1
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
2
|
Ryan H, Morel L, Moore E. Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Front Cardiovasc Med 2022; 9:767450. [PMID: 35419427 PMCID: PMC8996195 DOI: 10.3389/fcvm.2022.767450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular inflammation mediated by overly activated immune cells is a significant cause of morbidity and mortality in systemic lupus erythematosus (SLE). Several mouse models to study the pathogenesis of SLE are currently in use, many of which have different mechanisms of pathogenesis. The diversity of these models allows interrogation of different aspects of the disease pathogenesis. To better determine the mechanisms by which vascular inflammation occurs in SLE, and to assist future researchers in choosing the most appropriate mouse models to study cardiovascular complications in SLE, we suggest that direct comparisons of vascular inflammation should be conducted among different murine SLE models. We also propose the use of in vitro vascular assays to further investigate vascular inflammation processes prevalent among different murine SLE models.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Munguia-Realpozo P, Mendoza-Pinto C, Sierra Benito C, Escarcega RO, Garcia-Carrasco M, Mendez Martinez S, Etchegaray Morales I, Galvez Romero JL, Ruiz-Arguelles A, Cervera R. Systemic lupus erythematosus and hypertension. Autoimmun Rev 2019; 18:102371. [DOI: 10.1016/j.autrev.2019.102371] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
|
4
|
Sharma UC, Sonkawade SD, Spernyak JA, Sexton S, Nguyen J, Dahal S, Attwood KM, Singh AK, van Berlo JH, Pokharel S. A Small Peptide Ac-SDKP Inhibits Radiation-Induced Cardiomyopathy. Circ Heart Fail 2019; 11:e004867. [PMID: 30354563 DOI: 10.1161/circheartfailure.117.004867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Advances in radiotherapy for thoracic cancers have resulted in improvement of survival. However, radiation exposure to the heart can induce cardiotoxicity. No therapy is currently available to inhibit these untoward effects. We examined whether a small tetrapeptide, N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), can counteract radiation-induced cardiotoxicity by inhibiting macrophage-dependent inflammatory and fibrotic pathways. METHODS AND RESULTS After characterizing a rat model of cardiac irradiation with magnetic resonance imaging protocols, we examined the effects of Ac-SDKP in radiation-induced cardiomyopathy. We treated rats with Ac-SDKP for 18 weeks. We then compared myocardial contractile function and extracellular matrix by cardiac magnetic resonance imaging and the extent of inflammation, fibrosis, and Mac-2 (galectin-3) release by tissue analyses. Because Mac-2 is a crucial macrophage-derived mediator of fibrosis, we performed studies to determine Mac-2 synthesis by macrophages in response to radiation, and change in profibrotic responses by Mac-2 gene depleted cardiac fibroblasts after radiation. Cardiac irradiation diminished myocardial contractile velocities and enhanced extracellular matrix deposition. This was accompanied by macrophage infiltration, fibrosis, cardiomyocyte apoptosis, and cardiac Mac-2 expression. Ac-SDKP strongly inhibited these detrimental effects. Ac-SDKP migrated into the perinuclear cytoplasm of the macrophages and inhibited radiation-induced Mac-2 release. Cardiac fibroblasts lacking the Mac-2 gene showed reduced transforming growth factor β1, collagen I, and collagen III expression after radiation exposure. CONCLUSIONS Our study identifies novel cardioprotective effects of Ac-SDKP in a model of cardiac irradiation. These protective effects are exerted by inhibiting inflammation, fibrosis, and reducing macrophage activation. This study shows a therapeutic potential of this endogenously released peptide to counteract radiation-induced cardiomyopathy.
Collapse
Affiliation(s)
- Umesh C Sharma
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | - Swati D Sonkawade
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | | | | | - Juliane Nguyen
- Roswell Park Cancer Institute, Buffalo, NY. Department of Pharmaceutical Sciences, School of Pharmacy, Buffalo, NY (J.N.)
| | - Suraj Dahal
- From the Division of Advanced Cardiovascular Imaging in Cardiology, Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY (U.C.S., S.D.S., S.D.)
| | | | | | - Jop H van Berlo
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis (J.H.v.B.)
| | - Saraswati Pokharel
- Department of Pathology, Division of Thoracic Pathology and Oncology (S.P.)
| |
Collapse
|
5
|
NLRP3 Inflammasome Modulation by Melatonin Supplementation in Chronic Pristane-Induced Lupus Nephritis. Int J Mol Sci 2019; 20:ijms20143466. [PMID: 31311094 PMCID: PMC6678949 DOI: 10.3390/ijms20143466] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Lupus nephritis (LN) is a kidney inflammatory disease caused by systemic lupus erythematosus (SLE). NLRP3 inflammasome activation is implicated in LN pathogenesis, suggesting its potential targets for LN treatment. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule that has been reported to have anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-κB)-mediated inflammatory responses in vivo. This molecule has also protective effects against the activation of the inflammasomes and, in particular, the NLRP3 inflammasome. Thus, this work evaluated the effect of melatonin on morphological alteration and NLRP3 inflammasome activation in LN pristane mouse models. To evaluate the melatonin effects in these mice, we studied the renal cytoarchitecture by means of morphological analyses and immunohistochemical expression of specific markers related to oxidative stress, inflammation and inflammasome activation. Our results showed that melatonin attenuates pristane-induced LN through restoring of morphology and attenuation of oxidative stress and inflammation through a pathway that inhibited activation of NLRP3 inflammasome signaling. Our data clearly demonstrate that melatonin has protective activity on lupus nephritis in these mice that is highly associated with its effect on enhancing the Nrf2 antioxidant signaling pathway and decreasing renal NLRP3 inflammasome activation.
Collapse
|
6
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 2018; 68:125-145. [PMID: 30560372 DOI: 10.1007/s00011-018-1208-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties. METHODS In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects. RESULTS In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years. CONCLUSION This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.
Collapse
|
8
|
Pham GS, Wang LA, Mathis KW. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1261-R1271. [PMID: 30332305 DOI: 10.1152/ajpregu.00362.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.
Collapse
Affiliation(s)
- Grace S Pham
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Lei A Wang
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
9
|
Maheshwari M, Romero CA, Monu SR, Kumar N, Liao TD, Peterson EL, Carretero OA. Renal Protective Effects of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) in Obese Rats on a High-Salt Diet. Am J Hypertens 2018; 31:902-909. [PMID: 29722788 DOI: 10.1093/ajh/hpy052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity is a public health problem, associated with salt sensitive hypertension, kidney inflammation, and fibrosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a tetra peptide with anti-inflammatory and anti-fibrotic properties. However, its effect on preventing kidney damage in obesity is unknown. We hypothesized that Zucker obese (ZO) rats on a high-salt (HS) diet develop renal damage, inflammation, fibrosis, and this is prevented with Ac-SDKP treatment. METHODS Zucker lean (ZL) and ZO rats (8 weeks old) were treated with Ac-SDKP (1.6 mg/kg/day) while maintained on either a normal-salt (NS; 0.4%) or HS (4%) diet for 8 weeks. Systolic blood pressure (SBP), albuminuria, renal inflammation, and fibrosis were evaluated. RESULTS HS diet increased macrophage infiltration in the kidneys of both ZL and ZO rats but was significantly higher in ZO rats receiving the HS diet (ZL + NS, 13.9 ± 1.3 vs. ZL + HS, 19.14 ± 1.5 and ZO + NS, 25.5 ± 1.4 vs. ZO + HS, 87.8 ± 10.8 cells/mm2; P < 0.05). Ac-SDKP prevented macrophage infiltration in ZO rats (ZO + HS + Ac-SDKP, 32.18 ± 2.4 cells/mm2; P < 0.05). Similarly, glomerulosclerosis, cortical, and medullary interstitial fibrosis were increased in ZO rats fed the HS diet, and Ac-SDKP attenuated these alterations (P < 0.05). SBP was increased in ZO rats fed the HS diet (ZO + NS, 121.3 ± 8.9 vs. ZO + HS, 164 ± 6.9 mm Hg; P < 0.05), and it was significantly decreased with Ac-SDKP treatment (ZO + HS + Ac-SDKP, 144.05 ± 14.1 mm Hg; P = 0.004). Albuminuria was higher in ZO rats than in ZL rats; however, neither HS nor Ac-SDKP treatment affected it. CONCLUSIONS Ac-SDKP treatment in ZO rats fed a HS diet prevented renal damage by reducing inflammation, fibrosis, and SBP.
Collapse
Affiliation(s)
- Mani Maheshwari
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
10
|
Vasilopoulou E, Riley PR, Long DA. Thymosin-β4: A key modifier of renal disease. Expert Opin Biol Ther 2018; 18:185-192. [DOI: 10.1080/14712598.2018.1473371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Elisavet Vasilopoulou
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A. Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
11
|
Nakagawa P, Masjoan-Juncos JX, Basha H, Janic B, Worou ME, Liao TD, Romero CA, Peterson EL, Carretero OA. Effects of N-acetyl-seryl-asparyl-lysyl-proline on blood pressure, renal damage, and mortality in systemic lupus erythematosus. Physiol Rep 2017; 5:5/2/e13084. [PMID: 28126732 PMCID: PMC5269407 DOI: 10.14814/phy2.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a high prevalence of hypertension. NZBWF1 (SLE‐Hyp) mice develop hypertension that can be prevented by modulating T cells. The peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (Ac‐SDKP) decreases renal damage and improves renal function in a model of SLE without hypertension (MRL/lpr). However, it is not known whether Ac‐SDKP prevents hypertension in NZBWF1 mice. We hypothesized that in SLE‐Hyp, Ac‐SDKP prevents hypertension and renal damage by modulating T cells. Animals were divided into four groups: (1) control + vehicle, (2) control + Ac‐SDKP, (3) SLE + vehicle, and (4) SLE + Ac‐SDKP. Systolic blood pressure (SBP), albuminuria, renal fibrosis, and T‐cell phenotype were analyzed. SBP was higher in SLE compared to control mice and was not decreased by Ac‐SDKP treatment. Half of SLE mice developed an acute and severe form of hypertension accompanied by albuminuria followed by death. Ac‐SDKP delayed development of severe hypertension, albuminuria, and early mortality, but this delay did not reach statistical significance. Ac‐SDKP prevented glomerulosclerosis, but not interstitial fibrosis in SLE‐Hyp mice. SLE‐Hyp mice showed a decrease in helper and cytotoxic T cells as well as an increase in double negative lymphocytes and T helper 17 cells, but these cells were unaffected by Ac‐SDKP. In conclusion, Ac‐SDKP prevents kidney damage, without affecting blood pressure in an SLE animal model. However, during the acute relapse of SLE, Ac‐SDKP might also delay the manifestation of an acute and severe form of hypertension leading to early mortality. Ac‐SDKP is a potential tool to treat renal damage in SLE‐Hyp mice.
Collapse
Affiliation(s)
- Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Juan X Masjoan-Juncos
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Heba Basha
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Branislava Janic
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|