1
|
Hasumura T, Kinoshita K, Minegishi Y, Ota N. Combination of tea catechins and ornithine effectively activates the urea cycle: an in vitro and human pilot study. Eur J Appl Physiol 2024; 124:827-836. [PMID: 37707596 DOI: 10.1007/s00421-023-05310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).
Collapse
Affiliation(s)
- Takahiro Hasumura
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| | - Keita Kinoshita
- Health and Wellness Products Research Laboratories, Kao Corporation, Sumida, Tokyo, 131-8501, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|
2
|
Shirai T, Uemichi K, Takemasa T. Effects of the order of endurance and high-intensity interval exercise in combined training on mouse skeletal muscle metabolism. Am J Physiol Regul Integr Comp Physiol 2023; 325:R593-R603. [PMID: 37746708 DOI: 10.1152/ajpregu.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Endurance exercise (EE) mainly improves oxidative capacity, whereas high-intensity interval exercise (HIIE) also improves glycolytic capacity. There is growing evidence that suggests that combining EE with HIIE can lead to improved athletic performance and fitness outcomes compared with either form of exercise alone. This study aimed to elucidate whether the order in which EE and HIIE are performed in combined training affects oxidative metabolism and glycolysis in mouse skeletal muscle. Male ICR mice at 7 wk of age were divided into three groups: control (CON), EE-HIIE, and HIIE-EE. The total training period was 3 wk (3 times/week). Mice performed running on a treadmill as endurance exercise and swimming with a weight load of 10% of body weight as high-intensity interval exercise. EE before HIIE (EE-HIIE) improved running performance in the maximal EE capacity test (all-out test) and partly enhanced the expression levels of molecular signals involved in glycolysis compared with HIIE before EE (HIIE-EE). The order of exercise did not, however, impact the expression of proteins related to mitochondrial dynamics, including those involved in the morphological changes of mitochondria through repeated fusion and fission, as well as oxidative energy metabolism. The findings suggest that the order of exercise has no significant impact on the expression of proteins associated with glycolytic and oxidative energy metabolism. Nevertheless, our results indicate that the order of EE-HIIE may enhance running performance.
Collapse
Affiliation(s)
- Takanaga Shirai
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Uemichi
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Tohru Takemasa
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Tanimura R, Kobayashi L, Shirai T, Takemasa T. Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice. Physiol Rep 2022; 10:e15205. [PMID: 35286020 PMCID: PMC8919700 DOI: 10.14814/phy2.15205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 05/10/2023] Open
Abstract
Adipose tissue has been classified into white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue the latter of which is produced as WAT changes into BAT due to exposure to cold temperature or exercise. In response to these stimulations, WAT produces heat by increasing mitochondrial contents and the expression of uncoupling protein 1 (UCP1), thus facilitating browning. Exercise is known to be one of the triggers for WAT browning, but the effects of exercise intensity on the browning of WAT remain to be unclear. Therefore, in this study, we aimed to examine the effects of high- or low-intensity exercises on the browning of WAT. Mice performed high- or low-intensity running on a treadmill running 3 days a week for four weeks. As per our findings, it was determined that four weeks of running did not significantly reduce inguinal WAT (iWAT) wet weight but did significantly reduce adipocytes size, regardless of exercise intensity. The protein expression level of UCP1 was significantly increased in iWAT by high-intensity running. In addition, the expression of oxidative phosphorylation proteins (OXPHOS) in iWAT was significantly increased by high-intensity running. These results demonstrated that high-intensity exercise might be effective for increasing mitochondrial contents and heat production capacity in iWAT. Furthermore, we found that high-intensity running increased the protein expression level of fibroblast growth factor 21 (FGF21) in skeletal muscle compared with that in low intensity running. We have also examined the relationship between browning of WAT and the expression of FGF21 in skeletal muscle and found a positive correlation between the protein expression of UCP1 in iWAT and the protein expression of FGF21 in gastrocnemius muscle. In conclusion, we suggest that high-intensity exercise is effective for the browning of WAT and the increase of FGF21 in skeletal muscle.
Collapse
Affiliation(s)
- Riku Tanimura
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Leo Kobayashi
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- JIJI PRESS LtdCyuo‐kuJapan
| | - Takanaga Shirai
- Research Fellow of the Japan Society for the Promotion of ScienceTokyoJapan
- Faculty of Health and Sports SciencesUniversity of TsukubaTsukubaJapan
| | - Tohru Takemasa
- Faculty of Health and Sports SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
4
|
Shirai T, Hanakita H, Uemichi K, Takemasa T. Effect of the order of concurrent training combined with resistance and high-intensity interval exercise on mTOR signaling and glycolytic metabolism in mouse skeletal muscle. Physiol Rep 2021; 9:e14770. [PMID: 33650809 PMCID: PMC7923557 DOI: 10.14814/phy2.14770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Athletes train to improve strength and endurance to demonstrate maximum performance during competitions. Training methods vary but most focus on strength, endurance, or both. Concurrent training is a combination of two different modes of training. In this study, we combined resistance exercise (RE) and high-intensity interval exercise (HIIE) to investigate the influence of the order of the concurrent training on signal molecules on hypertrophy and glycolysis in the skeletal muscle. The phosphorylation levels of mechanistic target of rapamycin (mTOR) signals, p70 S6 kinase (p70S6 K), ribosomal protein S6 (S6), and glycogen synthase kinase beta (GSK-3β) were significantly increased in the HIIE first group compared with the control group. The combined training course did not affect the glycogen content and expression levels of proteins concerning glycolytic and metabolic capacity, suggesting that a combination of HIIE and RE on the same day, with HIIE prior to RE, improves hypertrophy response and glycolysis enhancement.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Hideto Hanakita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Allen SL, Quinlan JI, Dhaliwal A, Armstrong MJ, Elsharkawy AM, Greig CA, Lord JM, Lavery GG, Breen L. Sarcopenia in chronic liver disease: mechanisms and countermeasures. Am J Physiol Gastrointest Liver Physiol 2021; 320:G241-G257. [PMID: 33236953 PMCID: PMC8609568 DOI: 10.1152/ajpgi.00373.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcopenia, a condition of low muscle mass, quality, and strength, is commonly found in patients with cirrhosis and is associated with adverse clinical outcomes including reduction in quality of life, increased mortality, and posttransplant complications. In chronic liver disease (CLD), sarcopenia is most commonly defined through the measurement of the skeletal muscle index of the third lumbar spine. A major contributor to sarcopenia in CLD is the imbalance in muscle protein turnover, which likely occurs due to a decrease in muscle protein synthesis and an elevation in muscle protein breakdown. This imbalance is assumed to arise due to several factors including accelerated starvation, hyperammonemia, amino acid deprivation, chronic inflammation, excessive alcohol intake, and physical inactivity. In particular, hyperammonemia is a key mediator of the liver-gut axis and is known to contribute to mitochondrial dysfunction and an increase in myostatin expression. Currently, the use of nutritional interventions such as late-evening snacks, branched-chain amino acid supplementation, and physical activity have been proposed to help the management and treatment of sarcopenia. However, little evidence exists to comprehensively support their use in clinical settings. Several new pharmacological strategies, including myostatin inhibition and the nutraceutical Urolithin A, have recently been proposed to treat age-related sarcopenia and may also be of use in CLD. This review highlights the potential molecular mechanisms contributing to sarcopenia in CLD alongside a discussion of existing and potential new treatment strategies.
Collapse
Affiliation(s)
- Sophie L. Allen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan I. Quinlan
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Amritpal Dhaliwal
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Matthew J. Armstrong
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Ahmed M. Elsharkawy
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Carolyn A. Greig
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G. Lavery
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,6Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,7Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partner, Birmingham, United Kingdom
| | - Leigh Breen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Sciarrone SS, Zanetto A, Russo FP, Germani G, Gambato M, Battistella S, Pellone M, Shalaby S, Burra P, Senzolo M. Malnourished cirrhotic patient: what should we do? Minerva Gastroenterol (Torino) 2021; 67:11-22. [PMID: 33784807 DOI: 10.23736/s2724-5985.20.02776-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malnutrition and sarcopenia have a high prevalence in cirrhotic patients. Frailty generally overlaps with malnutrition and sarcopenia in cirrhosis, leading to increased morbidity and mortality. Rapid nutritional screening assessment should be performed in all patients with cirrhosis, and more specific tests for sarcopenia should be performed in those at high risk. The pathogenesis of malnutrition in cirrhosis is complex and multifactorial and it is not just due to reduction in protein and calorie intake. Nutritional management in malnourished patients with cirrhosis should be undertaken by a multidisciplinary team to achieve adequate protein/calorie intake. While the role of branched-chained amino acids remains somewhat contentious in achieving a global benefit of decreasing mortality- and liver-related events, these latter and vitamin supplements, are recommended for those with advanced liver disease. Novel strategies to reverse sarcopenia such as hormone supplementation, long-term ammonia-lowering agents and myostatin antagonists, are currently under investigation. Malnutrition, sarcopenia and frailty are unique, inter-related and multidimensional problems in cirrhosis which require special attention, prompt assessment and appropriate management as they significantly impact morbidity and mortality.
Collapse
Affiliation(s)
- Salvatore S Sciarrone
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Alberto Zanetto
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Francesco P Russo
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Giacomo Germani
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Martina Gambato
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Sara Battistella
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Monica Pellone
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Sarah Shalaby
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Patrizia Burra
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Marco Senzolo
- Unit of Multivisceral Trasplants, Department of Surgery Oncology and Gastroenterology, Padua University Hospital, Padua, Italy -
| |
Collapse
|
7
|
Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice. Sci Rep 2020; 10:6065. [PMID: 32269254 PMCID: PMC7142105 DOI: 10.1038/s41598-020-63139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
Blood ammonia increases during exercise, and it has been suggested that this increase is both a central and peripheral fatigue factor. Although green tea catechins (GTCs) are known to improve exercise endurance by enhancing lipid metabolism in skeletal muscle, little is known about the relationship between ammonia metabolism and the endurance-improving effect of GTCs. Here, we examined how ammonia affects endurance capacity and how GTCs affect ammonia metabolism in vivo in mice and how GTCs affect mouse skeletal muscle and liver in vitro. In mice, blood ammonia concentration was significantly negatively correlated with exercise endurance capacity, and hyperammonaemia was found to decrease whole-body fat expenditure and fatty acid oxidation–related gene expression in skeletal muscle. Repeated ingestion of GTCs combined with regular exercise training improved endurance capacity and the expression of urea cycle–related genes in liver. In C2C12 myotubes, hyperammonaemia suppressed mitochondrial respiration; however, pre-incubation with GTCs rescued this suppression. Together, our results demonstrate that hyperammonaemia decreases both mitochondrial respiration in myotubes and whole-body aerobic metabolism. Thus, GTC-mediated increases in ammonia metabolism in liver and resistance to ammonia-induced suppression of mitochondrial respiration in skeletal muscle may underlie the endurance-improving effect of GTCs.
Collapse
|
8
|
L-Ornithine L-Aspartate for the Treatment of Sarcopenia in Chronic Liver Disease: The Taming of a Vicious Cycle. Can J Gastroenterol Hepatol 2019; 2019:8182195. [PMID: 31183339 PMCID: PMC6512019 DOI: 10.1155/2019/8182195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a common complication of cirrhosis with a negative impact on posttransplant outcome, health-related quality of life (HRQOL), and patient survival. Studies in experimental animals and in patients demonstrate that ammonia is directly implicated in the pathogenesis of sarcopenia in cirrhosis via mechanisms involving increased expression of myostatin and of autophagy markers such as LC3 lipidation and p62 leading to muscle dysmetabolism and sarcopenia. Paradoxically, skeletal muscle replaces liver as the primary ammonia-detoxifying site as a result of the modification of genes coding for key proteins implicated in ammonia-lowering pathways in cirrhosis. Thus, a vicious cycle occurs whereby hyperammonemia causes severe muscle damage and sarcopenia that, in turn, limits the capacity of muscle to remove excess blood-borne ammonia and the cycle continues. Randomized clinical trials and meta-analyses confirm that L-ornithine L-aspartate (LOLA) is an effective ammonia-lowering agent currently employed for the treatment of hepatic encephalopathy (HE) that stimulates both urea synthesis by residual hepatocytes and muscle glutamine synthesis together with putative hepatoprotective actions. Treatment of cirrhotic patients with LOLA limits ammonia-induced sarcopenia by improving muscle protein synthesis and function. It is conceivable that the antisarcopenic action of LOLA contributes to its efficacy for the treatment of HE in cirrhosis.
Collapse
|
9
|
Kant S, Davuluri G, Alchirazi KA, Welch N, Heit C, Kumar A, Gangadhariah M, Kim A, McMullen MR, Willard B, Luse DS, Nagy LE, Vasiliou V, Marini AM, Weiner ID, Dasarathy S. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J Biol Chem 2019; 294:7231-7244. [PMID: 30872403 DOI: 10.1074/jbc.ra118.005411] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Ethanol causes dysregulated muscle protein homeostasis while simultaneously causing hepatocyte injury. Because hepatocytes are the primary site for physiological disposal of ammonia, a cytotoxic cellular metabolite generated during a number of metabolic processes, we determined whether hyperammonemia aggravates ethanol-induced muscle loss. Differentiated murine C2C12 myotubes, skeletal muscle from pair-fed or ethanol-treated mice, and human patients with alcoholic cirrhosis and healthy controls were used to quantify protein synthesis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and autophagy markers. Alcohol-metabolizing enzyme expression and activity in mouse muscle and myotubes and ureagenesis in hepatocytes were quantified. Expression and regulation of the ammonia transporters, RhBG and RhCG, were quantified by real-time PCR, immunoblots, reporter assays, biotin-tagged promoter pulldown with proteomics, and loss-of-function studies. Alcohol and aldehyde dehydrogenases were expressed and active in myotubes. Ethanol exposure impaired hepatocyte ureagenesis, induced muscle RhBG expression, and elevated muscle ammonia concentrations. Simultaneous ethanol and ammonia treatment impaired protein synthesis and mTORC1 signaling and increased autophagy with a consequent decreased myotube diameter to a greater extent than either treatment alone. Ethanol treatment and withdrawal followed by ammonia exposure resulted in greater impairment in muscle signaling and protein synthesis than ammonia treatment in ethanol-naive myotubes. Of the three transcription factors that were bound to the RhBG promoter in response to ethanol and ammonia, DR1/NC2 indirectly regulated transcription of RhBG during ethanol and ammonia treatment. Direct effects of ethanol were synergistic with increased ammonia uptake in causing dysregulated skeletal muscle proteostasis and signaling perturbations with a more severe sarcopenic phenotype.
Collapse
Affiliation(s)
- Sashi Kant
- From the Departments of Inflammation and Immunity
| | | | | | - Nicole Welch
- From the Departments of Inflammation and Immunity
| | - Claire Heit
- the Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | - Adam Kim
- From the Departments of Inflammation and Immunity
| | | | - Belinda Willard
- Metabolomic and Proteomics Core, Cleveland Clinic, Cleveland, Ohio 44195
| | | | - Laura E Nagy
- From the Departments of Inflammation and Immunity
| | - Vasilis Vasiliou
- the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510
| | - Anna Maria Marini
- the Biology of Membrane Transport Laboratory, Department of Molecular Biology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles CP300, 6041 Gosselies, Belgium
| | - I David Weiner
- the Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, School of Medicine, University of Florida, Gainesville, Florida 32610, and.,the Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida 32608
| | | |
Collapse
|
10
|
Merli M, Berzigotti A, Zelber-Sagi S, Dasarathy S, Montagnese S, Genton L, Plauth M, Parés A. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 2019; 70:172-193. [PMID: 30144956 PMCID: PMC6657019 DOI: 10.1016/j.jhep.2018.06.024] [Citation(s) in RCA: 572] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
A frequent complication in liver cirrhosis is malnutrition, which is associated with the progression of liver failure, and with a higher rate of complications including infections, hepatic encephalopathy and ascites. In recent years, the rising prevalence of obesity has led to an increase in the number of cirrhosis cases related to non-alcoholic steatohepatitis. Malnutrition, obesity and sarcopenic obesity may worsen the prognosis of patients with liver cirrhosis and lower their survival. Nutritional monitoring and intervention is therefore crucial in chronic liver disease. These Clinical Practice Guidelines review the present knowledge in the field of nutrition in chronic liver disease and promote further research on this topic. Screening, assessment and principles of nutritional management are examined, with recommendations provided in specific settings such as hepatic encephalopathy, cirrhotic patients with bone disease, patients undergoing liver surgery or transplantation and critically ill cirrhotic patients.
Collapse
|
11
|
Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch 2018; 470:1503-1519. [DOI: 10.1007/s00424-018-2167-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
|
12
|
Abstract
PURPOSE OF REVIEW Skeletal muscle loss or sarcopenia is a frequent complication of cirrhosis that adversely affects clinical outcomes. As skeletal muscle is the largest store of proteins in the body, proteostasis or protein homeostasis is required for maintenance of muscle mass. This review will focus on disordered skeletal muscle proteostasis in liver disease. RECENT FINDINGS Increased skeletal muscle uptake of ammonia initiates responses that result in disordered proteostasis including impaired protein synthesis and increased autophagy. The cellular response to the stress of hyperammonemia (hyperammonemic stress response, HASR) involves the coordinated action of diverse signaling pathways targeting the molecular mechanisms of regulation of protein synthesis. Transcriptional upregulation of myostatin, a TGFβ superfamily member, results in impaired mTORC1 signaling. Phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) also relates to decreased global protein synthesis rates and mTORC1 signaling. Ammonia also causes mitochondrial and bioenergetic dysfunction because of cataplerosis of α-ketoglutarate. Lowering ammonia, targeting components of HASR and regulating cellular amino acid levels can potentially restore proteostasis. SUMMARY Signaling via myostatin and eIF2α phosphorylation causes decreases in protein synthesis and mTORC1 activity with a parallel mitochondrial dysfunction and increased autophagy contributing to proteostasis perturbations during skeletal muscle hyperammonemia of liver disease.
Collapse
Affiliation(s)
- Srinivasan Dasarathy
- Cleveland Clinic Lerner College of Medicine, Director, Liver Metabolism Research, Center for Human Nutrition, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Maria Hatzoglou
- Professor of Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle 2017; 8:864-869. [PMID: 29168629 PMCID: PMC5700432 DOI: 10.1002/jcsm.12262] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Srinivasan Dasarathy
- Professor of Medicine, Cleveland Clinic Lerner College of Medicine; Director, Liver Metabolism Research; Staff, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Kumar A, Davuluri G, deSilva RN, Engelen MPKJ, TenHave G, Prayson R, Deutz NEP, Dasarathy S. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology 2017; 65:2045-2058. [PMID: 28195332 PMCID: PMC5444955 DOI: 10.1002/hep.29107] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/27/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Sarcopenia or skeletal muscle loss is a frequent, potentially reversible complication in cirrhosis that adversely affects clinical outcomes. Hyperammonemia is a consistent abnormality in cirrhosis that results in impaired skeletal muscle protein synthesis and breakdown (proteostasis). Despite the availability of effective ammonia-lowering therapies, whether lowering ammonia restores proteostasis and increases muscle mass is unknown. Myotube diameter, protein synthesis, and molecular responses in C2C12 murine myotubes to withdrawal of ammonium acetate following 24-hour exposure to 10 mM ammonium acetate were complemented by in vivo studies in the hyperammonemic portacaval anastomosis rat and sham-operated, pair-fed Sprague-Dawley rats treated with ammonia-lowering therapy by l-ornithine l-aspartate and rifaximin orally for 4 weeks. We observed reduced myotube diameter, impaired protein synthesis, and increased autophagy flux in response to hyperammonemia, which were partially reversed following 24-hour and 48-hour withdrawal of ammonium acetate. Consistently, 4 weeks of ammonia-lowering therapy resulted in significant lowering of blood and skeletal muscle ammonia, increase in lean body mass, improved grip strength, higher skeletal muscle mass and diameter, and an increase in type 2 fibers in treated compared to untreated portacaval anastomosis rats. The increased skeletal muscle myostatin expression, reduced mammalian target of rapamycin complex 1 function, and hyperammonemic stress response including autophagy markers normally found in portacaval anastomosis rats were reversed by treatment with ammonia-lowering therapy. Despite significant improvement, molecular and functional readouts were not completely reversed by ammonia-lowering measures. CONCLUSION Ammonia-lowering therapy results in improvement in skeletal muscle phenotype and function and molecular perturbations of hyperammonemia; these preclinical studies complement previous studies on ammonia-induced skeletal muscle loss and lay the foundation for prolonged ammonia-lowering therapy to reverse sarcopenia of cirrhosis. (Hepatology 2017;65:2045-2058).
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | - Gabrie TenHave
- Department of Kinesiology, University of Texas A&M, College Station, Texas
| | | | - Nicolaas EP Deutz
- Department of Kinesiology, University of Texas A&M, College Station, Texas
| | - Srinivasan Dasarathy
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016; 65:1232-1244. [PMID: 27515775 PMCID: PMC5116259 DOI: 10.1016/j.jhep.2016.07.040] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/09/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
Sarcopenia or loss of skeletal muscle mass is the major component of malnutrition and is a frequent complication in cirrhosis that adversely affects clinical outcomes. These include survival, quality of life, development of other complications and post liver transplantation survival. Radiological image analysis is currently utilized to diagnose sarcopenia in cirrhosis. Nutrient supplementation and physical activity are used to counter sarcopenia but have not been consistently effective because the underlying molecular and metabolic abnormalities persist or are not influenced by these treatments. Even though alterations in food intake, hypermetabolism, alterations in amino acid profiles, endotoxemia, accelerated starvation and decreased mobility may all contribute to sarcopenia in cirrhosis, hyperammonemia has recently gained attention as a possible mediator of the liver-muscle axis. Increased muscle ammonia causes: cataplerosis of α-ketoglutarate, increased transport of leucine in exchange for glutamine, impaired signaling by leucine, increased expression of myostatin (a transforming growth factor beta superfamily member) and an increased phosphorylation of eukaryotic initiation factor 2α. In addition, mitochondrial dysfunction, increased reactive oxygen species that decrease protein synthesis and increased autophagy mediated proteolysis, also play a role. These molecular and metabolic alterations may contribute to the anabolic resistance and inadequate response to nutrient supplementation in cirrhosis. Central and skeletal muscle fatigue contributes to impaired exercise capacity and responses. Use of proteins with low ammoniagenic potential, leucine enriched amino acid supplementation, long-term ammonia lowering strategies and a combination of resistance and endurance exercise to increase muscle mass and function may target the molecular abnormalities in the muscle. Strategies targeting endotoxemia and the gut microbiome need further evaluation.
Collapse
|
16
|
Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, Hatzoglou M, Dasarathy S. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol 2016; 65:929-937. [PMID: 27318325 PMCID: PMC5069194 DOI: 10.1016/j.jhep.2016.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Increased skeletal muscle ammonia uptake with loss of muscle mass adversely affects clinical outcomes in cirrhosis. Hyperammonemia causes reduced protein synthesis and sarcopenia but the cellular responses to impaired proteostasis and molecular mechanism of l-leucine induced adaptation to ammonia induced stress were determined. METHODS Response to activation of amino acid deficiency sensor, GCN2, in the skeletal muscle from cirrhotic patients and the portacaval anastomosis (PCA) rat were quantified. During hyperammonemia and l-leucine supplementation, protein synthesis, phosphorylation of eIF2α, mTORC1 signaling, l-leucine transport and response to l-leucine supplementation were quantified. Adaptation to cellular stress via ATF4 and its target GADD34 were also determined. RESULTS Activation of the eIF2α kinase GCN2 and impaired mTORC1 signaling were observed in skeletal muscle from cirrhotic patients and PCA rats. Ammonia activated GCN2 mediated eIF2α phosphorylation (eIF2α-P) and impaired mTORC1 signaling that inhibit protein synthesis in myotubes and MEFs. Adaptation to ammonia induced stress did not involve translational reprogramming by activation transcription factor 4 (ATF4) dependent induction of the eIF2α-P phosphatase subunit GADD34. Instead, ammonia increased expression of the leucine/glutamine exchanger SLC7A5, l-leucine uptake and intracellular l-leucine levels, the latter not being sufficient to rescue the inhibition of protein synthesis, due to potentially enhanced mitochondrial sequestration of l-leucine. l-leucine supplementation rescued protein synthesis inhibition caused by hyperammonemia. CONCLUSIONS Response to hyperammonemia is reminiscent of the cellular response to amino acid starvation, but lacks the adaptive ATF4 dependent integrated stress response (ISR). Instead, hyperammonemia-induced l-leucine uptake was an adaptive response to the GCN2-mediated decreased protein synthesis. LAY SUMMARY Sarcopenia or skeletal muscle loss is the most frequent complication in cirrhosis but there are no treatments because the cause(s) of muscle loss in liver disease are not known. Results from laboratory experiments in animals and muscle cells were validated in human patients with cirrhosis to show that ammonia plays a key role in causing muscle loss in patients with cirrhosis. We identified a novel stress response to ammonia in the muscle that decreases muscle protein content that can be reversed by supplementation with the amino acid l-leucine.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Avinash Kumar
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Samjhana Thapaliya
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Dharmvir Singh
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Srinivasan Dasarathy
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| |
Collapse
|