1
|
Sultan I, Ramste M, Peletier P, Hemanthakumar KA, Ramanujam D, Tirronen A, von Wright Y, Antila S, Saharinen P, Eklund L, Mervaala E, Ylä-Herttuala S, Engelhardt S, Kivelä R, Alitalo K. Contribution of VEGF-B-Induced Endocardial Endothelial Cell Lineage in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res 2024; 134:1465-1482. [PMID: 38655691 PMCID: PMC11542978 DOI: 10.1161/circresaha.123.324136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ibrahim Sultan
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Markus Ramste
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pim Peletier
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
- RNATICS GmbH, Planegg, Germany (D.R.)
| | - Annakaisa Tirronen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Ylva von Wright
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland (L.E.)
| | - Eero Mervaala
- Department of Pharmacology (E.M.), Faculty of Medicine, University of Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.)
| | - Riikka Kivelä
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Stem Cells and Metabolism Research Program (R.K.), Faculty of Medicine, University of Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Finland (R.K.)
| | - Kari Alitalo
- Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
- Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| |
Collapse
|
2
|
Li T, Wang W, Gan W, Lv S, Zeng Z, Hou Y, Yan Z, Zhang R, Yang M. Comprehensive bioinformatics analysis identifies LAPTM5 as a potential blood biomarker for hypertensive patients with left ventricular hypertrophy. Aging (Albany NY) 2022; 14:1508-1528. [PMID: 35157609 PMCID: PMC8876903 DOI: 10.18632/aging.203894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.
Collapse
Affiliation(s)
- Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rixin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Ricciardi CA, Gnudi L. Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes. Eur J Clin Invest 2021; 51:e13579. [PMID: 33942293 DOI: 10.1111/eci.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiorenal syndrome in diabetes is characterised by alterations of the cardiovascular system paralleled by kidney disease with progressive renal function decline. In diabetes, chronic metabolic and haemodynamic perturbations drive endothelial dysfunction, inflammation, oxidative stress and progressive tissue fibrosis which, in turn, lead to heart and renal anatomo-functional damage. In physiology, vascular growth factors have been implicated in vascular homeostasis; their imbalance, in disease setting such as diabetes, leads to vascular dysfunction and cardiorenal damage. AIMS To define the role of vascular growth factors and angiopoietins in cardiorenal syndrome. MATERIAL AND METHODS We will focus on the two most studied vascular growth factors, vascular endothelial growth factor (VEGF) and angiopoietins (Angpt). The balance and crosstalk between these growth factors are important in organ development and in the maintenance of a healthy vasculature, heart and kidney. The observed alterations in expression/function of these vascular growth factors, as seen in diabetes, are a protective response against external perturbations. RESULTS The chronic insults driving diabetes-mediated cardiorenal damage results in a paradoxical situation, whereby the vascular growth factors imbalance becomes a mechanism of disease. Studies have explored the possibility of modulating the expression/action of vascular growth factors to improve disease outcome. Experimental work has been conducted in animals and has been gradually translated in humans. DISCUSSION Difficulties have been encountered especially when considering the magnitude, timing and duration of interventions targeting a selective vascular growth factor. Targeting VEGF in cardiovascular disease has been challenging, while modulation of the Angpt system seems more promising. CONCLUSION Future studies will establish the translatability of therapies targeting vascular growth factors for heart and kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Carlo Alberto Ricciardi
- Section Vascular Biology and Inflammation, School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Luigi Gnudi
- Section Vascular Biology and Inflammation, School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
4
|
Luhong Formula Has a Cardioprotective Effect on Left Ventricular Remodeling in Pressure-Overloaded Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4095967. [PMID: 32565857 PMCID: PMC7277070 DOI: 10.1155/2020/4095967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Background Luhong formula (LHF)-a traditional Chinese medicine containing Cervus nippon Temminck, Carthamus tinctorius L., Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Codonopsis pilosula (Franch.) Nannf., Cinnamomum cassia Presl, and Lepidium apetalum Willd-is used in the treatment of heart failure, but little is known about its mechanism of action. We have investigated the effects of LHF on antifibrosis. Methods Forty-eight SD male rats were randomly assigned into six groups (n = 8), model group, sham-operation group, perindopril group (0.036 mg/ml), LHF high doses (LHF-H, 1.44 g/mL), LHF middle doses (LHF-M, 0.72 g/mL), and LHF low doses (LHF-L, 0.36 g/mL). Except the sham-operation group, the other groups were received an abdominal aorta constriction to establish a model of myocardial hypertrophy. The HW and LVW were measured to calculate the LVW/BW and HW/BW. ELISA was used to detect the serum concentration of BNP. The expressions of eNOS, TGF-β1, caspase-3, VEGF, and VEGFR2 in heart tissues were assessed by western blot analysis. mRNA expressions of eNOS, Col1a1, Col3a1, TGF-β1, VEGF, and VEGFR2 in heart tissues were measured by RT-PCR. The specimens were stained with hematoxylin-eosin (HE) and picrosirius red staining for observing the morphological characteristics and collagen fibers I and III of the myocardium under a light microscope. Results LHF significantly lowered the rat's HW/BW and LVM/BW, and the level of BNP in the LHF-treated group compared with the model group. Histopathological and pathomorphological changes of collagen fibers I and III showed that LHF inhibited myocardial fibrosis in heart failure rats. Treatment with LHF upregulated eNOS expression in heart tissue and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression. Conclusion LHF can improve left ventricular remodeling in a pressure-overloaded heart failure rat model; this cardiac protective ability may be due to cardiac fibrosis and attenuated apoptosis. Upregulated eNOS expression and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression may play a role in the observed LHF cardioprotective effect.
Collapse
|
5
|
Lähteenvuo J, Hätinen OP, Kuivanen A, Huusko J, Paananen J, Lähteenvuo M, Nurro J, Hedman M, Hartikainen J, Laham-Karam N, Mäkinen P, Räsänen M, Alitalo K, Rosenzweig A, Ylä-Herttuala S. Susceptibility to Cardiac Arrhythmias and Sympathetic Nerve Growth in VEGF-B Overexpressing Myocardium. Mol Ther 2020; 28:1731-1740. [PMID: 32243833 DOI: 10.1016/j.ymthe.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
VEGF-B gene therapy is a promising proangiogenic treatment for ischemic heart disease, but, unexpectedly, we found that high doses of VEGF-B promote ventricular arrhythmias (VAs). VEGF-B knockout, alpha myosin heavy-chain promoter (αMHC)-VEGF-B transgenic mice, and pigs transduced intramyocardially with adenoviral (Ad)VEGF- B186 were studied. Immunostaining showed a 2-fold increase in the number of nerves per field (76 vs. 39 in controls, p < 0.001) and an abnormal nerve distribution in the hypertrophic hearts of 11- to 20-month-old αMHC-VEGF-B mice. AdVEGF-B186 gene transfer (GT) led to local sprouting of nerve endings in pig myocardium (141 vs. 78 nerves per field in controls, p < 0.05). During dobutamine stress, 60% of the αMHC-VEGF-B hypertrophic mice had arrhythmias as compared to 7% in controls, and 20% of the AdVEGF-B186-transduced pigs and 100% of the combination of AdVEGF-B186- and AdsVEGFR-1-transduced pigs displayed VAs and even ventricular fibrillation. AdVEGF-B186 GT significantly increased the risk of sudden cardiac death in pigs when compared to any other GT with different VEGFs (hazard ratio, 500.5; 95% confidence interval [CI] 46.4-5,396.7; p < 0.0001). In gene expression analysis, VEGF-B induced the upregulation of Nr4a2, ATF6, and MANF in cardiomyocytes, molecules previously linked to nerve growth and differentiation. Thus, high AdVEGF-B186 overexpression induced nerve growth in the adult heart via a VEGFR-1 signaling-independent mechanism, leading to an increased risk of VA and sudden cardiac death.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Antti Kuivanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jussi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Markku Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jussi Nurro
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Juha Hartikainen
- Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland; Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Laakkonen JP, Lähteenvuo J, Jauhiainen S, Heikura T, Ylä-Herttuala S. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol 2018; 112:91-101. [PMID: 30342234 DOI: 10.1016/j.vph.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factors regulate vascular and lymphatic growth. Dysregulation of VEGF signaling is connected to many pathological states, including hemangiomas, arteriovenous malformations and placental abnormalities. In heart, VEGF gene transfer induces myocardial angiogenesis. Besides vascular and lymphatic endothelial cells, VEGFs affect multiple other cell types. Understanding VEGF biology and its paracrine signaling properties will offer new targets for novel treatments of several diseases.
Collapse
Affiliation(s)
- Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Johanna Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Science Service Center, Kuopio University Hospital, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Erturk I, Saglam K, Elasan S, Aykan MB, Acar R, Yesildal F, Aydin FN, Ozgurtas T. Evaluation of the effects of different treatment modalities on angiogenesis in heart failure patients with reduced/mid-range ejection fraction via VEGF and sVEGFR-1. Saudi Med J 2018; 39:1028-1034. [PMID: 30284587 PMCID: PMC6201020 DOI: 10.15537/smj.2018.10.22946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate the clinical significance of VEGF, sVEGFR-1 in heart failure reduced ejection fraction (HFrEF) and heart failure mid-range ejection fraction (HFmrEF) patients. Methods: A total of 104 people consisting of HFrEF and HFmrEF patients (n=54) and healthy (n=50) subjects were included in this comparative cross-sectional study. The study took place in Gulhane Training and Research Hospital, Ankara, Turkey, between 2011 and 2013. Serum VEGF, sVEGFR-1, plasma pro-BNP analysis and transthoracic echocardiography were performed. Results: The average sVEGFR-1 level of the HFrEF and HFmrEF patients was significantly higher than the control group (0.185±0.122; 0.141±0.120; p=0.013). The average sVEGFR-1 level of the HFrEF and HFmrEF patients using beta-blocker was significantly higher than the HFrEF and HFmrEF patients not using it (p=0.015). There was a significant and positive correlation between sVEGFR-1 and N-terminal pro-brain natriuretic peptide (pro-BNP) levels in the group with HF (r=0.211, p=0.044). Conclusion: It increases awareness about the role of sVEGFR-1 in HFrEF anf HFmrEF patients and the need for further studies. Beta-blocker may have a negative effect on angiogenesis in HFrEF and HFmrEF via increasing sVEGFR-1 levels. Additionally, Pro-BNP may contribute to inhibiting angiogenesis by increasing sVEGFR-1 levels and sVEGFR-1 may be an important biomarker in HFrEF and HFmrEF.
Collapse
Affiliation(s)
- Ismail Erturk
- Department of Internal Medicine, University of Health Sciences, Gulhane School of Medicine, Etlik, Ankara, Turkey. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Law BA, Hancock WD, Cowart LA. Getting to the heart of the sphingolipid riddle. CURRENT OPINION IN PHYSIOLOGY 2018; 1:111-122. [PMID: 33195889 PMCID: PMC7665081 DOI: 10.1016/j.cophys.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity, Type 2 Diabetes, and Metabolic Syndrome induce dyslipidemia resulting in inundation of peripheral organs with fatty acids. These not only serve as substrates for energy production, but also contribute to aberrant production of bioactive lipids. Moreover, lipid metabolism is affected in many cardiac disorders including heart failure, ischemia reperfusion injury, and others. While lipids serve crucial homeostatic roles, perturbing biosynthesis of lipid mediators leads to aberrant cell signaling, which contributes to maladaptive cardiovascular programs. Bioactive sphingolipids, in particular, have been implicated in pathophysiology in the heart and vasculature by a variety of studies in cells, animal models, and humans. Because of the burgeoning interest in sphingolipid-driven biology in the cardiovascular system, it is necessary to discuss the experimental considerations for studying sphingolipid metabolism and signaling, emphasizing the caveats to some widely available experimental tools and approaches. Additionally, there is a growing appreciation for the diversity of ceramide structures generated via specific enzymes and bearing disparate cellular functions. While targeting these individual species and enzymes constitutes a major advance, studies show that sphingolipid synthesis readily adapts to compensate for experimental targeting of any individual pathway, thereby convoluting data interpretation. Furthermore, though some molecular mechanisms of sphingolipid action are known, signaling pathways impacted by sphingolipids remain incompletely understood. In this review, we discuss these issues and highlight recent studies as well as future directions that may extend our understanding of the metabolism and signaling actions of these enigmatic lipids in the cardiovascular context.
Collapse
Affiliation(s)
- Britany A Law
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Present Address: Department of Medicine-Cardiology, Duke University, Durham NC
| | - William D Hancock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veteran's Affairs Medical Center, Charleston, SC
| |
Collapse
|
10
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
11
|
Lottonen-Raikaslehto L, Rissanen R, Gurzeler E, Merentie M, Huusko J, Schneider JE, Liimatainen T, Ylä-Herttuala S. Left ventricular remodeling leads to heart failure in mice with cardiac-specific overexpression of VEGF-B 167: echocardiography and magnetic resonance imaging study. Physiol Rep 2017; 5:5/6/e13096. [PMID: 28351964 PMCID: PMC5371547 DOI: 10.14814/phy2.13096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/07/2016] [Accepted: 11/20/2016] [Indexed: 01/24/2023] Open
Abstract
Cardiac-specific overexpression of vascular endothelial growth factor (VEGF)-B167 is known to induce left ventricular hypertrophy due to altered lipid metabolism, in which ceramides accumulate to the heart and cause mitochondrial damage. The aim of this study was to evaluate and compare different imaging methods to find the most sensitive way to diagnose at early stage the progressive left ventricular remodeling leading to heart failure. Echocardiography and cardiovascular magnetic resonance imaging were compared for imaging the hearts of transgenic mice with cardiac-specific overexpression of VEGF-B167 and wild-type mice from 5 to 14 months of age at several time points. Disease progression was verified by molecular biology methods and histology. We showed that left ventricular remodeling is already ongoing at the age of 5 months in transgenic mice leading to heart failure by the age of 14 months. Measurements from echocardiography and cardiovascular magnetic resonance imaging revealed similar changes in cardiac structure and function in the transgenic mice. Changes in histology, gene expressions, and electrocardiography supported the progression of left ventricular hypertrophy. Longitudinal relaxation time in rotating frame (T1ρ ) in cardiovascular magnetic resonance imaging could be suitable for detecting severe fibrosis in the heart. We conclude that cardiac-specific overexpression of VEGF-B167 leads to left ventricular remodeling at early age and is a suitable model to study heart failure development with different imaging methods.
Collapse
Affiliation(s)
- Line Lottonen-Raikaslehto
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riina Rissanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jurgen E Schneider
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, United kingdom
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland .,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Watanabe Y, Matsumoto A, Miki T, Seino S, Anzai N, Nakaya H. Electrophysiological analyses of transgenic mice overexpressing KCNJ8 with S422L mutation in cardiomyocytes. J Pharmacol Sci 2017; 135:37-43. [PMID: 28928055 DOI: 10.1016/j.jphs.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
Genetic analysis of KCNJ8 has pointed a mutation (S422L) as a susceptible link to J wave syndrome (JWS). In vitro expression study indicated that the ATP-sensitive K+ (KATP) channel with the S422L mutation has the gain-of-function with reduced sensitivity to ATP. However, the electrophysiological impact of KCNJ8 has not been elucidated in vivo. Transgenic mouse strains overexpressing KCNJ8 S422L variant (TGmt) or WT (TGWT) in cardiomyocytes have been created to investigate the influence of KCNJ8 in cardiomyocytes and the JWS-related feature of the S422L variant on the cardiac electrophysiology. These TG strains demonstrated distinct changes in the J-ST segment of ECG with marked QT prolongation, which might be ascribed to the action potential prolongation resulting from the reduction of voltage-dependent K+ currents in ventricular cells. The pinacidil-induced KATP current was decreased in these TG myocytes and no obvious difference between TG and non-TG (WT) myocytes in the ATP sensitivity of the KATP channel was observed although the open probability of the KATP channels was significantly lower in TG myocytes than WT. These transgenic mouse strains with distinct ECG changes suggested that the S422L mutation in KCNJ8 gene is not a direct cause of JWS.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Akio Matsumoto
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Haruaki Nakaya
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
13
|
Holzem KM. New cardiac magnetic resonance imaging modalities aid in the detection of myocardial fibrosis. Physiol Rep 2017; 5:5/6/e13135. [PMID: 28351965 PMCID: PMC5371551 DOI: 10.14814/phy2.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katherine M. Holzem
- Department of Biomedical Engineering; Washington University; St. Louis Missouri 63130
| |
Collapse
|