1
|
Ferber SG, Weller A, Soreq H. Boltzmann's Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders. Curr Neuropharmacol 2024; 22:1762-1777. [PMID: 38500272 PMCID: PMC11284727 DOI: 10.2174/1570159x22666240315100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 03/20/2024] Open
Abstract
Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann's theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Aron Weller
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Urbano FJ, Bisagno V, Garcia-Rill E. Gamma oscillations in the pedunculopontine nucleus are regulated by F-actin: neuroepigenetic implications. Am J Physiol Cell Physiol 2019; 318:C282-C288. [PMID: 31747316 DOI: 10.1152/ajpcell.00374.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 μM, a promoter of F-actin stabilization), or latrunculin-B (1 μM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.
Collapse
Affiliation(s)
- Francisco J Urbano
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Bisagno
- Instituto de Fisiología, Biología Molecular, y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arakansas
| |
Collapse
|
3
|
Virmani T, Urbano FJ, Bisagno V, Garcia-Rill E. The pedunculopontine nucleus: From posture and locomotion to neuroepigenetics. AIMS Neurosci 2019; 6:219-230. [PMID: 32341978 PMCID: PMC7179357 DOI: 10.3934/neuroscience.2019.4.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
In this review, we discuss first an example of one of the symptoms of PD, freezing of gait (FOG), then we will turn to the use of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) to treat PD, and the original studies that led to identification of the PPN as one source of locomotor control and why stimulation frequency is critical, and then describe the intrinsic properties of PPN neurons that require beta/gamma stimulation in order to fully activate all types of PPN neurons. Finally, we will describe recent findings on the proteomic and molecular consequences of gamma band activity in PPN neurons, with emphasis on the potential neuroepigenetic sequelae. These considerations will provide essential information for the appropriate refining and testing of PPN DBS as a potential therapy for PD, as well as alternative options.
Collapse
Affiliation(s)
- T Virmani
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Department of Neurology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - F J Urbano
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Instituto Nacional de Investigaciones Farmacologicas, Argentina
| | - V Bisagno
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Garcia‐Rill E, D'Onofrio S, Mahaffey SC, Bisagno V, Urbano FJ. Bottom-up gamma and bipolar disorder, clinical and neuroepigenetic implications. Bipolar Disord 2019; 21:108-116. [PMID: 30506611 PMCID: PMC6441386 DOI: 10.1111/bdi.12735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.
Collapse
Affiliation(s)
- Edgar Garcia‐Rill
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Stasia D'Onofrio
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Susan C Mahaffey
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Veronica Bisagno
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| | - Francisco J Urbano
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
5
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
6
|
Garcia-Rill E, Mahaffey S, Hyde JR, Urbano FJ. Bottom-up gamma maintenance in various disorders. Neurobiol Dis 2018; 128:31-39. [PMID: 29353013 DOI: 10.1016/j.nbd.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
Maintained gamma band activity is a key element of higher brain function, participating in perception, executive function, and memory. The pedunculopontine nucleus (PPN), as part of the reticular activating system (RAS), is a major source of the "bottom-up" flow of gamma activity to higher regions. However, interruption of gamma band activity is associated with a number of neurological and psychiatric disorders. This review will focus on the role of the PPN in activating higher regions to induce arousal and descending pathways to modulate posture and locomotion. As such, PPN deep brain stimulation (DBS) can not only help regulate arousal and stepping, but continuous application may help maintain necessary levels of gamma band activity for a host of other brain processes. We will explore the potential future applications of PPN DBS for a number of disorders that are characterized by disturbances in gamma band maintenance.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - S Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - F J Urbano
- IFIBYNE (CONICET-UBA), DFBMC, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
8
|
Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016; 123:655-665. [PMID: 26597124 PMCID: PMC4877293 DOI: 10.1007/s00702-015-1485-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA.
| | - B Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - V Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - F J Urbano
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
D'Onofrio S, Urbano FJ, Messias E, Garcia-Rill E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol Rep 2016; 4:e12740. [PMID: 27033453 PMCID: PMC4814880 DOI: 10.14814/phy2.12740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li(+)) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction betweenNCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R).NCS-1 is known to enhance the activity of InsP3R, and of Ca(2+)-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of theRAS This study aimed to determine the nature of some of the intracellular mechanisms of Li(+)on ratPPNcells and to identify the interaction between Li(+)andNCS-1. Since Li(+)has been shown to act by inhibiting the enhancing effects ofNCS-1, we tested the hypothesis that Li(+)would reduced the effects of overexpression ofNCS-1 and prevent the downregulation of gamma band activity. Li(+)decreased gamma oscillation frequency and amplitude by downregulating Ca(2+)channel activity, whereasNCS-1 reduced the effect of Li(+)on Ca(2+)currents. These effects were mediated by a G-protein overinhibition of Ca(2+)currents. These results suggest that Li(+)affected intracellular pathways involving the activation of voltage-gated Ca(2+)channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated byNCS-1.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Francisco J Urbano
- IFIBYNE-CONICET-UBA, University of Buenos Aires, Buenos Aires, Argentina
| | - Erick Messias
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|