1
|
Shinohara K. Renal denervation: a key approach to hypertension and cardiovascular disease. Hypertens Res 2024; 47:2671-2677. [PMID: 38961280 DOI: 10.1038/s41440-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Sympathetic activation plays a critical role in the development of hypertension and cardiovascular disease, including heart failure and arrhythmias. Renal nerves contribute to the regulation of blood pressure and fluid volume through renal sympathetic efferent nerves, and to the modulation of sympathetic outflow through renal sensory afferent nerves. Previous studies including ours suggest that selective afferent renal denervation with preservation of efferent renal nerves can significantly decrease central sympathetic outflow in animal models of hypertension with renal damage. In Dahl salt-sensitive rats fed high salt diet from an early age, a model of hypertensive heart failure, this central sympathoinhibition by afferent renal denervation may attenuate the development of heart failure without significant blood pressure reduction. Accumulating clinical evidence supports the efficacy of renal denervation as an antihypertensive treatment. However, it remains important to clarify the appropriate indications and predictors of responders to renal denervation in the treatment of hypertension. Several clinical studies suggest beneficial effects of renal denervation in patients with heart disease, with or without hypertension, although most were not sham-controlled. In particular, some clinical studies have demonstrated that renal denervation reduces the incidence of atrial fibrillation or cardiovascular events even without a significant antihypertensive effect. It is essential to accumulate more insightful data in patients undergoing renal denervation, to establish the efficacy of renal denervation in patients with cardiovascular disease in the clinical setting, and to elucidate the therapeutic mechanisms of renal denervation and the renal nerves-linked pathophysiology of cardiovascular disease in basic research. This review outlines the effects of renal denervation on sympathetic activity and organ damage in animal models of hypertension and hypertensive heart failure, including our own data. Beyond the antihypertensive effects, the beneficial effects of renal denervation on cardiovascular disease are also discussed based on clinical studies. Several animal and clinical studies suggest the cardioprotective effects of renal denervation even in the absence of significant blood pressure reduction, probably due to its sympathoinhibitory effects.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Shinohara K. Renal denervation for hypertensive heart disease and atrial fibrillation. Hypertens Res 2024; 47:2665-2670. [PMID: 38877310 DOI: 10.1038/s41440-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Accumulating evidence supports the efficacy of renal denervation (RDN) as an antihypertensive treatment. Additionally, several RDN clinical studies, including meta-analyses, have suggested that RDN may potentially have beneficial effects on left ventricular hypertrophy, diastolic function, and new-onset/recurrence of atrial fibrillation (AF), although most studies were not randomized sham-controlled. In particular, the effects of RDN on left ventricular hypertrophy and AF recurrence appear to be relatively evident. Sympathetic activation plays a critical role in the development of hypertension, hypertensive heart disease, and AF. Notably, several studies suggest the cardioprotective effects of RDN even in the absence of significant blood pressure reduction, probably due to its sympathoinhibitory effects. It is imperative to establish the efficacy of RDN in patients with hypertensive heart disease and/or AF, focusing on parameters of sympathetic activity in the clinical setting, including randomized sham-controlled trials. Moreover, further basic research is essential to elucidate the therapeutic mechanisms of RDN beyond blood pressure lowering and the renal nerves-linked pathophysiologies of hypertensive heart disease and AF. This review outlines the effects of renal denervation on hypertensive heart disease, particularly on left ventricular hypertrophy and diastolic function, and on atrial fibrillation. The sympathoinhibitory effect of renal denervation, an important potential mechanism of its beneficial effects on heart disease, is also discussed.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Katsuki M, Shinohara K, Kinugawa S, Hirooka Y. The effects of renal denervation on blood pressure, cardiac hypertrophy, and sympathetic activity during the established phase of hypertension in spontaneously hypertensive rats. Hypertens Res 2024; 47:1073-1077. [PMID: 38337003 DOI: 10.1038/s41440-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to investigate whether renal denervation (RDN) reduces blood pressure and attenuates cardiac hypertrophy with decreasing sympathetic activity in spontaneously hypertensive rats (SHRs), a model of essential hypertension, during the established phase of hypertension. We performed RDN or sham operation in 15-weeks-old SHRs. Thirty days after RDN, mean blood pressure measured by telemetry, heart weight, left ventricular wall thickness assessed by echocardiography, and urinary norepinephrine levels were significantly decreased in the RDN group compared to the Sham group. Furthermore, oxidative stress, as indicated by thiobarbituric acid reactive substances, in the rostral ventrolateral medulla, a pivotal region regulating basal sympathetic tone, was significantly decreased in the RDN group. In conclusion, RDN reduces blood pressure and attenuates cardiac hypertrophy with sympathoinhibition in the established phase of hypertension in SHRs. These findings highlight the sympathoinhibitory effect of RDN and suggest that RDN may be a potential therapy for hypertensive cardiac hypertrophy. Renal denervation reduces blood pressure and attenuates cardiac hypertrophy with sympathoinhibition in the established phase of hypertension in spontaneously hypertensive rats. This study highlights the sympathoinhibitory effect of renal denervation and suggests that renal denervation may be a potential therapy for hypertensive cardiac hypertrophy.
Collapse
Affiliation(s)
- Masato Katsuki
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Medical Technology and Sciences, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
4
|
Katsurada K. ATRAP in the paraventricular nucleus of the hypothalamus as another key player in the control of sympathetic outflow. Hypertens Res 2024; 47:1084-1086. [PMID: 38351190 DOI: 10.1038/s41440-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
5
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
6
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
7
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
8
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
9
|
Bardsley EN, Neely OC, Paterson DJ. Angiotensin peptide synthesis and cyclic nucleotide modulation in sympathetic stellate ganglia. J Mol Cell Cardiol 2020; 138:234-243. [PMID: 31836539 PMCID: PMC7049903 DOI: 10.1016/j.yjmcc.2019.11.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Chronically elevated angiotensin II is a widely-established contributor to hypertension and heart failure via its action on the kidneys and vasculature. It also augments the activity of peripheral sympathetic nerves through activation of presynaptic angiotensin II receptors, thus contributing to sympathetic over-activity. Although some cells can synthesise angiotensin II locally, it is not known if this machinery is present in neurons closely coupled to the heart. Using a combination of RNA sequencing and quantitative real-time polymerase chain reaction, we demonstrate evidence for a renin-angiotensin synthesis pathway within human and rat sympathetic stellate ganglia, where significant alterations were observed in the spontaneously hypertensive rat stellate ganglia compared with Wistar stellates. We also used Förster Resonance Energy Transfer to demonstrate that administration of angiotensin II and angiotensin 1-7 peptides significantly elevate cyclic guanosine monophosphate in the rat stellate ganglia. Whether the release of angiotensin peptides from the sympathetic stellate ganglia alters neurotransmission and/or exacerbates cardiac dysfunction in states associated with sympathetic over activity remains to be established.
Collapse
Affiliation(s)
- Emma N Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Oxford, UK; Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; British Heart Foundation, Centre of Research Excellence, UK.
| | - Oliver C Neely
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; British Heart Foundation, Centre of Research Excellence, UK
| | - David J Paterson
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Oxford, UK; Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; British Heart Foundation, Centre of Research Excellence, UK.
| |
Collapse
|
10
|
Shanks J, de Morais SDB, Gao L, Zucker IH, Wang HJ. TRPV1 (Transient Receptor Potential Vanilloid 1) Cardiac Spinal Afferents Contribute to Hypertension in Spontaneous Hypertensive Rat. Hypertension 2019; 74:910-920. [PMID: 31422690 DOI: 10.1161/hypertensionaha.119.13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with increased sympathetic activity. A component of this sympathoexcitation may be driven by increased signaling from sensory endings from the heart to the autonomic control areas in the brain. This pathway mediates the so-called cardiac sympathetic afferent reflex, which is also activated by coronary ischemia or other nociceptive stimuli in the heart. The cardiac sympathetic afferent reflex has been shown to be enhanced in the heart failure state and in renal hypertension. However, little is known about its role in the development or progression of hypertension or the phenotype of the sensory endings involved. To investigate this, we used the selective afferent neurotoxin, resiniferatoxin (RTX) to chronically abolish the cardiac sympathetic afferent reflex in 2 models of hypertension; the spontaneous hypertensive rats (SHRs) and AngII (angiotensin II) infusion (240 ng/kg per min). Blood pressure (BP) was measured in conscious animals for 2 to 8 weeks post-RTX. Epidural application of RTX to the T1-T4 spinal segments prevented the further BP increase in 8-week-old SHR and lowered BP in 16-week-old SHR. RTX did not affect BP in Wistar-Kyoto normotensive rats nor in AngII-infused rats. Epicardial application of RTX (50 µg/mL) in 4-week-old SHR prevented the BP increase whereas this treatment does not lower BP in 16-week-old SHR. When RTX was administered into the L2-L5 spinal segments of 16-week-old SHR, no change in BP was observed. These findings indicate that signaling via thoracic afferent nerve fibers may contribute to the hypertension phenotype in the SHR but not in the Ang II infusion model of hypertension.
Collapse
Affiliation(s)
- Julia Shanks
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Sharon D B de Morais
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Lie Gao
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| | - Han-Jun Wang
- From the Department of Cellular and Integrative Physiology (J.S., S.D.B.d., L.G., I.H.Z., H.-J.W.), University of Nebraska Medical Center, Omaha, NE.,Department of Anesthesiology (H.-J.W.), University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
11
|
Carvalho-Galvão A, Guimarães DD, De Brito Alves JL, Braga VA. Central Inhibition of Tumor Necrosis Factor Alpha Reduces Hypertension by Attenuating Oxidative Stress in the Rostral Ventrolateral Medulla in Renovascular Hypertensive Rats. Front Physiol 2019; 10:491. [PMID: 31114507 PMCID: PMC6502978 DOI: 10.3389/fphys.2019.00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation in the central nervous system is being considered a key player linked to neurogenic hypertension. Using combined in vivo and in vitro approaches, we investigated the effects of central inhibition of TNF-α on blood pressure, sympathetic tone, baroreflex sensitivity, and oxidative stress in the rostral ventrolateral medulla (RVLM) of rats with 2-kidney-1-clip (2K1C) renovascular hypertension. Continuous infusion of pentoxifylline, a TNF-α inhibitor, into the lateral ventricle of the brain for 14 consecutive days reduced blood pressure and improved baroreflex sensitivity in renovascular hypertensive rats. Furthermore, central TNF-α inhibition reduced sympathetic modulation and blunted the increased superoxide accumulation in the RVLM of 2K1C rats. Our findings suggest that TNF-α play an important role in the maintenance of sympathetic vasomotor tone and increased oxidative stress in the RVLM during renovascular hypertension.
Collapse
Affiliation(s)
| | - Drielle D Guimarães
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - José L De Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Shangguan W, Shi W, Li G, Wang Y, Li J, Wang X. Angiotensin-(1-7) attenuates atrial tachycardia-induced sympathetic nerve remodeling. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317729281. [PMID: 28877652 PMCID: PMC5843893 DOI: 10.1177/1470320317729281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: The effect of Angiotensin-(1–7) (Ang-(1–7)) on atrial autonomic remodeling is still unknown. We hypothesized that Ang-(1–7) could inhibit sympathetic nerve remodeling in a canine model of chronic atrial tachycardia. Materials and methods: Eighteen dogs were randomly assigned to sham group, pacing group and Ang-(1–7) group. Rapid atrial pacing was maintained for 14 days in the pacing and Ang-(1–7) groups. Ang-(1–7) was administered intravenously in the Ang-(1–7) group. The atrial effective refractory period and atrial fibrillation inducibility level were measured at baseline and under sympathetic nerve stimulation after 14 days of measurement. The atrial sympathetic nerves labeled with tyrosine hydroxylase were detected using immunohistochemistry and Western blotting, and tyrosine hydroxylase and nerve growth factor mRNA levels were measured by reverse transcription polymerase chain reaction. Results: Pacing shortened the atrial effective refractory period and increased the atrial fibrillation inducibility level at baseline and under sympathetic nerve stimulation. Ang-(1–7) treatment attenuated the shortening of the atrial effective refractory period and the increase in the atrial fibrillation inducibility level. Immunohistochemistry and Western blotting showed sympathetic nerve hyperinnervation in the pacing group, while Ang-(1–7) attenuated sympathetic nerve proliferation. Ang-(1–7) alleviated the pacing-induced increases in tyrosine hydroxylase and nerve growth factor mRNA expression levels. Conclusion: Ang-(1–7) can attenuate pacing-induced atrial sympathetic hyperinnervation.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Wen Shi
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Yuanyuan Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| | - Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, China
| |
Collapse
|
13
|
Ueno H, Yoshimura M, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Maruyama T, Miyamoto T, Serino R, Tamura M, Onaka T, Otsuji Y, Ueta Y. Upregulation of hypothalamic arginine vasopressin by peripherally administered furosemide in transgenic rats expressing arginine vasopressin-enhanced green fluorescent protein. J Neuroendocrinol 2018; 30:e12603. [PMID: 29682811 DOI: 10.1111/jne.12603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Furosemide, which is used worldwide as a diuretic agent, inhibits sodium reabsorption in the Henle's loop, resulting in diuresis and natriuresis. Arginine vasopressin (AVP) is synthesized in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) of the hypothalamus. The synthesis AVP in the magnocellular neurons of SON and PVN physiologically regulated by plasma osmolality and blood volume and contributed water homeostasis by increasing water reabsorption in the collecting duct. Central AVP dynamics after peripheral administration of furosemide remain unclear. Here, we studied the effects of intraperitoneal (i.p.) administration of furosemide (20 mg/kg) on hypothalamic AVP by using transgenic rats expressing AVP-enhanced green fluorescent protein (eGFP) under the AVP promoter. The i.p. administration of furosemide did not affect plasma osmolality in the present study; however, eGFP in the SON and magnocellular divisions of the PVN (mPVN) were significantly increased after furosemide administration compared to the control. Immunohistochemical analysis revealed Fos-like immunoreactivity (IR) in eGFP-positive neurons in the SON and mPVN 90 min after i.p. administration of furosemide, and AVP heteronuclear (hn) RNA and eGFP mRNA levels were significantly increased. These furosemide-induced changes were not observed in the suprachiasmatic AVP neurons. Furthermore, furosemide induced a remarkable increase in Fos-IR in the organum vasculosum laminae terminals (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), locus coeruleus (LC), nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVLM) after i.p. administration of furosemide. In conclusion, we were able to visualize and quantitatively evaluate AVP-eGFP synthesis and neuronal activations after peripheral administration of furosemide, using the AVP-eGFP transgenic rats. The results of this study may provide new insights into the elucidation of physiological mechanisms underlying body fluid homeostasis induced by furosemide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | |
Collapse
|
14
|
Kishi T. Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure. Int J Mol Sci 2018; 19:ijms19030646. [PMID: 29495326 PMCID: PMC5877507 DOI: 10.3390/ijms19030646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/01/2023] Open
Abstract
Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. However, the central mechanisms of baroreflex dysfunction with oxidative stress has not been fully clarified. Our hypothesis was that the impairment of central antioxidant property would worsen circulatory homeostasis with baroreflex dysfunction in heart failure. As the major antioxidant property in the brain, we focused on nuclear factor erythroid 2-related factor 2 (Nrf2; cytoprotective transcription factor). Hemodynamic and baroreflex function in conscious state were assessed by the radio-telemetry system. In the heart failure treated with intracerebroventricular (ICV) infusion of angiotensin II type 1 receptor blocker (ARB), sympathetic activation and brain oxidative stress were significantly lower, and baroreflex sensitivity and volume tolerance were significantly higher than in heart failure treated with vehicle. ICV infusion of Nrf2 activator decreased sympathetic activation and brain oxidative stress, and increased baroreflex sensitivity and volume tolerance to a greater extent than ARB. In conclusion, the disruption of central antioxidant property of Nrf2 worsened circulatory homeostasis with baroreflex dysfunction in heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
15
|
Wang HW, Huang BS, White RA, Chen A, Ahmad M, Leenen FHH. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension. Neuroscience 2016; 329:112-21. [PMID: 27163380 DOI: 10.1016/j.neuroscience.2016.04.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. Intra-SFO infusion of AAV-MR- or AT1aR-siRNA prevented the Ang II-induced increase in AT1R mRNA expression in the SFO and decreased MR mRNA. Both MR- and AT1aR-siRNA prevented increases in ROS in the PVN and RVLM. MR- but not AT1aR-siRNA in the SFO prevented the Ang II-induced ROS in the SON. Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN.
Collapse
Affiliation(s)
- Hong-Wei Wang
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Bing S Huang
- University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Aidong Chen
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Monir Ahmad
- University of Ottawa Heart Institute, Ottawa, Canada
| | | |
Collapse
|
16
|
Abstract
Circulatory homeostasis is associated with interactions between multiple organs, and the disruption of dynamic circulatory homeostasis could be considered as heart failure. The brain is the central unit integrating neural and neurohormonal information from peripheral organs and controlling peripheral organs using the autonomic nervous system. Heart failure is worsened by abnormal sympathoexcitation associated with baroreflex failure and/or chemoreflex activation, and by vagal withdrawal, and autonomic modulation therapies have benefits for heart failure. Recently, we showed that baroreflex failure induces striking volume intolerance independent of left ventricular dysfunction. Many studies have indicated that an overactive renin-angiotensin system, excess oxidative stress and excess inflammation, and/or decreased nitric oxide in the brain cause sympathoexcitation in heart failure. We have demonstrated that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center, causes prominent sympathoexcitation in heart failure model rats. Interestingly, systemic infusion of angiotensin II directly affects brain AT1R with sympathoexcitation and left ventricular diastolic dysfunction. Moreover, we have demonstrated that targeted deletion of AT1R in astrocytes strikingly improved survival with prevention of left ventricular remodeling and sympathoinhibition in myocardial infarction-induced heart failure. From these results, we believe it is possible that AT1R in astrocytes, not in neurons, have a key role in the pathophysiology of heart failure. We would like to propose a novel concept that the brain works as a central processing unit integrating neural and hormonal input, and that the disruption of dynamic circulatory homeostasis mediated by the brain causes heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine
| |
Collapse
|