregulated lipid metabolism, cardiovascular disease, and diabetes in adulthood. The IGF1 gene P2 promoter is highly methylated, resulting in low secretion of IGF1 in small infants and children. However, it is unknown when this methylation occurs. The aim of study was to clarify the point when this epigenetic program occurs during intrauterine development. We analyzed 56 preterm infants born before 32 weeks of gestation, including 19 intrauterine growth restriction (IUGR) infants whose birth weights were lower than − 2SD calculated by the Japanese datasets. We extracted genomic DNA from whole blood at birth; methylation of the six CpG sites in the IGF1 P2 promoter was analyzed by the bisulfite amplicon method using the MiSeq platform. Results In contrast to term infants and children, the methylation of all six CpG sites positively correlated with body weight and body length at birth. IGF1 P2 promoter methylation levels were significantly reduced in all six CpG sites in infants with IUGR. Conclusions These findings indicated that the IGF1 gene is epigenetically activated before 32 weeks of gestation in infants with IUGR and that the activated gene may become suppressed after this time point. This study may provide new insights to prevent the onset of adult diseases and to aid in nutritional management for preterm birth infants in neonatal intensive care units.
Collapse
Affiliation(s)
- Masato Kantake
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan.
| | - Naho Ikeda
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Natsuki Ohkawa
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Toshitaka Tanaka
- Perinatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Kazuki Miyabayashi
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Svefors P, Sysoev O, Ekstrom EC, Persson LA, Arifeen SE, Naved RT, Rahman A, Khan AI, Selling K. Relative importance of prenatal and postnatal determinants of stunting: data mining approaches to the MINIMat cohort, Bangladesh. BMJ Open 2019; 9:e025154. [PMID: 31383692 PMCID: PMC6687011 DOI: 10.1136/bmjopen-2018-025154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION WHO has set a goal to reduce the prevalence of stunted child growth by 40% by the year 2025. To reach this goal, it is imperative to establish the relative importance of risk factors for stunting to deliver appropriate interventions. Currently, most interventions take place in late infancy and early childhood. This study aimed to identify the most critical prenatal and postnatal determinants of linear growth 0-24 months and the risk factors for stunting at 2 years, and to identify subgroups with different growth trajectories and levels of stunting at 2 years. METHODS Conditional inference tree-based methods were applied to the extensive Maternal and Infant Nutrition Interventions in Matlab trial database with 309 variables of 2723 children, their parents and living conditions, including socioeconomic, nutritional and other biological characteristics of the parents; maternal exposure to violence; household food security; breast and complementary feeding; and measurements of morbidity of the mothers during pregnancy and repeatedly of their children up to 24 months of age. Child anthropometry was measured monthly from birth to 12 months, thereafter quarterly to 24 months. RESULTS Birth length and weight were the most critical factors for linear growth 0-24 months and stunting at 2 years, followed by maternal anthropometry and parental education. Conditions after birth, such as feeding practices and morbidity, were less strongly associated with linear growth trajectories and stunting at 2 years. CONCLUSION The results of this study emphasise the benefit of interventions before conception and during pregnancy to reach a substantial reduction in stunting.
Collapse
Affiliation(s)
- Pernilla Svefors
- Women's and Children's Health, Uppsala Universitet, Uppsala, Sweden
- Center for Epidemiology and Community Medicine, Stockholm, Sweden
| | - Oleg Sysoev
- Department of Computer and Information Sciences, Linkopings universitet, Linkoping, Sweden
| | | | - Lars Ake Persson
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Shams E Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ruchira T Naved
- Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Katarina Selling
- Women's and Children's Health, Uppsala Universitet, Uppsala, Sweden
| |
Collapse
|
11
|
Crisafulli C, Romeo PD, Calabrò M, Epasto LM, Alberti S. Pharmacogenetic and pharmacogenomic discovery strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:225-241. [PMID: 35582724 PMCID: PMC8992635 DOI: 10.20517/cdr.2018.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/12/2022]
Abstract
Genetic/genomic profiling at a single-patient level is expected to provide critical information for determining inter-individual drug toxicity and potential efficacy in cancer therapy. A better definition of cancer subtypes at a molecular level, may correspondingly complement such pharmacogenetic and pharmacogenomic approaches, for more effective personalized treatments. Current pharmacogenetic/pharmacogenomic strategies are largely based on the identification of known polymorphisms, thus limiting the discovery of novel or rarer genetic variants. Recent improvements in cost and throughput of next generation sequencing (NGS) are now making whole-genome profiling a plausible alternative for clinical procedures. Beyond classical pharmacogenetic/pharmacogenomic traits for drug metabolism, NGS screening programs of cancer genomes may lead to the identification of novel cancer-driving mutations. These may not only constitute novel therapeutic targets, but also effector determinants for metabolic pathways linked to drug metabolism. An additional advantage is that cancer NGS profiling is now leading to discovering targetable mutations, e.g., in glioblastomas and pancreatic cancers, which were originally discovered in other tumor types, thus allowing for effective repurposing of active drugs already on the market.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | | | - Marco Calabrò
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Ludovica Martina Epasto
- Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Saverio Alberti
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Correspondence Address: Prof. Saverio Alberti, Unit of Medical Genetics, BIOMORF Department of Biomedical Sciences, University of Messina, via Consolare Valeria, 98125 Messina, Italy. E-mail:
| |
Collapse
|
12
|
Bogin B, Varea C, Hermanussen M, Scheffler C. Human life course biology: A centennial perspective of scholarship on the human pattern of physical growth and its place in human biocultural evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:834-854. [DOI: 10.1002/ajpa.23357] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Barry Bogin
- School of Sport, Exercise & Health Sciences; Loughborough University, LE11 3TU; UK
| | - Carlos Varea
- Department of Biology, Physical Anthropology Group; Universidad Autónoma de Madrid; Madrid Spain
| | | | - Christiane Scheffler
- Institute of Biochemistry and Biology; University of Potsdam; Potsdam 14469 Germany
| |
Collapse
|
13
|
Gujar H, Liang JW, Wong NC, Mozhui K. Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. PLoS One 2018. [PMID: 29529061 PMCID: PMC5846735 DOI: 10.1371/journal.pone.0193496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Illumina Infinium MethylationEPIC provides an efficient platform for profiling DNA methylation in humans at over 850,000 CpGs. Model organisms such as mice do not currently benefit from an equivalent array. Here we used this array to measure DNA methylation in mice. We defined probes targeting conserved regions and performed differential methylation analysis and compared between the array-based assay and affinity-based DNA sequencing of methyl-CpGs (MBD-seq) and reduced representation bisulfite sequencing. Mouse samples consisted of 11 liver DNA from two strains, C57BL/6J (B6) and DBA/2J (D2), that varied widely in age. Linear regression was applied to detect differential methylation. In total, 13,665 probes (1.6% of total probes) aligned to conserved CpGs. Beta-values (β-value) for these probes showed a distribution similar to that in humans. Overall, there was high concordance in methylation signal between the EPIC array and MBD-seq (Pearson correlation r = 0.70, p-value < 0.0001). However, the EPIC probes had higher quantitative sensitivity at CpGs that are hypo- (β-value < 0.3) or hypermethylated (β-value > 0.7). In terms of differential methylation, no EPIC probe detected a significant difference between age groups at a Benjamini-Hochberg threshold of 10%, and the MBD-seq performed better at detecting age-dependent change in methylation. However, the top most significant probe for age (cg13269407; uncorrected p-value = 1.8 x 10-5) is part of the clock CpGs used to estimate the human epigenetic age. For strain, 219 EPIC probes detected significant differential methylation (FDR cutoff 10%) with ~80% CpGs associated with higher methylation in D2. This higher methylation profile in D2 compared to B6 was also replicated by the MBD-seq data. To summarize, we found only a small subset of EPIC probes that target conserved sites. However, for this small subset the array provides a reliable assay of DNA methylation and can be effectively used to measure differential methylation in mice.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jane W. Liang
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Nicholas C. Wong
- Monash Bioinformatics Platform, Monash University, Clayton VIC, Australia
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Centre, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
14
|
Teunissen M, Riemers FM, van Leenen D, Groot Koerkamp MJA, Meij BP, Alblas J, Penning LC, Miranda‐Bedate A, Tryfonidou MA. Growth plate expression profiling: Large and small breed dogs provide new insights in endochondral bone formation. J Orthop Res 2018; 36:138-148. [PMID: 28681971 PMCID: PMC5873274 DOI: 10.1002/jor.23647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018.
Collapse
Affiliation(s)
- Michelle Teunissen
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Frank M. Riemers
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Dik van Leenen
- Molecular Cancer ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | | | - Björn P. Meij
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Jacqueline Alblas
- Department of OrthopaedicsUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Louis C. Penning
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Alberto Miranda‐Bedate
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityYalelaan 108Utrecht 3584 CMThe Netherlands
| |
Collapse
|
15
|
Abstract
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Bogin B, Scheffler C, Hermanussen M. Global effects of income and income inequality on adult height and sexual dimorphism in height. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.22980] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Barry Bogin
- School of Sport, Exercise & Health Sciences; Loughborough University; LE11 3TU United Kingdom
| | - Christiane Scheffler
- Universität Potsdam, Institut für Biochemie und Biologie; Maulbeerallee 1 Potsdam 14469 Germany
| | | |
Collapse
|
17
|
Pes GM, Tognotti E, Poulain M, Chambre D, Dore MP. Why were Sardinians the shortest Europeans? A journey through genes, infections, nutrition, and sex. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:3-13. [PMID: 28138956 DOI: 10.1002/ajpa.23177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Since ancient times the Mediterranean island of Sardinia has been known for harboring a population with an average body height shorter than almost every other ethnic group in Europe. After over a century of investigations, the cause(s) at the origin of this uniqueness are not yet clear. The shorter stature of Sardinians appears to have been documented since prehistoric times, as revealed by the analysis of skeletal remains discovered in archaeological sites on the island. Recently, a number of genetic, hormonal, environmental, infective and nutritional factors have been put forward to explain this unique anthropometric feature, which persisted for a long time, even when environmental and living conditions improved around 1960. Although some of the putative factors are supported by sound empirical evidence, weaker support is available for others. The recent advent of whole genome analysis techniques shed new light on specific variants at the origin of this short stature. However, the marked geographical variability of stature across time and space within the island, and the well-known presence of pockets of short height in the population of the southern districts, are still puzzling findings that have attracted the interest of anthropologists and geneticists. The purpose of this review is to focus on the state-of-the-art research on stature, as well as the factors that made Sardinians the shortest among Europeans.
Collapse
Affiliation(s)
- Giovanni Mario Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, 07100, Italy
| | - Eugenia Tognotti
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, 07100, Italy
| | - Michel Poulain
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, 07100, Italy
| | - Dany Chambre
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, 07100, Italy
| | - Maria Pina Dore
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|
18
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Buchhorn R, Meint S, Willaschek C. The Impact of Early Life Stress on Growth and Cardiovascular Risk: A Possible Example for Autonomic Imprinting? PLoS One 2016; 11:e0166447. [PMID: 27861527 PMCID: PMC5115741 DOI: 10.1371/journal.pone.0166447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
Introduction Early life stress is imprinting regulatory properties with life-long consequences. We investigated heart rate variability in a group of small children with height below the third percentile, who experienced an episode of early life stress due to heart failure or intra uterine growth retardation. These children appear to develop autonomic dysfunction in later life. Results Compared to the healthy control group heart rate variability (HRV) is reduced on average in a group of 101 children with short stature. Low HRV correlates to groups of children born small for gestational age (SGA), children with cardiac growth failure and children with congenital syndromes, but not to those with constitutional growth delay (CGD), who had normal HRV. Reduced HRV indicated by lower RMSSD and High Frequency (HF)-Power is indicating reduced vagal activity as a sign of autonomic imbalance. Conclusion It is not short stature itself, but rather the underlying diseases that are the cause for reduced HRV in children with height below the third percentile. These high risk children—allocated in the groups with an adverse autonomic imprinting in utero or infancy (SGA, congenital heart disease and congenital syndromes)—have the highest risk for ‘stress diseases’ such as cardiovascular disease in later life. The incidence of attention deficit disorder is remarkably high in our group of short children.
Collapse
Affiliation(s)
- Reiner Buchhorn
- Department of Pediatrics, Caritas Krankenhaus, Bad Mergentheim, Germany
| | - Sebastian Meint
- Department of Pediatrics, Caritas Krankenhaus, Bad Mergentheim, Germany
| | - Christian Willaschek
- Department of Pediatrics, Caritas Krankenhaus, Bad Mergentheim, Germany
- * E-mail:
| |
Collapse
|
20
|
|
21
|
Abstract
Genome-wide association studies of complex physiological traits and diseases consistently found that associated genetic factors, such as allelic polymorphisms or DNA mutations, only explained a minority of the expected heritable fraction. This discrepancy is known as “missing heritability”, and its underlying factors and molecular mechanisms are not established. Epigenetic programs may account for a significant fraction of the “missing heritability.” Epigenetic modifications, such as DNA methylation and chromatin assembly states, reflect the high plasticity of the genome and contribute to stably alter gene expression without modifying genomic DNA sequences. Consistent components of complex traits, such as those linked to human stature/height, fertility, and food metabolism or to hereditary defects, have been shown to respond to environmental or nutritional condition and to be epigenetically inherited. The knowledge acquired from epigenetic genome reprogramming during development, stem cell differentiation/de-differentiation, and model organisms is today shedding light on the mechanisms of (a) mitotic inheritance of epigenetic traits from cell to cell, (b) meiotic epigenetic inheritance from generation to generation, and (c) true transgenerational inheritance. Such mechanisms have been shown to include incomplete erasure of DNA methylation, parental effects, transmission of distinct RNA types (mRNA, non-coding RNA, miRNA, siRNA, piRNA), and persistence of subsets of histone marks.
Collapse
Affiliation(s)
- Marco Trerotola
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Valeria Relli
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy. .,Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, 'G. d'Annunzio' University, Chieti, Italy.
| |
Collapse
|
22
|
Li Y, Melnikov AA, Levenson V, Guerra E, Simeone P, Alberti S, Deng Y. A seven-gene CpG-island methylation panel predicts breast cancer progression. BMC Cancer 2015; 15:417. [PMID: 25986046 PMCID: PMC4438505 DOI: 10.1186/s12885-015-1412-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. Methods CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Results Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Conclusions Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Li
- Rush University Medical Center, 653 W Congress Pkwy, Chicago, IL, 60612, USA.
| | | | - Victor Levenson
- US Biomarkers, Inc, 29 Buckingham Ln., Buffalo Grove, IL, 60089, USA. .,Currently at Center for Translational Research, Catholic Health Initiatives, Englewood, USA.
| | - Emanuela Guerra
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy.
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy.
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, 'G. d'Annunzio' University Foundation, Via L. Polacchi 11, 66100, Chieti, Italy. .,Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, 'G. d'Annunzio' University, Via dei Vestini, 66100, Chieti, Italy.
| | - Youping Deng
- Rush University Medical Center, 653 W Congress Pkwy, Chicago, IL, 60612, USA.
| |
Collapse
|