1
|
Sferra SR, Biancotti JC, Ahmad R, Sescleifer AM, Bubb CR, Kovler ML, Kunisaki SM. Comparative Transcriptome Analysis of Human and Mouse Canalicular Lungs in Fetal Diaphragmatic Hernia. J Pediatr Surg 2024; 59:161656. [PMID: 39181781 DOI: 10.1016/j.jpedsurg.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The nitrofen model of congenital diaphragmatic hernia (CDH) is widely used in translational research. However, the molecular pathways associated with pulmonary hypoplasia in this model compared to the human CDH phenotype have not been well described. The aim of this study was to investigate differentially expressed genes (DEG) and signaling pathways in early stage fetal lungs in mouse and human CDH. METHODS CDH lung tissue was obtained from human fetuses (21-23 weeks gestation) and nitrofen mouse pups (E15.5). NovaSeq Flowcell RNA-seq was performed to evaluate differentially expressed transcriptional and molecular pathways (DEGs) in fetal mice with CDH, compared with age-matched normal mouse lungs and human CDH samples. RESULTS There were thirteen overlapping DEGs in human and mouse CDH lung samples compared to controls. These genes were involved in extracellular matrix, myogenesis, cilia, and immune modulation pathways. Human CDH was associated with an upregulation of collagen formation and extracellular matrix reorganization whereas mouse CDH was associated with an increase in muscular contraction. The most common cell types upregulated in human and mouse CDH samples were ciliated airway cells. CONCLUSIONS This study highlights the unique gene transcriptional patterns in early fetal mouse and human lungs with CDH. These data have implications when determining the translational potential of novel therapies in CDH using nitrofen-based animal models. LEVEL OF EVIDENCE Level IV. STUDY TYPE Basic science/case series.
Collapse
Affiliation(s)
- Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raheel Ahmad
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Anne M Sescleifer
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ciaran R Bubb
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Mark L Kovler
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Kabirova E, Ryzhkova A, Lukyanchikova V, Khabarova A, Korablev A, Shnaider T, Nuriddinov M, Belokopytova P, Smirnov A, Khotskin NV, Kontsevaya G, Serova I, Battulin N. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat Commun 2024; 15:4521. [PMID: 38806452 PMCID: PMC11133455 DOI: 10.1038/s41467-024-48523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Anna Khabarova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
3
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
4
|
Trempus CS, Papas BN, Sifre MI, Bortner CD, Scappini E, Tucker CJ, Xu X, Johnson KL, Deterding LJ, Williams JG, Johnson DJ, Li JL, Sutton D, Ganta C, Mahapatra D, Arif M, Basu A, Pommerolle L, Cinar R, Perl AK, Garantziotis S. Functional Pdgfra fibroblast heterogeneity in normal and fibrotic mouse lung. JCI Insight 2023; 8:e164380. [PMID: 37824216 PMCID: PMC10721331 DOI: 10.1172/jci.insight.164380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Aberrant fibroblast function plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, a devastating disease of unrelenting extracellular matrix deposition in response to lung injury. Platelet-derived growth factor α-positive (Pdgfra+) lipofibroblasts (LipoFBs) are essential for lung injury response and maintenance of a functional alveolar stem cell niche. Little is known about the effects of lung injury on LipoFB function. Here, we used single-cell RNA-Seq (scRNA-Seq) technology and PdgfraGFP lineage tracing to generate a transcriptomic profile of Pdgfra+ fibroblasts in normal and injured mouse lungs 14 days after bleomycin exposure, generating 11 unique transcriptomic clusters that segregated according to treatment. While normal and injured LipoFBs shared a common gene signature, injured LipoFBs acquired fibrogenic pathway activity with an attenuation of lipogenic pathways. In a 3D organoid model, injured Pdgfra+ fibroblast-supported organoids were morphologically distinct from those cultured with normal fibroblasts, and scRNA-Seq analysis suggested distinct transcriptomic changes in alveolar epithelia supported by injured Pdgfra+ fibroblasts. In summary, while LipoFBs in injured lung have not migrated from their niche and retain their lipogenic identity, they acquire a potentially reversible fibrogenic profile, which may alter the kinetics of epithelial regeneration and potentially contribute to dysregulated repair, leading to fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Katina L. Johnson
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Leesa J. Deterding
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Jason G. Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | | | - Deloris Sutton
- Comparative & Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, North Carolina, USA
| | - Charan Ganta
- Comparative & Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, North Carolina, USA
- Inotiv, Research Triangle Park, North Carolina, USA
| | | | - Muhammad Arif
- Section on Fibrotic Disorders, and
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA
| | | | | | | | - Anne K. Perl
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
5
|
Wright CJ, McCulley DJ, Mitra S, Jensen EA. Acetaminophen for the patent ductus arteriosus: has safety been adequately demonstrated? J Perinatol 2023; 43:1230-1237. [PMID: 37169914 PMCID: PMC10626600 DOI: 10.1038/s41372-023-01697-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Patent ductus arteriosus (PDA) is the most common cardiovascular condition diagnosed in premature infants. Acetaminophen was first proposed as a potential treatment for PDA in 2011. Since that time acetaminophen use among extremely preterm neonates has increased substantially. The limited available data demonstrate that acetaminophen reduces PDA without evident hepatotoxicity. These findings have led some to suggest that acetaminophen is a safe and effective therapy for PDA closure. However, the lack of apparent hepatoxicity is predictable. Acetaminophen induced cellular injury is due to CYP2E1 derived metabolites; and hepatocyte CYP2E1 expression is low in the fetal and neonatal period. Here, we review preclinical and clinical data that support the hypothesis that the lung, which expresses high levels of CYP2E1 during fetal and early postnatal development, may be particularly susceptible to acetaminophen induced toxicity. Despite these emerging data, the true potential pulmonary risks and benefits of acetaminophen for PDA closure are largely unknown. The available clinical studies in are marked by significant weakness including low sample sizes and minimal evaluation of extremely preterm infants who are typically at highest risk of pulmonary morbidity. We propose that studies interrogating mechanisms linking developmentally regulated, cell-specific CYP2E1 expression and acetaminophen-induced toxicity as well as robust assessment of pulmonary outcomes in large trials that evaluate the safety and efficacy of acetaminophen in extremely preterm infants are needed.
Collapse
Affiliation(s)
- Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA.
| | - David J McCulley
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, CA, USA
| | - Souvik Mitra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, NS, Canada
| | - Erik A Jensen
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
7
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
8
|
Yie TA, Loomis CA, Nowatzky J, Khodadadi-Jamayran A, Lin Z, Cammer M, Barnett C, Mezzano V, Alu M, Novick JA, Munger JS, Kugler MC. Hedgehog and Platelet-derived Growth Factor Signaling Intersect during Postnatal Lung Development. Am J Respir Cell Mol Biol 2023; 68:523-536. [PMID: 36693140 PMCID: PMC10174164 DOI: 10.1165/rcmb.2022-0269oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Normal lung development critically depends on HH (Hedgehog) and PDGF (platelet-derived growth factor) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH signaling and PDGF signaling and their impact on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa (platelet-derived growth factor subunit A) and Pdgfra (platelet-derived growth factor receptor alpha) knockouts during secondary alveolar septation. Using a dual signaling reporter, Gli1lZ;PdgfraEGFP, we show that HH and PDGF pathway intermediates are concurrently expressed during alveolar septal myofibroblast accumulation, suggesting pathway convergence in the generation of lung myofibroblasts. Consistent with this hypothesis, HH inhibition reduces Pdgfra expression and diminishes the number of Pdgfra-positive and Pdgfra-lineage cells in postnatal lungs. Bulk RNA sequencing data of Pdgfra-expressing cells from Postnatal Day 8 (P8) lungs show that HH inhibition alters the expression not only of well-established HH targets but also of several putative PDGF target genes. This, together with the presence of Gli-binding sites in PDGF target genes, suggests HH input into PDGF signaling. We identified these HH/PDGF targets in several postnatal lung mesenchymal cell populations, including myofibroblasts, using single-cell transcriptomic analysis. Collectively, our data indicate that HH signaling and PDGF signaling intersect to support myofibroblast/fibroblast function during secondary alveolar septum formation. Moreover, they provide a molecular foundation relevant to perinatal lung diseases associated with impaired alveolarization.
Collapse
Affiliation(s)
- Ting-An Yie
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | - Johannes Nowatzky
- Division of Rheumatology, Department of Medicine
- Department of Pathology
| | | | | | | | - Clea Barnett
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | | | | | - John S. Munger
- Division of Pulmonary, Critical Care and Sleep Medicine and
- Department of Cell Biology, School of Medicine and Langone Medical Center, New York University, New York, New York
| | | |
Collapse
|
9
|
Gough M, Singh DK, Singh B, Kaushal D, Mehra S. System-wide identification of myeloid markers of TB disease and HIV-induced reactivation in the macaque model of Mtb infection and Mtb/SIV co-infection. Front Immunol 2022; 13:777733. [PMID: 36275677 PMCID: PMC9583676 DOI: 10.3389/fimmu.2022.777733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.
Collapse
|
10
|
Complexity of Human Cytomegalovirus Infection in South African HIV-Exposed Infants with Pneumonia. Viruses 2022; 14:v14050855. [PMID: 35632596 PMCID: PMC9147013 DOI: 10.3390/v14050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) can cause significant end-organ diseases such as pneumonia in HIV-exposed infants. Complex viral factors may influence pathogenesis including: a large genome with a sizeable coding capacity, numerous gene regions of hypervariability, multiple-strain infections, and tissue compartmentalization of strains. We used a whole genome sequencing approach to assess the complexity of infection by comparing high-throughput sequencing data obtained from respiratory and blood specimens of HIV-exposed infants with severe HCMV pneumonia with those of lung transplant recipients and patients with hematological disorders. There were significantly more specimens from HIV-exposed infants showing multiple HCMV strain infection. Some genotypes, such as UL73 G4B and UL74 G4, were significantly more prevalent in HIV-exposed infants with severe HCMV pneumonia. Some genotypes were predominant in the respiratory specimens of several patients. However, the predominance was not statistically significant, precluding firm conclusions on anatomical compartmentalization in the lung.
Collapse
|
11
|
Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed RI, Nishimura SL, Wolters PJ, Chuang PT. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. eLife 2022; 11:e68598. [PMID: 35384838 PMCID: PMC9183236 DOI: 10.7554/elife.68598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar formation requires coordinated movement and interaction between alveolar epithelial cells, mesenchymal myofibroblasts, and endothelial cells/pericytes to produce secondary septa. These processes rely on the acquisition of distinct cellular properties to enable ligand secretion for cell-cell signaling and initiate morphogenesis through cellular contraction, cell migration, and cell shape change. In this study, we showed that mitochondrial activity and distribution play a key role in bestowing cellular functions on both alveolar epithelial cells and mesenchymal myofibroblasts for generating secondary septa to form alveoli in mice. These results suggest that mitochondrial function is tightly regulated to empower cellular machineries in a spatially specific manner. Indeed, such regulation via mitochondria is required for secretion of ligands, such as platelet-derived growth factor, from alveolar epithelial cells to influence myofibroblast proliferation and contraction/migration. Moreover, mitochondrial function enables myofibroblast contraction/migration during alveolar formation. Together, these findings yield novel mechanistic insights into how mitochondria regulate pivotal steps of alveologenesis. They highlight selective utilization of energy in cells and diverse energy demands in different cellular processes during development. Our work serves as a paradigm for studying how mitochondria control tissue patterning.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Biao Chen
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Ethan Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Robert I Seed
- Department of Pathology, University of CaliforniaSan FranciscoUnited States
| | | | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
12
|
Duong TE, Wu Y, Sos BC, Dong W, Limaye S, Rivier LH, Myers G, Hagood JS, Zhang K. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. CELL GENOMICS 2022; 2:100108. [PMID: 35434692 PMCID: PMC9012447 DOI: 10.1016/j.xgen.2022.100108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/05/2021] [Accepted: 02/02/2022] [Indexed: 04/14/2023]
Abstract
Ex-utero regulation of the lungs' responses to breathing air and continued alveolar development shape adult respiratory health. Applying single-cell transposome hypersensitive site sequencing (scTHS-seq) to over 80,000 cells, we assembled the first regulatory atlas of postnatal human and mouse lung alveolar development. We defined regulatory modules and elucidated new mechanistic insights directing alveolar septation, including alveolar type 1 and myofibroblast cell signaling and differentiation, and a unique human matrix fibroblast population. Incorporating GWAS, we mapped lung function causal variants to myofibroblasts and identified a pathogenic regulatory unit linked to lineage marker FGF18, demonstrating the utility of chromatin accessibility data to uncover disease mechanism targets. Our regulatory map and analysis model provide valuable new resources to investigate age-dependent and species-specific control of critical developmental processes. Furthermore, these resources complement existing atlas efforts to advance our understanding of lung health and disease across the human lifespan.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Brandon Chin Sos
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Siddharth Limaye
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauraine H. Rivier
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Greg Myers
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James S. Hagood
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
14
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
15
|
Lineage Contribution of PDGFR α-Expressing Cells in the Developing Mouse Eye. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4982227. [PMID: 34285913 PMCID: PMC8275403 DOI: 10.1155/2021/4982227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/02/2023]
Abstract
PDGFRα signaling is critically important in ocular development. Previous data on PDGFRα lacks an expression map with high spatial and temporal resolution and lineage information. In this study, we aim to present a detailed PDGFRα expression and lineage map from early embryogenesis to adulthood. PDGFRα-CreER; mT/mG reporter mice were analyzed. mEGFP-positive cells contributed to multiple ocular lineages in a spatiotemporally regulated manner. A dynamic PDGFRα expression was identified in corneal stromal cells, lens epithelial cells, lens fiber cells, and retinal astrocytes during the entire period of eye development, while PDGFRα expression in retinal astrocytes from E17.5 onwards and in Müller glial cells was identified within two weeks after birth. By revealing detailed characterization of gene expression and function, we present a comprehensive map of PDGFRα-expressing cells in the eye for a better understanding of PDGFRα signaling's role during eye development.
Collapse
|
16
|
Ozaki M, Kagawa S, Ishii M, Hegab AE. Optimizing the in vitro colony-forming assay for more efficient delineation of the interaction between lung epithelial stem cells and their niche. J Stem Cells Regen Med 2021; 16:50-62. [PMID: 33414581 DOI: 10.46582/jsrm.1602009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
The use of in vitro 3D organoid/colony forming assay (CFA); which mimics the in vivo environment have provided insight into the mechanisms by which lung stem cells maintain and repair the lung. In recent years, the use of CFA has markedly expanded. However, variations among laboratories in lung cell isolation methods, media used, type, origin, and processing methods of mesenchymal cells used as feeders for the epithelial colonies, and terms utilized to describe and quantify the growing colonies, have caused difficulty in reproducing results among different labs. In this study, we compared several previously described methods for lung cell isolation and culture media, to identify their influence on retrieved cells and growing colonies. We also characterized the effect of freeze/thaw, and propagation of fibroblasts on their ability to support epithelial colonies. Importantly, we suggested markers to identify fibroblast subtypes that offer the best support to alveolar stem cell proliferation. Then, we used our optimized assay to confirm the in vitro identity of recently described epithelial progenitors. We also tested the effect of hyperoxia on lung stem cells, and examined the expression of the receptors for the SARS-COV-2 virus's entry into epithelial cells, on our organoids. In summary, our findings facilitate CFA standardization, help understand how niche cell variations influence growing colonies, and confirm some of the recently described lung stem cells.
Collapse
Affiliation(s)
- Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Wickramasinghe LC, van Wijngaarden P, Johnson C, Tsantikos E, Hibbs ML. An Experimental Model of Bronchopulmonary Dysplasia Features Long-Term Retinal and Pulmonary Defects but Not Sustained Lung Inflammation. Front Pediatr 2021; 9:689699. [PMID: 34527643 PMCID: PMC8435611 DOI: 10.3389/fped.2021.689699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease that affects preterm infants receiving oxygen therapy. No standardized, clinically-relevant BPD model exists, hampering efforts to understand and treat this disease. This study aimed to evaluate and confirm a candidate model of acute and chronic BPD, based on exposure of neonatal mice to a high oxygen environment during key lung developmental stages affected in preterm infants with BPD. Neonatal C57BL/6 mouse pups were exposed to 75% oxygen from postnatal day (PN)-1 for 5, 8, or 14 days, and their lungs were examined at PN14 and PN40. While all mice showed some degree of lung damage, mice exposed to hyperoxia for 8 or 14 days exhibited the greatest septal wall thickening and airspace enlargement. Furthermore, when assessed at PN40, mice exposed for 8 or 14 days to supplemental oxygen exhibited augmented septal wall thickness and emphysema, with the severity increased with the longer exposure, which translated into a decline in respiratory function at PN80 in the 14-day model. In addition to this, mice exposed to hyperoxia for 8 days showed significant expansion of alveolar epithelial type II cells as well as the greatest fibrosis when assessed at PN40 suggesting a healing response, which was not seen in mice exposed to high oxygen for a longer period. While evidence of lung inflammation was apparent at PN14, chronic inflammation was absent from all three models. Finally, exposure to high oxygen for 14 days also induced concurrent outer retinal degeneration. This study shows that early postnatal exposure to high oxygen generates hallmark acute and chronic pathologies in mice that highlights its use as a translational model of BPD.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Peter van Wijngaarden
- Department of Surgery - Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Chad Johnson
- Monash Micro Imaging, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Moiseenko A, Vazquez-Armendariz AI, Kheirollahi V, Chu X, Tata A, Rivetti S, Günther S, Lebrigand K, Herold S, Braun T, Mari B, De Langhe S, Kwapiszewska G, Günther A, Chen C, Seeger W, Tata PR, Zhang JS, Bellusci S, El Agha E. Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration. Cell Rep 2020; 33:108549. [PMID: 33357434 PMCID: PMC8363050 DOI: 10.1016/j.celrep.2020.108549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term “repair-supportive mesenchymal cells” (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases. Moiseenko et al. explore the dynamics of mesenchymal cells in the peribronchial niche in response to airway injury. They identify a population of mesenchymal cells located in close proximity to airway smooth muscle cells (ASMCs). This population, termed “repair-supportive mesenchymal cells” (RSMCs), is recruited to facilitate airway epithelial regeneration.
Collapse
Affiliation(s)
- Alena Moiseenko
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Vahid Kheirollahi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Xuran Chu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Rivetti
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | | | - Susanne Herold
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, 06560 Valbonne, France
| | - Stijn De Langhe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria
| | - Andreas Günther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Elie El Agha
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany.
| |
Collapse
|
19
|
Brügger MD, Valenta T, Fazilaty H, Hausmann G, Basler K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol 2020; 18:e3001032. [PMID: 33306673 PMCID: PMC7758045 DOI: 10.1371/journal.pbio.3001032] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in recognizing the importance of mesenchymal cells for the homeostasis of the intestinal system, the current picture of how these cells communicate with the associated epithelial layer remains unclear. To describe the relevant cell populations in an unbiased manner, we carried out a single-cell transcriptome analysis of the adult murine colon, producing a high-quality atlas of matched colonic epithelium and mesenchyme. We identify two crypt-associated colonic fibroblast populations that are demarcated by different strengths of platelet-derived growth factor receptor A (Pdgfra) expression. Crypt-bottom fibroblasts (CBFs), close to the intestinal stem cells, express low levels of Pdgfra and secrete canonical Wnt ligands, Wnt potentiators, and bone morphogenetic protein (Bmp) inhibitors. Crypt-top fibroblasts (CTFs) exhibit high Pdgfra levels and secrete noncanonical Wnts and Bmp ligands. While the Pdgfralow cells maintain intestinal stem cell proliferation, the Pdgfrahigh cells induce differentiation of the epithelial cells. Our findings enhance our understanding of the crosstalk between various colonic epithelial cells and their associated mesenchymal signaling hubs along the crypt axis-placing differential Pdgfra expression levels in the spotlight of intestinal fibroblast identity.
Collapse
Affiliation(s)
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| |
Collapse
|
20
|
Environmental and Nutritional "Stressors" and Oligodendrocyte Dysfunction: Role of Mitochondrial and Endoplasmatic Reticulum Impairment. Biomedicines 2020; 8:biomedicines8120553. [PMID: 33265917 PMCID: PMC7760976 DOI: 10.3390/biomedicines8120553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes are myelinating cells of the central nervous system which are generated by progenitor oligodendrocytes as a result of maturation processes. The main function of mature oligodendrocytes is to produce myelin, a lipid-rich multi-lamellar membrane that wraps tightly around neuronal axons, insulating them and facilitating nerve conduction through saltatory propagation. The myelination process requires the consumption a large amount of energy and a high metabolic turnover. Mitochondria are essential organelles which regulate many cellular functions, including energy production through oxidative phosphorylation. Any mitochondrial dysfunction impacts cellular metabolism and negatively affects the health of the organism. If the functioning of the mitochondria is unbalanced, the myelination process is impaired. When myelination has finished, oligodendrocyte will have synthesized about 40% of the total lipids present in the brain. Since lipid synthesis occurs in the cellular endoplasmic reticulum, the dysfunction of this organelle can lead to partial or deficient myelination, triggering numerous neurodegenerative diseases. In this review, the induced malfunction of oligodendrocytes by harmful exogenous stimuli has been outlined. In particular, the effects of alcohol consumption and heavy metal intake are discussed. Furthermore, the response of the oligodendrocyte to excessive mitochondrial oxidative stress and to the altered regulation of the functioning of the endoplasmic reticulum will be explored.
Collapse
|
21
|
Riccetti M, Gokey JJ, Aronow B, Perl AKT. The elephant in the lung: Integrating lineage-tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biol 2020; 91-92:51-74. [PMID: 32442602 PMCID: PMC7434667 DOI: 10.1016/j.matbio.2020.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
During lung development, the mesenchyme and epithelium are dependent on each other for instructive morphogenic cues that direct proliferation, cellular differentiation and organogenesis. Specification of epithelial and mesenchymal cell lineages occurs in parallel, forming cellular subtypes that guide the formation of both transitional developmental structures and the permanent architecture of the adult lung. While epithelial cell types and lineages have been relatively well-defined in recent years, the definition of mesenchymal cell types and lineage relationships has been more challenging. Transgenic mouse lines with permanent and inducible lineage tracers have been instrumental in identifying lineage relationships among epithelial progenitor cells and their differentiation into distinct airway and alveolar epithelial cells. Lineage tracing experiments with reporter mice used to identify fibroblast progenitors and their lineage trajectories have been limited by the number of cell specific genes and the developmental timepoint when the lineage trace was activated. In this review, we discuss major developmental mesenchymal lineages, focusing on time of origin, major cell type, and other lineage derivatives, as well as the transgenic tools used to find and define them. We describe lung fibroblasts using function, location, and molecular markers in order to compare and contrast cells with similar functions. The temporal and cell-type specific expression of fourteen "fibroblast lineage" genes were identified in single-cell RNA-sequencing data from LungMAP in the LGEA database. Using these lineage signature genes as guides, we clustered murine lung fibroblast populations from embryonic day 16.5 to postnatal day 28 (E16.5-PN28) and generated heatmaps to illustrate expression of transcription factors, signaling receptors and ligands in a temporal and population specific manner.
Collapse
Affiliation(s)
- Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jason J Gokey
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
22
|
Zhang K, Yao E, Lin C, Chou YT, Wong J, Li J, Wolters PJ, Chuang PT. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. eLife 2020; 9:e53688. [PMID: 32394892 PMCID: PMC7217702 DOI: 10.7554/elife.53688] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Alveolar formation increases the surface area for gas-exchange and is key to the physiological function of the lung. Alveolar epithelial cells, myofibroblasts and endothelial cells undergo coordinated morphogenesis to generate epithelial folds (secondary septa) to form alveoli. A mechanistic understanding of alveologenesis remains incomplete. We found that the planar cell polarity (PCP) pathway is required in alveolar epithelial cells and myofibroblasts for alveologenesis in mammals. Our studies uncovered a Wnt5a-Ror2-Vangl2 cascade that endows cellular properties and novel mechanisms of alveologenesis. This includes PDGF secretion from alveolar type I and type II cells, cell shape changes of type I cells and migration of myofibroblasts. All these cellular properties are conferred by changes in the cytoskeleton and represent a new facet of PCP function. These results extend our current model of PCP signaling from polarizing a field of epithelial cells to conferring new properties at subcellular levels to regulate collective cell behavior.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Yu-Ting Chou
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Jianying Li
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Paul J Wolters
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
23
|
Gouveia L, Kraut S, Hadzic S, Vazquéz-Liébanas E, Kojonazarov B, Wu CY, Veith C, He L, Mermelekas G, Schermuly RT, Weissmann N, Betsholtz C, Andrae J. Lung developmental arrest caused by PDGF-A deletion: consequences for the adult mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L831-L843. [PMID: 32186397 DOI: 10.1152/ajplung.00295.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PDGF-A is a key contributor to lung development in mice. Its expression is needed for secondary septation of the alveoli and deletion of the gene leads to abnormally enlarged alveolar air spaces in mice. In humans, the same phenotype is the hallmark of bronchopulmonary dysplasia (BPD), a disease that affects premature babies and may have long lasting consequences in adulthood. So far, the knowledge regarding adult effects of developmental arrest in the lung is limited. This is attributable to few follow-up studies of BPD survivors and lack of good experimental models that could help predict the outcomes of this early age disease for the adult individual. In this study, we used the constitutive lung-specific Pdgfa deletion mouse model to analyze the consequences of developmental lung defects in adult mice. We assessed lung morphology, physiology, cellular content, ECM composition and proteomics data in mature mice, that perinatally exhibited lungs with a BPD-like morphology. Histological and physiological analyses both revealed that enlarged alveolar air spaces remained until adulthood, resulting in higher lung compliance and higher respiratory volume in knockout mice. Still, no or only small differences were seen in cellular, ECM and protein content when comparing knockout and control mice. Taken together, our results indicate that Pdgfa deletion-induced lung developmental arrest has consequences for the adult lung at the morphological and functional level. In addition, these mice can reach adulthood with a BPD-like phenotype, which makes them a robust model to further investigate the pathophysiological progression of the disease and test putative regenerative therapies.
Collapse
Affiliation(s)
- Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Simone Kraut
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Elisa Vazquéz-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Baktybek Kojonazarov
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Cheng-Yu Wu
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christine Veith
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgios Mermelekas
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ralph Theo Schermuly
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Liu Y, Chen X, Choi YJ, Yang N, Song Z, Snedecor ER, Liang W, Leung ELH, Zhang L, Qin C, Chen J. GORAB promotes embryonic lung maturation through antagonizing AKT phosphorylation, versican expression, and mesenchymal cell migration. FASEB J 2020; 34:4918-4933. [PMID: 32067289 DOI: 10.1096/fj.201902075r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022]
Abstract
Embryonic development of the alveolar sac of the lung is dependent upon multiple signaling pathways to coordinate cell growth, migration, and the formation of the extracellular matrix. Here, we identify GORAB as a regulator of embryonic alveolar sac formation as genetically disrupting the Gorab gene in mice resulted in fatal saccular maturation defects characterized by a thickened lung mesenchyme. This abnormality is not associated with impairments in cellular proliferation and death, but aberrantly increased protein kinase B (AKT) phosphorylation, elevated Vcan transcription, and enhanced migration of mesenchymal fibroblasts. Genetically augmenting PDGFRα, a potent activator of AKT in lung mesenchymal cells, recapitulated the alveolar phenotypes, whereas disrupting PDGFRα partially rescued alveolar phenotypes in Gorab-deficient mice. Overexpressing or suppressing Vcan in primary embryonic lung fibroblasts could, respectively, mimic or attenuate alveolar sac-like phenotypes in a co-culture model. These findings suggest a role of GORAB in negatively regulating AKT phosphorylation, the expression of Vcan, and the migration of lung mesenchyme fibroblasts, and suggest that alveolar sac formation resembles a patterning event that is orchestrated by molecular signaling and the extracellular matrix in the mesenchyme.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Xi Chen
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Zhongya Song
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | | | - Wei Liang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Jiang Chen
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing, China.,Comparative Medical Center, Peking Union Medical College, Ministry of Health, Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
25
|
Gentilini F, Capitani O, Tinto D, Rigillo A, Sabattini S, Bettini G, Turba Maria E. Assessment of PDGFRβ promoter methylation in canine osteosarcoma using methylation-sensitive high-resolution melting analysis. Vet Comp Oncol 2020; 18:484-493. [PMID: 31950560 DOI: 10.1111/vco.12567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factor signalling pathways play a fundamental role in inducing and sustaining the proliferative and prosurvival stimuli in canine osteosarcomas (cOSAs). The increased expression of platelet-derived growth factor receptors (PDGFRs) α and β, and their cognate ligands, were almost invariably observed in cOSAs and OSA-derived cell lines. In particular, overexpression of PDGFRβ-mediated signalling pathways was found in both the tumour microenvironment, where it drives stromal cell recruitment, and in neoangiogenesis, such as in tumour cells where it triggers aberrant proliferation, migration and local invasion. The majority of the pathological consequences of PDGFRβ signalling are because of aberrant expression. In fact, epigenetic dysregulation of oncogenes throughout demethylation of their promoter has emerged as a pivotal mechanism driving oncogenesis. The aim of this study was to assess the methylation status of the PDGFRβ promoter and to clarify its role in modulating the expression of the tyrosine kinase receptor in canine osteosarcoma. The CpG island of the PDGFRβ promoter was identified using a mixed in silico and experimental approach, and a method based upon the methylation-sensitive high-resolution melting assay for quantitatively and precisely assessing the methylation status of the promoter was then set up. The method herein described was then exploited to assess the methylation status of the promoter in a case series of cOSAa. COSAs consistently but variably expressed PDGFRβ. However, the promoter was almost completely demethylated, and its methylation status did not correlate with the expression levels. This finding supported the hypothesis that post-transcriptional regulatory mechanisms may act in cOSAs.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Ombretta Capitani
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Debora Tinto
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Antonella Rigillo
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | | |
Collapse
|
26
|
Hagan AS, Zhang B, Ornitz DM. Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 2020; 147:dev.181032. [PMID: 31862844 DOI: 10.1242/dev.181032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Alveologenesis is an essential developmental process that increases the surface area of the lung through the formation of septal ridges. In the mouse, septation occurs postnatally and is thought to require the alveolar myofibroblast (AMF). Though abundant during alveologenesis, markers for AMFs are minimally detected in the adult. After septation, the alveolar walls thin to allow efficient gas exchange. Both loss of AMFs or retention and differentiation into another cell type during septal thinning have been proposed. Using a novel Fgf18:CreERT2 allele to lineage trace AMFs, we demonstrate that most AMFs are developmentally cleared during alveologenesis. Lung mesenchyme also contains other poorly described cell types, including alveolar lipofibroblasts (ALF). We show that Gli1:CreERT2 marks both AMFs as well as ALFs, and lineage tracing shows that ALFs are retained in adult alveoli while AMFs are lost. We further show that multiple immune cell populations contain lineage-labeled particles, suggesting a phagocytic role in the clearance of AMFs. The demonstration that the AMF lineage is depleted during septal thinning through a phagocytic process provides a mechanism for the clearance of a transient developmental cell population.
Collapse
Affiliation(s)
- Andrew S Hagan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
27
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
28
|
Yoon S, Wu X, Armstrong B, Habib N, Rossi JJ. An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:131-141. [PMID: 30594071 PMCID: PMC6307106 DOI: 10.1016/j.omtn.2018.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023]
Abstract
Human glioblastoma (GBM) is the most aggressive malignancy of the CNS, with less than 5% survival. Despite great efforts to find effective therapeutics, current options remain very limited. To develop a targeted cancer therapeutic, we selected RNA aptamers against platelet-derived growth factor receptor α (PDGFRα), which is a receptor tyrosine kinase. One RNA aptamer (PDR3) with high affinity (0.25 nM) showed PDGFRα specificity and was internalized in U251-MG cells. Following treatment with the PDR3 aptamer, expression of the transcription factor STAT3 (signal transducer and activator of transcription 3) was inhibited, whereas the expression of the histone demethylase JMJD3 and the tumor suppressor p53 were upregulated. PDR3 also upregulated serine phosphorylation of p53, which subsequently mediated apoptosis through the death receptors: tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptors 1/2 (TRAIL-R1/R2), Fas-associated via death domain (FADD), and Fas. PDR3 significantly decreased cell viability in a dose-dependent manner. Furthermore, translocation of PDR3 into the nucleus induced hypomethylation at the promoters of cyclin D2. To assess the feasibility of targeted delivery, we conjugated PDR3 aptamer with STAT3-siRNA for a chimera. The PDR3-siSTAT3 chimera successfully inhibited the expression of target genes and showed significant inhibition of cell viability. In summary, our results show that well-tailored RNA aptamers targeting the PDGFRα-STAT3 axis have the potential to act as anti-cancer therapeutics in GBM.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomic Core, City of Hope, Duarte, CA 91010, USA
| | | | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
30
|
Jitariu AA, Raica M, Cîmpean AM, Suciu SC. The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol 2018; 131:46-52. [PMID: 30293705 DOI: 10.1016/j.critrevonc.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
PDGFs/PDGFRs axis is documented as an important tumor-promoting agent and potential therapeutic target for several human carcinomas, including breast cancer. However, little is known about the role played by the PDGF family members in the normal development of the breast tissue, breast carcinogenesis and tumor-microenvironment dynamics Despite its potent pro-lymphangiogenic effects, PDGF-B/PDGFR-beta axis remains controversial and incompletely elucidated in the field of breast cancer, with emphasis to its differential implications in breast cancer molecular subtypes. Although some data are available concerning this aspect, little or no information is found regarding the role of the PDGF-B/PDGFR-beta axis in rare and aggressive types of breast cancers, such as triple negative breast cancers (TNBCs) and its associated subtypes This review attempted to gather as many data as possible concerning PDGFs family members in the normal breast tissue and in breast carcinogenesis with special focus on their role in diagnosis and therapeutic approach.
Collapse
Affiliation(s)
- Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Anca Maria Cîmpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania.
| | - Silviu Cristian Suciu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
31
|
Rodríguez-Castillo JA, Pérez DB, Ntokou A, Seeger W, Morty RE, Ahlbrecht K. Understanding alveolarization to induce lung regeneration. Respir Res 2018; 19:148. [PMID: 30081910 PMCID: PMC6090695 DOI: 10.1186/s12931-018-0837-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death. The pronounced morbidity and mortality associated with malformation or destruction of alveoli underscores a pressing need for new therapeutic concepts. The re-induction of alveolarization in diseased lungs is a new and exciting concept in a regenerative medicine approach to manage pulmonary diseases that are characterized by an absence of alveoli. Main text Mechanisms of alveolarization first need to be understood, to identify pathways and mediators that may be exploited to drive the induction of alveolarization in the diseased lung. With this in mind, a variety of candidate cell-types, pathways, and molecular mediators have recently been identified. Using lineage tracing approaches and lung injury models, new progenitor cells for epithelial and mesenchymal cell types – as well as cell lineages which are able to acquire stem cell properties – have been discovered. However, the underlying mechanisms that orchestrate the complex process of lung alveolar septation remain largely unknown. Conclusion While important progress has been made, further characterization of the contributing cell-types, the cell type-specific molecular signatures, and the time-dependent chemical and mechanical processes in the developing, adult and diseased lung is needed in order to implement a regenerative therapeutic approach for pulmonary diseases.
Collapse
Affiliation(s)
- José Alberto Rodríguez-Castillo
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - David Bravo Pérez
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Aglaia Ntokou
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Werner Seeger
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Rory E Morty
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Katrin Ahlbrecht
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Moghieb A, Clair G, Mitchell HD, Kitzmiller J, Zink EM, Kim YM, Petyuk V, Shukla A, Moore RJ, Metz TO, Carson J, McDermott JE, Corley RA, Whitsett JA, Ansong C. Time-resolved proteome profiling of normal lung development. Am J Physiol Lung Cell Mol Physiol 2018; 315:L11-L24. [PMID: 29516783 PMCID: PMC6087896 DOI: 10.1152/ajplung.00316.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Biochemical networks mediating normal lung morphogenesis and function have important implications for ameliorating morbidity and mortality in premature infants. Although several transcript-level studies have examined normal lung development, corresponding protein-level analyses are lacking. Here we performed proteomics analysis of murine lungs from embryonic to early adult ages to identify the molecular networks mediating normal lung development. We identified 8,932 proteins, providing a deep and comprehensive view of the lung proteome. Analysis of the proteomics data revealed discrete modules and the underlying regulatory and signaling network modulating their expression during development. Our data support the cell proliferation that characterizes early lung development and highlight responses of the lung to exposure to a nonsterile oxygen-rich ambient environment and the important role of lipid (surfactant) metabolism in lung development. Comparison of dynamic regulation of proteomic and recent transcriptomic analyses identified biological processes under posttranscriptional control. Our study provides a unique proteomic resource for understanding normal lung formation and function and can be freely accessed at Lungmap.net.
Collapse
Affiliation(s)
- Ahmed Moghieb
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Hugh D Mitchell
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Young-Mo Kim
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Vladislav Petyuk
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Anil Shukla
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Thomas O Metz
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - James Carson
- Texas Advanced Computing Center, University of Texas at Austin , Austin, Texas
| | - Jason E McDermott
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| |
Collapse
|
33
|
Gouveia L, Betsholtz C, Andrae J. PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development 2018; 145:145/7/dev161976. [DOI: 10.1242/dev.161976] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Platelet-derived growth factor A (PDGF-A) signaling through PDGF receptor α is essential for alveogenesis. Previous studies have shown that Pdgfa−/− mouse lungs have enlarged alveolar airspace with absence of secondary septation, both distinctive features of bronchopulmonary dysplasia. To study how PDGF-A signaling is involved in alveogenesis, we generated lung-specific Pdgfa knockout mice (Pdgfafl/−; Spc-cre) and characterized their phenotype postnatally. Histological differences between mutant mice and littermate controls were visible after the onset of alveogenesis and maintained until adulthood. Additionally, we generated Pdgfafl/−; Spc-cre; PdgfraGFP/+ mice in which Pdgfra+ cells exhibit nuclear GFP expression. In the absence of PDGF-A, the number of PdgfraGFP+ cells was significantly decreased. In addition, proliferation of PdgfraGFP+ cells was reduced. During alveogenesis, PdgfraGFP+ myofibroblasts failed to form the α-smooth muscle actin rings necessary for alveolar secondary septation. These results indicate that PDGF-A signaling is involved in myofibroblast proliferation and migration. In addition, we show an increase in both the number and proliferation of alveolar type II cells in Pdgfafl/−; Spc-cre lungs, suggesting that the increased alveolar airspace is not caused solely by deficient myofibroblast function.
Collapse
Affiliation(s)
- Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
- Integrated Cardio Metabolic Centre, Karolinska Institute, SE-141 57 Huddinge, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
34
|
包 和, 马 树. [Regulatory role of Shh signaling pathway in lung development in fetal mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:274-282. [PMID: 29643032 PMCID: PMC6744159 DOI: 10.3969/j.issn.1673-4254.2018.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the regulatory role of classical Shh signaling pathway in the development of the epithelium and mesenchyme (bronchial cartilage and smooth muscles) during lung development in fetal mice. METHODS Immunohistochemical technique was used to detect the expression of Shh signaling pathway receptor Smo and Pdgfr-α in murine fetal lungs to explore the spatial and temporal characteristics of their expression. Based on the interstitial specificity of Pdgfr-α expression, we constructed a Pdgfr-α-cre to establish a E12.5 - E16.5 transgenic mice with specific knockout of the key Shh signaling molecule Smo in the pulmonary interstitium with tamoxifen induction. Immunofluorescence technique was used to observe the epithelium and mesenchyme (bronchial cartilage and smooth muscle) during fetal lung development in the transgenic mice to assess the role of Shh signaling pathway in the epithelial-to-mesenchymal (EMT) transition during the lung development. RESULTS Smo was highly expressed in the epithelial and stromal lung tissues in the pseudoglandular stage and was gradually lowered over time with its distribution mainly in the interstitial tissues. Pdgfr-α was enriched in the distal lung epithelial and mesenchy tissues in early embryonic lungs and gradually migrated to the proximal stroma until becoming concentrated around the main bronchial proximal stroma. We successfully specific established mouse models of specific mesenchymal Smo knockout. Compared with the control group, the transgenic mice during E12.5-E16.5 showed significantly reduced lung the volume and bronchial branching with also decreased expression of the proximal epithelial P63 (P<0.05). The transgenic mice exhibited alterations in the expression of α-smooth muscle actin with delayed bronchial cartilage development and decreased expression of mucoprotein. CONCLUSION The temporospatial specific expression of Shh signaling pathway plays an important role in developmental regulation of mouse embryonic lung epithelium and mesenchyme (bronchial cartilage and smooth muscle).
Collapse
Affiliation(s)
- 和婧 包
- 重庆三峡中心医院肿瘤消化病区,重庆 万州 404000Digestive Tumor Ward, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - 树东 马
- 南方医科大学南方医院肿瘤科,广东 广州 510515Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
Gouveia L, Betsholtz C, Andrae J. Expression analysis of platelet-derived growth factor receptor alpha and its ligands in the developing mouse lung. Physiol Rep 2017; 5:5/6/e13092. [PMID: 28330949 PMCID: PMC5371545 DOI: 10.14814/phy2.13092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023] Open
Abstract
Activation of the platelet-derived growth factor receptor-α (PDGFRα) signaling pathway is critically important during lung alveogenesis, the process in lung development during which alveoli are formed from the terminal alveolar sacs. Several studies have aimed to characterize the expression patterns of PDGFRα and its two ligands (PDGF-A and -C) in the lung, but published analyses have been limited to embryonic and/or perinatal time points, and no attempts have been made to characterize both receptor and ligand expression simultaneously. In this study, we present a detailed map of the expression patterns of PDGFRα, PDGF-A and PDGF-C during the entire period of lung development, that is, from early embryogenesis until adulthood. Three different reporter mice were analyzed (Pdgfaex4-COIN-INV-lacZ , Pdgfctm1Nagy , and Pdgfratm11(EGFP)Sor ), in which either lacZ or H2B-GFP were expressed under the respective promoter in gene-targeted alleles. A spatiotemporal dynamic expression was identified for both ligands and receptor. PDGF-A and PDGF-C were located to distinct populations of epithelial and smooth muscle cells, whereas PDGFRα expression was located to different mesenchymal cell populations. The detailed characterization of gene expression provides a comprehensive map of PDGFRα signaling in lung cells, opening up for a better understanding of the role of PDGF signaling during lung development.
Collapse
Affiliation(s)
- Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Abstract
Fibrosis is part of a tissue repair response to injury, defined as increased deposition of extracellular matrix. In some instances, fibrosis is beneficial; however, in the majority of diseases fibrosis is detrimental. Virtually all chronic progressive diseases are associated with fibrosis, representing a huge number of patients worldwide. Fibrosis occurs in all organs and tissues, becomes irreversible with time and further drives loss of tissue function. Various cells types initiate and perpetuate pathological fibrosis by paracrine activation of the principal cellular executors of fibrosis, i.e. stromal mesenchymal cells like fibroblasts, pericytes and myofibroblasts. Multiple pathways are involved in fibrosis, platelet-derived growth factor (PDGF)-signaling being one of the central mediators. Stromal mesenchymal cells express both PDGF receptors (PDGFR) α and β, activation of which drives proliferation, migration and production of extracellular matrix, i.e. the principal processes of fibrosis. Here, we review the role of PDGF signaling in organ fibrosis, with particular focus on the more recently described ligands PDGF-C and -D. We discuss the potential challenges, opportunities and open questions in using PDGF as a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Germany.
| |
Collapse
|