1
|
Aisyah R, Kamesawa M, Horii M, Watanabe D, Yoshida Y, Miyata K, Kumrungsee T, Wada M, Yanaka N. Comparative study on muscle function in two different streptozotocin-induced diabetic models. Acta Diabetol 2024; 61:1443-1453. [PMID: 38856757 PMCID: PMC11531449 DOI: 10.1007/s00592-024-02311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
AIMS Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mayu Horii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Scervino MVM, Fortes MAS, Vitzel KF, de Souza DR, Murata GM, Santana GO, da Silva EB, Levada‐Pires AC, Kuwabara WMT, Loureiro TCA, Curi R. Autophagy signaling in hypertrophied muscles of diabetic and control rats. FEBS Open Bio 2023; 13:1709-1722. [PMID: 37470707 PMCID: PMC10476571 DOI: 10.1002/2211-5463.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023] Open
Abstract
Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM). EDL muscles showed increased levels of basal autophagy signaling proteins. The diabetic state did not affect the extent of overload-induced hypertrophy or the levels of autophagy signaling proteins (p-ULK1, Beclin-1, Atg5, Atg12-5, Atg7, Atg3, LC3-I and II, and p62) in either muscle. The p-ULK-1, Beclin-1, and p62 protein expression levels were higher in the EDL muscle than in the soleus before the hypertrophic stimulus. On the contrary, the soleus muscle exhibited increased autophagic signaling after overload-induced hypertrophy, with increases in Beclin-1, Atg5, Atg12-5, Atg7, Atg3, and LC3-I expression in the control and diabetic groups, in addition to p-ULK-1 in the control groups. After hypertrophy, Beclin-1 and Atg5 levels increased in the EDL muscle of both groups, while p-ULK1 and LC3-I increased in the control group. In conclusion, the baseline EDL muscle exhibited higher autophagy than the soleus muscle. Although TDM1 promotes skeletal muscle mass loss and strength reduction, it did not significantly alter the extent of overload-induced hypertrophy and autophagy signaling proteins in EDL and soleus muscles, with the two groups exhibiting different patterns of autophagy activation.
Collapse
Affiliation(s)
- Maria V. M. Scervino
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Marco A. S. Fortes
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
- Departmento de NutriçãoCentro Universitário AvantisBalneário CamburiúBrazil
| | - Kaio F. Vitzel
- School of Health Sciences, College of HealthMassey UniversityAucklandNew Zealand
| | - Diego R. de Souza
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
- Departamento de Projetos de Pesquisa e EnsinoEscola de Educação Física da Polícia Militar do Estado de São PauloBrazil
| | - Gilson M. Murata
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Giovanna O. Santana
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
| | - Eliane B. da Silva
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
| | - Adriana C. Levada‐Pires
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
| | - Wilson M. T. Kuwabara
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Tatiana C. A. Loureiro
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Rui Curi
- Instituto de Ciências da Atividade Física e Esporte (ICAFE)Universidade Cruzeiro do SulSão PauloBrazil
- Departmento de Fisiologia e Biofísica, Instituto de Ciências BiomédicasUniversidade de São PauloBrazil
| |
Collapse
|
3
|
Song T, McNamara JW, Ma W, Landim-Vieira M, Lee KH, Martin LA, Heiny JA, Lorenz JN, Craig R, Pinto JR, Irving T, Sadayappan S. Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction. Proc Natl Acad Sci U S A 2021; 118:e2003596118. [PMID: 33888578 PMCID: PMC8092462 DOI: 10.1073/pnas.2003596118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fast skeletal myosin-binding protein-C (fMyBP-C) is one of three MyBP-C paralogs and is predominantly expressed in fast skeletal muscle. Mutations in the gene that encodes fMyBP-C, MYBPC2, are associated with distal arthrogryposis, while loss of fMyBP-C protein is associated with diseased muscle. However, the functional and structural roles of fMyBP-C in skeletal muscle remain unclear. To address this gap, we generated a homozygous fMyBP-C knockout mouse (C2-/-) and characterized it both in vivo and in vitro compared to wild-type mice. Ablation of fMyBP-C was benign in terms of muscle weight, fiber type, cross-sectional area, and sarcomere ultrastructure. However, grip strength and plantar flexor muscle strength were significantly decreased in C2-/- mice. Peak isometric tetanic force and isotonic speed of contraction were significantly reduced in isolated extensor digitorum longus (EDL) from C2-/- mice. Small-angle X-ray diffraction of C2-/- EDL muscle showed significantly increased equatorial intensity ratio during contraction, indicating a greater shift of myosin heads toward actin, while MLL4 layer line intensity was decreased at rest, indicating less ordered myosin heads. Interfilament lattice spacing increased significantly in C2-/- EDL muscle. Consistent with these findings, we observed a significant reduction of steady-state isometric force during Ca2+-activation, decreased myofilament calcium sensitivity, and sinusoidal stiffness in skinned EDL muscle fibers from C2-/- mice. Finally, C2-/- muscles displayed disruption of inflammatory and regenerative pathways, along with increased muscle damage upon mechanical overload. Together, our data suggest that fMyBP-C is essential for maximal speed and force of contraction, sarcomere integrity, and calcium sensitivity in fast-twitch muscle.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - Weikang Ma
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Lisa A Martin
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306
| | - Thomas Irving
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267;
| |
Collapse
|
4
|
de Souza DR, Vasconcelos DAAD, Murata GM, Fortes MAS, Marzuca-Nassr GN, Levada-Pires AC, Vitzel KF, Abreu P, Scervino MVM, Hirabara SM, Curi R, Pithon-Curi TC. Glutamine supplementation versus functional overload in extensor digitorum longus muscle hypertrophy. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Estrada-Bonilla YC, Castro PATS, Luna GLF, Souza ABA, Santos GS, Salvini TF, Leal AMO, Russo TL. Reaching task performance is associated to neuromuscular junction adaptations in rats with induced diabetes mellitus. ACTA ACUST UNITED AC 2020; 53:e8763. [PMID: 32520205 PMCID: PMC7279698 DOI: 10.1590/1414-431x20208763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
Abstract
Upper limb performance is affected by diabetes mellitus (DM). Neuromuscular junction (NMJ) is a key structure to understand the relationship between performance and morphology in DM. The aim of the study was to analyze NMJ plasticity due to DM in an animal model and its relationship with the function of forelimbs in rats. Twelve Wistar rats were divided into control (C) and DM groups. Animals were trained to perform a grasping task, following procedures of habituation, shaping, and reaching task. DM was induced using streptozotocin. Forelimb neuromuscular performance for dexterity was evaluated one day before DM induction and five weeks following induction. After that, biceps, triceps, and finger flexors and extensors were removed. Connective tissue and muscle fiber cross-sectional area (CSA) were measured. NMJ was assessed by its morphometric characteristics (area, perimeter, and maximum diameter), using ImageJ software. Motor performance analyses were made using single pellet retrieval task performance test. Student’s t-test was used for comparisons between groups. A significant decrease in all NMJ morphometric parameters was observed in the DM group compared with the C group. Results showed that DM generated NMJ retraction in muscles involved in a reaching task. These alterations are related to signs of muscular atrophy and to poor reaching task performance. In conclusion, induced DM caused NMJ retraction and muscular atrophy in muscles involved in reaching task performance. Induced DM caused significantly lower motor performance, especially in the final moments of evaluation, when DM compromised the tropism of the muscular tissue.
Collapse
Affiliation(s)
- Y C Estrada-Bonilla
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil.,Body, Subject and Education Research Group, Universidad Santo Tomás de Aquino, Bogotá, D.C., Colombia
| | - P A T S Castro
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - G L F Luna
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A B A Souza
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - G S Santos
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T F Salvini
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A M O Leal
- Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - T L Russo
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
6
|
Marzuca-Nassr GN, Fortes MAS, Guimarães-Ferreira L, Murata GM, Vitzel KF, Vasconcelos DAA, Bassit RA, Curi R. Short-term creatine supplementation changes protein metabolism signaling in hindlimb suspension. ACTA ACUST UNITED AC 2019; 52:e8391. [PMID: 31596311 PMCID: PMC6787955 DOI: 10.1590/1414-431x20198391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
The effect of a short-term creatine supplementation on hindlimb suspension (HS)-induced muscle atrophy was investigated. Creatine monohydrate (5 g/kg b.w. per day) or placebo, divided in 2 daily doses, was given by oral gavage for 5 days. Rats were maintained in HS with dietary supplementation concomitantly for 5 days. Body weight, soleus and EDL muscle masses, and cross-sectional areas (CSA) of the muscle fibers were measured. Signaling pathways associated with skeletal muscle mass regulation (FST, MSTN, FAK, IGF-1, MGF, Akt, mTOR, atrogin-1, and MuRF1 expressions, and Akt, S6, GSK3B, and 4EBP1 proteins) were evaluated in the muscles. Soleus muscle exhibited more atrophy than the EDL muscle due to HS. Creatine supplementation attenuated the decrease of wet weight and increased p-4EBP1 protein in the EDL muscle of HS rats. Also, creatine increased mTOR and atrogin-1 expressions in the same muscle and condition. In the absence of HS, creatine supplementation increased FAK and decreased MGF expressions in the EDL muscle. Creatine attenuated the increase in FST expression due to HS in the soleus muscle. MuRF1 expression increased in the soleus muscle due to creatine supplementation in HS animals whereas atrogin-1 expression increased still further in this group compared with untreated HS rats. In conclusion, short-term creatine supplementation changed protein metabolism signaling in soleus and EDL muscles. However, creatine supplementation only slightly attenuated the mass loss of both muscles and did not prevent the CSA reduction and muscle strength decrease induced by HS for 5 days.
Collapse
Affiliation(s)
- G N Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M A S Fortes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L Guimarães-Ferreira
- Grupo de Estudos em Fisiologia Muscular e Performance Humana, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - G M Murata
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - K F Vitzel
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.,School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - D A A Vasconcelos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R A Bassit
- Departamento da Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R Curi
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.,Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| |
Collapse
|
7
|
Ato S, Kido K, Sato K, Fujita S. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats. Exp Physiol 2019; 104:1518-1531. [PMID: 31328833 PMCID: PMC6790689 DOI: 10.1113/ep087585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
New Findings What is the central question of this study? Type 2 diabetes mellitus (T2DM) causes skeletal muscle atrophy; does it affect resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy? What is the main finding and its importance? Although skeletal muscle mass and regulation were not preserved under conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle. These findings suggest that the capacity of RT‐mediated muscle mass gain is not diminished in the T2DM condition.
Abstract Type 2 diabetes mellitus (T2DM) is known to cause skeletal muscle atrophy. However, it is not known whether T2DM affects resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy. Therefore, we investigated the effect of T2DM on response of skeletal muscle hypertrophy to chronic RT using a rat resistance exercise mimetic model. T2DM and healthy control rats were subjected to 18 bouts (3 times per week) of chronic RT on unilateral lower legs. RT significantly increased gastrocnemius muscle mass and myonuclei in both T2DM and healthy control rats to the same extent, even though T2DM caused muscle atrophy in the resting condition. Further, T2DM significantly reduced mechanistic target of rapamycin complex 1 (mTORC1) activity (phosphorylation of p70S6KThr389 and 4E‐BP1Thr37/46) to insulin stimulation and the number of myonuclei in the untrained basal condition, but RT‐mediated adaptations were not affected by T2DM. These findings suggested that although the skeletal muscle mass and regulation were not preserved under basal conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle.
Collapse
Affiliation(s)
- Satoru Ato
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kido
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Koji Sato
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Satoshi Fujita
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
8
|
Matsumoto T, Tanaka M, Ikeji T, Maeshige N, Sakai Y, Akisue T, Kondo H, Ishihara A, Fujino H. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. J Physiol Sci 2019; 69:317-326. [PMID: 30478742 PMCID: PMC10717691 DOI: 10.1007/s12576-018-0648-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
Abstract
The purpose of the present study was to determine the effects of transcutaneous CO2 application on the blood flow and capillary architecture of the soleus muscle in rats with streptozotocin (STZ)-induced hyperglycemia. Wistar rats were randomly divided into four groups: control, control + CO2-treated, STZ-induced hyperglycemia, and STZ-induced hyperglycemia + CO2-treated groups. Blood flow in soleus muscle increased during the transcutaneous CO2 exposure, and continued to increase for 30 min after the treatment. In addition, the transcutaneous CO2 attenuated a decrease in capillary and the expression level of eNOS and VEGF protein, and an increase in the expression level of MDM-2 and TSP-1 protein of soleus muscle due to STZ-induced hyperglycemia. These results indicate that the application of transcutaneous CO2 could improve capillary regression via the change of pro- and anti-angiogenesis factors, which might be induced by an increase in blood flow.
Collapse
Affiliation(s)
- Tomohiro Matsumoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu, Osaka, 566-8501, Japan
| | - Takuya Ikeji
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 4-21 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
9
|
Gender-effect on the contractile properties of skeletal muscle in streptozotocin-induced diabetic rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:255-261. [PMID: 29855448 PMCID: PMC6016489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the present study, we studied the effect of streptozotocin-induced Type 1 diabetes on contractile properties of soleus muscle in female and young male rats. We hypothesized that the gender affects the contractile function in diabetic rats. Thirty-two Sprague-Dawley rats, male and female, three months old were divided into four groups: Female Non-Diabetic (FND), Female Diabetic (FD), Male Non-Diabetic (MND) and Male Diabetic (MD). Diabetes was induced by a single dose of 60 mg/kg body weight of streptozotocin in citrate buffer pH 4.5 by intraperitoneal route. At 4 weeks after of the dose animals were considered to be diabetic if they had glucose levels ≥20 mmol/L. Soleus muscle mass and twitch force were higher in MND than in FND; in male rats, the diabetes decreased the muscle mass in 34% and the twitch force decayed in 33%; while in diabetic females the muscle mass and twitch force decayed 15% and 10% respectively. Our results showed that the diabetes has gender-dependent effects on the muscle mass and maximal contractile force.
Collapse
|
10
|
Tastekin B, Pelit A, Polat S, Tuli A, Sencar L, Alparslan MM, Daglioglu YK. Therapeutic Potential of Pterostilbene and Resveratrol on Biomechanic, Biochemical, and Histological Parameters in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9012352. [PMID: 29887910 PMCID: PMC5977026 DOI: 10.1155/2018/9012352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/16/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
AIMS The aim of this study was to investigate the effects of pterostilbene (PTS) (trans-3,5-dimethoxy-4'-hydroxystilbene) and resveratrol (RSV) (trans-3,5,4' trihydroxystilbene) applied at different doses for the treatment of streptozotocin- (STZ-) induced diabetic rats. MATERIALS AND METHODS At the end of the 5-week experimental period, the right gastrocnemius muscles of the rats were examined biomechanically, while the left ones were examined histologically. In addition, blood glucose, serum insulin, and malondialdehyde (MDA) levels were analyzed in blood samples taken from the rats. RESULTS The skeletal muscle isometric contraction forces, which showed a decrease with diabetes, were observed to increase with antioxidant applications. Blood glucose, serum insulin, and MDA levels in diabetic rats approached normal levels after applying PTS. When the electron microscopic images of the rat skeletal muscle were examined, those in the combination treatment group were observed to show a better enhancement in the skeletal muscle morphological structure compared to the other diabetic and treatment groups. CONCLUSION According to the findings, we suggest that these antioxidant treatments might have good therapeutic nutraceutical potential for some muscle diseases that coexist with diabetes. These treatments should be comprehensively investigated in the future.
Collapse
Affiliation(s)
- Bora Tastekin
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Aykut Pelit
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Abdullah Tuli
- Department of Biochemistry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Yusuf Kenan Daglioglu
- Research and Practice Center of Experimental Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
11
|
Vitzel KF, Fortes MA, Marzuca-Nassr GN, Scervino MVM, Pinheiro CH, Silveira LR, Curi R. In Vivo Electrical Stimulation for the Assessment of Skeletal Muscle Contractile Function in Murine Models. Methods Mol Biol 2018; 1735:381-395. [PMID: 29380329 DOI: 10.1007/978-1-4939-7614-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle electrical stimulation is commonly used for clinical purposes, assisting recovery, preservation, or even improvement of muscle mass and function in healthy and pathological conditions. Additionally, it is a useful research tool for evaluation of skeletal muscle contractile function. It may be applied in vitro, using cell culture or isolated fibers/muscles, and in vivo, using human subjects or animal models (neuromuscular electrical stimulation - NMES). This chapter focuses on the electrical stimulation of the sciatic nerve as a research method for evaluation of the contractile properties of murine hind limb muscles. Variations of this protocol allow for the assessment of muscle force, fatigue resistance, contraction and relaxation times, and can be used as a model of contraction-induced muscle injury, reactive oxygen species production, and muscle adaptation to contractile activity.
Collapse
Affiliation(s)
- Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand.
| | - Marco A Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos H Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, Institute of Biology, Unicamp, Campinas, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
| |
Collapse
|
12
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
13
|
Pedroso JAB, de Mendonca POR, Fortes MAS, Tomaz I, Pecorali VL, Auricino TB, Costa IC, Lima LB, Furigo IC, Bueno DN, Ramos-Lobo AM, Lotfi CFP, Donato J. SOCS3 expression in SF1 cells regulates adrenal differentiation and exercise performance. J Endocrinol 2017; 235:207-222. [PMID: 28899903 DOI: 10.1530/joe-17-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022]
Abstract
Many hormones/cytokines are secreted in response to exercise and cytokine signaling may play a pivotal role in the training adaptations. To investigate the importance of cytokine signaling during vertical ladder climbing, a resistance exercise model, we produced mice lacking SOCS3 protein exclusively in steroidogenic factor-1 (SF1) cells (SF1 Socs3 KO mice). SF1 expression is found in steroidogenic cells of the adrenal cortex and gonads, as well as in neurons of the ventromedial nucleus of the hypothalamus. Histological markers of the fetal adrenal zone (or X-zone in rodents) were still present in adult males and postpartum SF1 Socs3 KO females, suggesting a previously unrecognized effect of SOCS3 on the terminal differentiation of the adrenal gland. This change led to a distinct distribution of lipid droplets along the adrenal cortex. Under basal conditions, adult SF1 Socs3 KO mice exhibited similar adrenal weight, and plasma ACTH and corticosterone concentrations. Nonetheless, SF1 Socs3 KO mice exhibited a blunted ACTH-induced corticosterone secretion. The overall metabolic responses induced by resistance training remained unaffected in SF1 Socs3 KO mice, including changes in body adiposity, glucose tolerance and energy expenditure. However, training performance and glucose control during intense resistance exercise were impaired in SF1 Socs3 KO mice. Furthermore, a reduced counter-regulatory response to 2-deoxy-d-glucose was observed in mutant mice. These findings revealed a novel participation of SOCS3 regulating several endocrine and metabolic aspects. Therefore, cytokine signaling in SF1 cells exerts an important role to sustain training performance possibly by promoting the necessary metabolic adjustments during exercise.
Collapse
Affiliation(s)
- João A B Pedroso
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro O R de Mendonca
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Marco A S Fortes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Tomaz
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor L Pecorali
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais B Auricino
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Ismael C Costa
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora N Bueno
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudimara F P Lotfi
- Department of AnatomyInstitute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats. Front Physiol 2017; 8:830. [PMID: 29123487 PMCID: PMC5662641 DOI: 10.3389/fphys.2017.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.
Collapse
Affiliation(s)
- Marco A S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel N Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Albany, New Zealand
| | - Carlos H da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
15
|
Marzuca-Nassr GN, Murata GM, Martins AR, Vitzel KF, Crisma AR, Torres RP, Mancini-Filho J, Kang JX, Curi R. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy. Nutrients 2017; 9:nu9101100. [PMID: 28984836 PMCID: PMC5691716 DOI: 10.3390/nu9101100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- School of Health Sciences, College of Health, Massey University, Auckland 0632, New Zealand.
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rosângela Pavan Torres
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jorge Mancini-Filho
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jing Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
16
|
Egner IM, Bruusgaard JC, Gundersen K. An apparent lack of effect of satellite cell depletion on hypertrophy could be due to methodological limitations. Response to ‘Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy’. Development 2017; 144:1365-1367. [DOI: 10.1242/dev.148163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ingrid M. Egner
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| | - Jo C. Bruusgaard
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
- Department of Health Sciences, Kristiania University College, P.O. Box 1190, Sentrum, Oslo N-0107, Norway
| | - Kristian Gundersen
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| |
Collapse
|
17
|
Mendias CL, Schwartz AJ, Grekin JA, Gumucio JP, Sugg KB. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. J Appl Physiol (1985) 2016; 122:571-579. [PMID: 27979985 DOI: 10.1152/japplphysiol.00719.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point.NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan; .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Andrew J Schwartz
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Jeremy A Grekin
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and.,Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
18
|
Abreu P, Pinheiro CHJ, Vitzel KF, Vasconcelos DAA, Torres RP, Fortes MS, Marzuca-Nassr GN, Mancini-Filho J, Hirabara SM, Curi R. Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid. Exp Physiol 2016; 101:1392-1405. [PMID: 27579497 DOI: 10.1113/ep085899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration. Oleic and linoleic acids control fibroblast proliferation and myogenic differentiation in vitro; however, there was no study in skeletal muscle in vivo. The aim of this study was to evaluate the effects of either oleic or linoleic acid on the fibrous tissue content (collagen deposition) of muscle and recovery of contractile function in rat gastrocnemius muscle after being severely injured by laceration. Rats were supplemented with either oleic or linoleic acid for 4 weeks after laceration [0.44 g (kg body weight)-1 day-1 ]. Muscle injury led to an increase in oleic-to-stearic acid and palmitoleic-to-palmitic acid ratios, suggesting an increase in Δ9 desaturase activity. Increased fibrous tissue deposition and reduced isotonic and tetanic specific forces and resistance to fatigue were observed in the injured muscle. Supplementation with linoleic acid increased the content of eicosadienoic (20:2, n-6) and arachidonic (20:4, n-6) acids, reduced muscle mass and fibre cross-sectional areas, increased fibrous tissue deposition and further reduced the isotonic and tetanic specific forces and resistance to fatigue induced by laceration. Supplementation with oleic acid increased the content of docosahexaenoic acid (22:6, n-3) and abolished the increase in fibrous tissue area and the decrease in isotonic and tetanic specific forces and resistance to fatigue induced by muscle injury. We concluded that supplementation with linoleic acid impairs muscle regeneration and increases fibrous tissue deposition, resulting in impaired recovery of contractile function. Oleic acid supplementation reduced fibrous tissue deposition and improved recovery of contractile function, attenuating the tissue damage caused by muscle injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos H J Pinheiro
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kaio F Vitzel
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Rosângela P Torres
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco S Fortes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Jorge Mancini-Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sandro M Hirabara
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Rui Curi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Fortes MAS, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal Biochem 2016; 504:38-40. [PMID: 27060530 DOI: 10.1016/j.ab.2016.03.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
The use of Western blot analysis is of great importance in research, and the measurement of housekeeping proteins is commonly used for loading controls. However, Ponceau S staining has been shown to be an alternative to analysis of housekeeping protein levels as loading controls in some conditions. In the current study, housekeeping protein levels were measured in skeletal muscle hypertrophy and streptozotocin-induced diabetes experimental models. The following housekeeping proteins were investigated: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin, α-tubulin, γ-tubulin, and α-actinin. Evidence is presented that Ponceau S is more reliable than housekeeping protein levels for specific protein quantifications in Western blot analysis.
Collapse
Affiliation(s)
- Marco Aurélio Salomão Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil.
| | - Gabriel Nasri Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Carlos Hermano da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI) Biosciences, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo 05508-900, Brazil
| |
Collapse
|
20
|
RodríGuez-Reyes N, RodríGuez-Zayas AE, Javadov S, Frontera WR. Single muscle fiber contractile properties in diabetic RAT muscle. Muscle Nerve 2016; 53:958-64. [PMID: 26598963 DOI: 10.1002/mus.24988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Diabetes is associated with accelerated loss of muscle mass and function. We compared the contractile properties of single muscle fibers in young rat soleus muscle of uncontrolled streptozotocin-induced diabetic animals (n = 10) and nondiabetic controls (n = 10). METHODS Single fiber maximal force, shortening velocity, and power were assessed during maximal activation with calcium using the slack test 4 weeks after induction. Myosin heavy chain expression was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Oxidized myosin levels were detected by analyzing protein carbonyls in muscle homogenates. All fibers expressed the type I myosin heavy chain isoform. RESULTS Diabetic rats had higher blood glucose (537 vs. 175 mg/dl; P < 0.001) and lower body weight (171 vs. 356 g; P < 0.001) than controls. Muscle fibers from diabetic rats showed smaller cross-sectional area (1128 vs. 1812 μm(2) ), lower maximal force (258 vs. 492 μN), and reduced absolute power (182 vs. 388 μN FL/s) (all P < 0.0001). No differences were seen in shortening velocity, specific force or specific power. Myosin carbonylation was higher (P < 0.01) in diabetic rats. CONCLUSIONS After 4 weeks of untreated diabetes, there are significant alterations in muscle at the level of isolated single fibers and myosin protein, although some contractile properties seem to be protected. Muscle Nerve, 2015 Muscle Nerve 53: 958-964, 2016.
Collapse
Affiliation(s)
| | - Ana E RodríGuez-Zayas
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Walter R Frontera
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Suite 1318, 2201 Children's Way, Nashville, Tennessee, 37212
| |
Collapse
|