1
|
Duval L, Stinear CM, Byblow WD. Modulation of motor cortex inhibition during manual dexterity tasks: an adaptive threshold hunting study. J Neurophysiol 2024; 132:1223-1230. [PMID: 39292872 DOI: 10.1152/jn.00262.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
The ability to perform intricate movements is crucial for human motor function. The neural mechanisms underlying precision and power grips are incompletely understood. Corticospinal output from M1 is thought to be modulated by GABAA-ergic intracortical networks within M1. The objective of our study was to investigate the contribution of M1 intracortical inhibition to fine motor control using adaptive threshold hunting (ATH) with paired-pulse TMS during pinch and grasp. We hypothesized that short-interval intracortical inhibition (SICI) could be assessed during voluntary activation and that corticomotor excitability and SICI modulation would be greater during pinch than grasp, reflecting corticospinal control. Seventeen healthy participants performed gradual pinch and grasp tasks. Using ATH, paired-pulse TMS was applied in the anterior-posterior current direction to measure MEP latencies, corticomotor excitability, and SICI. MEP latencies indicated that the procedure preferentially targeted late I-waves. In terms of corticomotor excitability, there was no difference in the TMS intensity required to reach the MEP target during pinch and grasp. Greater inhibition was found during pinch than during grasp. ATH with paired-pulse TMS permits investigation of intracortical inhibitory networks and their modulation during the performance of dexterous motor tasks revealing a greater modulation of GABAA-ergic inhibition contributing to SICI during pinch compared with grasp. NEW & NOTEWORTHY Primary motor cortex intracortical inhibition was investigated during dexterous manual task performance using adaptive threshold hunting. Motor cortex intracortical inhibition was uniquely modulated during pinching versus grasping tasks.
Collapse
Affiliation(s)
- Laura Duval
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Moraes VH, Vargas CD, Ramalho BL, Matsuda RH, Souza VH, Imbiriba LA, Garcia MAC. Effect of muscle length in a handgrip task on corticomotor excitability of extrinsic and intrinsic hand muscles under resting and submaximal contraction conditions. Scand J Med Sci Sports 2023; 33:2524-2533. [PMID: 37642219 DOI: 10.1111/sms.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The neurophysiological mechanisms underlying muscle force control for different wrist postures still need to be better understood. To further elucidate these mechanisms, the present study aimed to investigate the effects of wrist posture on the corticospinal excitability by transcranial magnetic stimulation (TMS) of extrinsic (flexor [FCR] and extensor carpi radialis [ECR]) and intrinsic (flexor pollicis brevis (FPB)) muscles at rest and during a submaximal handgrip strength task. Fourteen subjects (24.06 ± 2.28 years) without neurological or motor disorders were included. We assessed how the wrist posture (neutral: 0°; flexed: +45°; extended: -45°) affects maximal handgrip strength (HGSmax ) and the motor evoked potentials (MEP) amplitudes during rest and active muscle contractions. HGSmax was higher at 0° (133%) than at -45° (93.6%; p < 0.001) and +45° (73.9%; p < 0.001). MEP amplitudes were higher for the FCR at +45° (83.6%) than at -45° (45.2%; p = 0.019) and at +45° (156%; p < 0.001) and 0° (146%; p = 0.014) than at -45° (106%) at rest and active condition, respectively. Regarding the ECR, the MEP amplitudes were higher at -45° (113%) than at +45° (60.8%; p < 0.001) and 0° (72.6%; p = 0.008), and at -45° (138%) than +45° (96.7%; p = 0.007) also at rest and active conditions, respectively. In contrast, the FPB did not reveal any difference among wrist postures and conditions. Although extrinsic and intrinsic hand muscles exhibit overlapping cortical representations and partially share the same innervation, they can be modulated differently depending on the biomechanical constraints.
Collapse
Affiliation(s)
- Victor Hugo Moraes
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia do Movimento do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia D Vargas
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia do Movimento do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia L Ramalho
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Difusão em Neuromatemática (NeuroMat), Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Renan H Matsuda
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Luis Aureliano Imbiriba
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Antonio C Garcia
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
3
|
Wu YK, Harel NY, Wecht JM, Bloom OE. Effects of Remote Ischemic Conditioning on Hand Engagement in individuals with Spinal cord Injury (RICHES): protocol for a pilot crossover study. F1000Res 2022; 10:464. [PMID: 35342620 PMCID: PMC8924555 DOI: 10.12688/f1000research.52670.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Most spinal cord injuries (SCI) are not full transections, indicating that residual nerve circuits are retained. Rehabilitation interventions have been shown to beneficially reorganize motor pathways in the brain, corticospinal tract, and at the spinal level. However, rehabilitation training require a large number of repetitions, and intervention effects may be absent or show transient retention. Therefore, the need remains for an effective approach to synergistically improve the amount and duration of neuroplasticity in combination with other interventions. Remote ischemic conditioning (RIC) demonstrates several potential advantages as a candidate for such an approach. Therefore, we propose a protocol to investigate RIC coupled with physical training to promote neuroplasticity in hand muscles. Methods: This will be a prospective randomized-order crossover trial to be performed in eight able-bodied participants and eight participants with chronic cervical SCI. Patients will participate in two experimental sessions consisting of either active or sham RIC preceding a bout of pinch movement exercise. Serial evaluations will be conducted at baseline, after RIC, immediately after pinch exercise, and follow up 15-minutes later. The primary outcome is the change in corticospinal excitability (primarily measured by the motor evoked potential of abductor pollicis brevis muscle). Secondary outcomes will include maximal volitional pinch force, and inflammatory biomarkers. To ensure safety, we will monitor tolerability and hemodynamic responses during RIC. Discussion: This protocol will be the first to test RIC in people with cervical SCI and to investigate whether RIC alters corticospinal excitability. By sharing the details of our protocol, we hope other interested researchers will seek to investigate similar approaches – depending on overlap with the current study and mutual sharing of participant-level data, this could increase the sample size, power, and generalizability of the analysis and results. Trial registration: ClinicalTrial.gov, ID: NCT03851302; Date of registration: February 22, 2019
Collapse
Affiliation(s)
- Yu-Kuang Wu
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
| | - Noam Y. Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
| | - Jill M. Wecht
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
| | - Ona E. Bloom
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
- The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
- The Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
4
|
Geed S, Grainger M, Harris-Love ML, Lum PS, Dromerick AW. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 2021; 239:1517-1530. [PMID: 33751158 PMCID: PMC8317198 DOI: 10.1007/s00221-021-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.
Collapse
Affiliation(s)
- Shashwati Geed
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA.
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA.
| | - Megan Grainger
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Michelle L Harris-Love
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Peter S Lum
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
- Department of Bioengineering, The Catholic University of America, Washington, DC, USA
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| |
Collapse
|
5
|
Lv Y, Wie N, Li K. Construction of Multiplex Muscle Network for Precision Pinch Force Control .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3269-3272. [PMID: 33018702 DOI: 10.1109/embc44109.2020.9175447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle synergy is a fundamental mechanism of motor control. Despite a number of studies focusing on muscle synergy during power grip and pinch at high-level force, relatively less is known about the functional interactions between muscles within low-level force production during precision pinch. Traditional analytical tools such as nonnegative matrix factorization or principal component analysis have limitations in processing nonlinear dynamic electromyographic signals and have confined sensitivity particularly for the low-level force production. In this study, we developed a novel method - multiplex muscle networks, to investigate the dynamical coordination of muscle activities at low-level force production during precision pinch. The multiplex muscle network was constructed based on multiplex limited penetrable horizontal visibility graph (MLPHVG). Seven forearm and hand muscles, including brachioradialis (BR), flexor carpi ulnaris (FCU), flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), extensor digitorum communis (EDC), abductor pollicis brevis (APB) and first dorsal interosseous (FDI), were examined using surface electromyography (sEMG). Eight healthy subjects were instructed to perform a visuomotor force tracking task by producing higher (10% MVC) and lower (1% MVC) precision pinch. Interlayer mutual information I, average edge overlap ω weighted clustering coefficient CW, weighted characteristic path length LW were selected as network metrics. We assessed the undirected weighted network generated from multiplex muscle network after taking the I between paired muscle network layers as edge. There are significant differences between higher and lower force level with higher I, ω, CW and lower LW at higher force level. Advanced efficiency of information processing in the regional and global perspective indicated dynamical alterations when human faces the higher force tracking task. It suggested that ω may be an important characteristic to classify different force control states with the average classification accuracy of 82.21%. These findings reveal related alterations of functional interactions between muscles involved in precision pinch. The novel method for constructing multiplex muscle network may provide insights into muscle synergies during precision pinch force control.
Collapse
|
6
|
Lv Y, Wei N, Li K. Directed Connectivity in Large-scale Brain Networks for Precision Grip Force Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2985-2989. [PMID: 31946516 DOI: 10.1109/embc.2019.8856735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Precision grip requires accurate but dynamic control of the magnitude and direction of fingertip forces. It is still not well known whether directed information flow across activated cortical regions could change with different force outputs during precision grip. This study aimed to investigate the directed connectivity in large-scale brain networks for precision grip force control. Eight healthy volunteers participated in the experiment. Totally 32 channel electroencephalography (EEG) signals were recorded during a precision grip task that requires accurate force control following a dynamically changed visual target. The force target changed between 10% and 1% Maximal Voluntary Contraction (MVC). Horizontal visibility graph transfer entropy (HVG-TE) was used to measure the directed connectivity between pairs of EEG channels. In addition, the relative HVG-TE (rHVG-TE) was applied to evaluate the activation of each EEG channel. Results showed relatively higher rHVG-TE values in the posterior brain region but lower rHVG-TE values in the anterior brain region within the whole spectrum (4-70Hz), indicating a posterior-to-anterior information flow. This study revealed that the activation of posterior region is higher than the anterior region. There is a directed functional connectivity of cortex from posterior to anterior region for precision grip force control. This study shed light on how to quantify activation and large-scale connectivity of cortical regions, and reveal the in-depth central mechanisms for peripheral fine motor control.
Collapse
|
7
|
Cinelli KTM, Green LA, Kalmar JM. The Task at Hand: Fatigue-Associated Changes in Cortical Excitability during Writing. Brain Sci 2019; 9:brainsci9120353. [PMID: 31810290 PMCID: PMC6955716 DOI: 10.3390/brainsci9120353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Measures of corticospinal excitability (CSE) made via transcranial magnetic stimulation (TMS) depend on the task performed during stimulation. Our purpose was to determine whether fatigue-induced changes in CSE made during a conventional laboratory task (isometric finger abduction) reflect the changes measured during a natural motor task (writing). We assessed single-and paired-pulse motor evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) of 19 participants before and after a fatigue protocol (submaximal isometric contractions) on two randomized days. The fatigue protocol was identical on the two days, but the tasks used to assess CSE before and after fatigue differed. Specifically, MEPs were evoked during a writing task on one day and during isometric finger abduction to a low-level target that matched muscle activation during writing on the other day. There was greater variability in MEP amplitude (F (1,18) = 13.55, p < 0.01) during writing compared to abduction. When participants were divided into groups according to writing style (printers, n = 8; cursive writers, n = 8), a task x fatigue x style interaction was revealed for intracortical facilitation (F (1,14) = 9.90, p < 0.01), which increased by 28% after fatigue in printers but did not change in cursive writers nor during the abduction task. This study is the first to assess CSE during hand-writing. Our finding that fatigue-induced changes in intracortical facilitation depend on the motor task used during TMS, highlights the need to consider the task-dependent nature of CSE when applying results to movement outside of the laboratory.
Collapse
|
8
|
Matamala JM, Howells J, Dharmadasa T, Trinh T, Ma Y, Lera L, Vucic S, Burke D, Kiernan MC. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett 2018; 674:18-23. [PMID: 29501687 DOI: 10.1016/j.neulet.2018.02.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
Paired-pulse transcranial magnetic stimulation (TMS) using fixed test stimuli suffers from marked variability of the motor evoked potential (MEP) amplitude. Threshold tracking TMS (TT-TMS) was introduced to overcome this problem. The aim of this work was to describe the absolute and relative reliability of short-interval intracortical inhibition (SICI) using TT-TMS. Cortical excitability studies were performed on twenty-six healthy subjects over three sessions (two recordings on the same day and one seven days apart), with MEPs recorded over abductor pollicis brevis. Reliability was established by calculating the standard error of the measurements (SEm), minimal detectable change (MDC) and intraclass correlation coefficient (ICC). Resting motor threshold and averaged SICI presented the lowest SEm and highest ICCs. SICI at 1 ms showed a higher SEm than SICI at 3 ms, suggesting different physiological processes, but averaging SICI over a number of intervals greatly increases the reproducibility. The variability was lower for tests undertaken at the same time of day seven days apart compared to tests performed on the same day, and in both instances the ICC for averaged SICI was ≥0.81. The MDC in averaged SICI was reduced from 6.7% to 2% if the number of subjects was increased from one to eleven. In conclusion, averaged SICI is the most reproducible variable across paired-pulse TT-TMS measures, showing an excellent ICC. It is recommended that, in longitudinal studies, testing be performed at the same time of day and that changes in cortical excitability should be measured and averaged over a number of interstimulus intervals to minimise variability.
Collapse
Affiliation(s)
| | - James Howells
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Terry Trinh
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Yan Ma
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Lydia Lera
- Institute of Nutrition and Food Technology, University of Chile, Santiago, 7830490, Chile
| | - Steve Vucic
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Western Clinical School, University of Sydney, Sydney, NSW 2145, Australia
| | - David Burke
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
9
|
Tazoe T, Perez MA. Cortical and reticular contributions to human precision and power grip. J Physiol 2017; 595:2715-2730. [PMID: 27891607 DOI: 10.1113/jp273679] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. ABSTRACT It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects.
Collapse
Affiliation(s)
- Toshiki Tazoe
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| |
Collapse
|